JPH0769730A - Production of vitreous carbonaceous material - Google Patents

Production of vitreous carbonaceous material

Info

Publication number
JPH0769730A
JPH0769730A JP5246286A JP24628693A JPH0769730A JP H0769730 A JPH0769730 A JP H0769730A JP 5246286 A JP5246286 A JP 5246286A JP 24628693 A JP24628693 A JP 24628693A JP H0769730 A JPH0769730 A JP H0769730A
Authority
JP
Japan
Prior art keywords
glassy carbon
resin
temperature
carbon material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5246286A
Other languages
Japanese (ja)
Inventor
Kanji Sugihara
幹治 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP5246286A priority Critical patent/JPH0769730A/en
Publication of JPH0769730A publication Critical patent/JPH0769730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain in high yield a vitreous carbonaceous material > 4mm in wall thickness with uniform and dense texture. CONSTITUTION:A thermosetting resin liquor of high residual carbon rate is molded and cured and then baked and carbonized in a nonoxidative atmosphere at >=800 deg.C to effect conversion into the objective vitreous carbonaceous material. In this method, the curing is conducted in such a state that the resin molded form is suspended in a gas flowing atmospheric system pref. at room temperature to 300 deg.C with a variation in temperature within + or -3 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、均質緻密な組織構造を
備えるガラス状カーボン材の製造方法、とくに板厚が4
mmを越える厚肉板状のガラス状カーボン材を製品歩留り
よく生産するための工業的な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glassy carbon material having a homogeneous and dense microstructure, and particularly a plate thickness of 4
The present invention relates to an industrial manufacturing method for producing a thick plate-like glassy carbonaceous material exceeding mm with a good product yield.

【0002】[0002]

【従来の技術】ガラス状カーボン材はガラス質の緻密な
組織構造を有する異質な炭素材料で、一般のカーボン材
に比べてガス不透過性、耐摩耗性、耐食性、自己潤滑
性、表面の平滑性および堅牢性などに優れることから、
その特性を生かして電池用電極、電解用電極、半導体製
造用坩堝ほか、多様の分野で各種工業部材に有用されて
いる。近年では、組織から微小なパーティクルが離脱す
ることのない非汚染性の材質性状に着目して、シリコン
ウエハーのプラズマエッチング用電極やイオン注入装置
用部材など汚染を嫌う半導体分野での実用が図られてい
る。
2. Description of the Related Art A glassy carbon material is a heterogeneous carbon material having a glassy dense structure structure, and is gas impermeable, wear resistant, corrosion resistant, self-lubricating and has a smooth surface as compared with general carbon materials. Since it is excellent in durability and robustness,
Utilizing these characteristics, it is useful for various industrial members in various fields such as battery electrodes, electrolysis electrodes, semiconductor manufacturing crucibles. In recent years, focusing on the property of non-contaminating material that does not allow fine particles to be separated from the tissue, it has been put to practical use in the semiconductor field such as electrodes for plasma etching of silicon wafers and members for ion implantation equipment where contamination is disliked. ing.

【0003】通常、ガラス状カーボン材はフェノール系
または/およびフラン系などの炭化残留率の高い熱硬化
性樹脂液を成形し、硬化した成形体を非酸化性雰囲気下
で焼成炭化する方法によって製造される。このプロセス
での焼成炭化過程は固相で進行するため、樹脂成形体の
熱分解によって多量に発生する揮発成分を固相外に排出
し、体積収縮しながら炭化物に転化する経過を辿る。と
ころが、樹脂成形体が厚肉であると、熱分解ガスや縮合
水などが成形体から円滑に排出されずに組織内に残留
し、それが原因となってポアやボイドの発生、引いては
材質に膨れ、割れ等の欠陥現象を招くことになる。した
がって、従来の技術によって板厚が3mm以上のガラス状
カーボン材を工業的に製造することは困難とされてい
た。
Generally, a glassy carbon material is produced by a method of molding a thermosetting resin liquid having a high carbonization residual ratio such as a phenol type and / or furan type, and firing and carbonizing the cured molded body in a non-oxidizing atmosphere. To be done. Since the firing carbonization process in this process proceeds in the solid phase, the volatile components generated in large quantities by the thermal decomposition of the resin molded product are discharged to the outside of the solid phase, and the process of converting into the carbide while the volume shrinks is followed. However, if the resin molded body is thick, pyrolysis gas, condensed water, etc. are not smoothly discharged from the molded body and remain in the tissue, which causes generation of pores and voids, and This causes defects such as swelling and cracking of the material. Therefore, it has been difficult to industrially manufacture a glassy carbon material having a plate thickness of 3 mm or more by the conventional technique.

【0004】このような問題点を解消する手段として、
例えば動物性繊維、植物性繊維、合成繊維のような炭化
収率の低い繊維を熱硬化性樹脂と層状に配列して板を作
り、これを炭化することによって肉厚3mm以上のガラス
状カーボン板を製造する方法が提案されている(特開昭
63−129070号公報) 。しかし、この方法では繊維層が熱
分解するまでの低温度域で熱硬化性樹脂から発生する揮
発ガス成分を排出することができないため、焼成炭化時
の条件制御を余程厳密に調整しない限り欠陥組織の現出
が避けられない。そのうえ、この種の繊維質物質を介在
接合して製造されたガラス状カーボン材は材質が単一組
織でない関係で不均質になり易い難点があり、特に均質
な材質組織が要求される用途に対しては性状的な不足面
がある。
As a means for solving such a problem,
For example, fibers having a low carbonization yield such as animal fibers, plant fibers, and synthetic fibers are arranged in a layer with a thermosetting resin to form a plate, and by carbonizing this, a glassy carbon plate having a wall thickness of 3 mm or more A method for manufacturing a
63-129070). However, this method cannot discharge the volatile gas components generated from the thermosetting resin in a low temperature range until the fiber layer is pyrolyzed, so that unless the condition control during firing and carbonization is adjusted very strictly, there is a defect. The appearance of the organization is inevitable. In addition, the glassy carbon material manufactured by interposing the fibrous substance of this kind has a drawback that the material is likely to be inhomogeneous because the material is not a single structure, especially for applications requiring a uniform material structure. However, there is a shortage of properties.

【0005】本発明者らはこれに代わる厚肉板状のガラ
ス状カーボン材を製造する技術として、分子量100以
上、粘度1〜100ポイズ、ゲル化時間5〜60分のフ
ェノール樹脂を50〜100℃の温度域で5時間以上加
熱処理を施し、ついで成形、硬化したのち非酸化性ガス
雰囲気中で焼成炭化する方法を既に開発した(特開平4
−362062号公報)。
The inventors of the present invention, as an alternative technique for producing a thick plate-like glassy carbon material, use a phenol resin having a molecular weight of 100 or more, a viscosity of 1 to 100 poise and a gelation time of 5 to 60 minutes in an amount of 50 to 100. A method has already been developed in which heat treatment is carried out in the temperature range of ℃ for 5 hours or more, followed by molding and curing, followed by firing and carbonization in an atmosphere of non-oxidizing gas (Japanese Patent Laid-Open No. Hei 4)
-362062 publication).

【0006】[0006]

【発明が解決しようとする課題】前記の先願技術によれ
ば材質欠陥を伴わずに厚さ4mmを越える単一組織の厚肉
ガラス状カーボン板を製造することが可能となる。とこ
ろが、板厚が5mm以上になると焼成炭化段階で組織の割
れ、チッピング、膨れ等の素材異常が多く発生するよう
になり、製品歩留りを低下させる問題点があった。
According to the above-mentioned prior art, it becomes possible to manufacture a thick glassy carbon plate having a single structure and having a thickness of more than 4 mm without causing a material defect. However, if the plate thickness is 5 mm or more, many material abnormalities such as cracking, chipping, and swelling of the structure occur in the firing carbonization stage, and there is a problem that product yield is reduced.

【0007】本発明は厚肉板状のガラス状カーボン材を
製造する過程で特に問題となる樹脂成形体の硬化処理条
件について多角的に研究を重ねた結果完成されたもの
で、板厚が5mm以上であっても均質緻密組織に優れる高
品質のガラス状カーボン材を製品歩留よく生産し得る工
業的な製造方法の提供を目的としている。
The present invention was completed as a result of multi-faceted research on curing treatment conditions for resin moldings, which is particularly problematic in the process of manufacturing a thick-plate glassy carbon material, and has a plate thickness of 5 mm. Even if it is above, it aims at providing the industrial manufacturing method which can produce a high quality glassy carbon material excellent in a homogeneous dense structure with a good product yield.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるガラス状カーボン材の製造方法は、残
炭率の高い熱硬化性樹脂液を成形し、硬化処理したの
ち、非酸化性雰囲気下で800℃以上の温度により焼成
炭化してガラス状カーボン材に転化する方法において、
樹脂成形体をガス流通雰囲気系に浮遊させた状態で硬化
処理することを構成上の特徴とする。
In order to achieve the above object, a method for producing a glassy carbon material according to the present invention comprises forming a thermosetting resin liquid having a high residual carbon rate, performing a curing treatment, and then nonoxidizing. In a method of converting into a glassy carbon material by firing and carbonizing at a temperature of 800 ° C. or higher in a neutral atmosphere,
The structural feature is that the resin molding is cured in a state of being suspended in a gas flow atmosphere system.

【0009】本発明の原料には、残炭率の高い熱硬化性
樹脂液が用いられる。熱硬化性樹脂の残炭率とは、樹脂
を非酸化性雰囲気下で800℃の温度により焼成したと
きに残留する炭素分の重量を指すが、この残炭率が40
重量%以上の樹脂類が好適なガラス状カーボン材の原料
となる。このような高残炭率の熱硬化性樹脂としては、
例えばフェノール系樹脂、フラン系樹脂、ポリイミド樹
脂などを挙げることができる。
A thermosetting resin liquid having a high residual carbon rate is used as the raw material of the present invention. The residual carbon rate of the thermosetting resin refers to the weight of carbon content remaining when the resin is fired at a temperature of 800 ° C. in a non-oxidizing atmosphere.
Resins of not less than wt% are suitable raw materials for the glassy carbon material. Such a thermosetting resin with a high residual coal rate,
For example, a phenol resin, a furan resin, a polyimide resin, etc. can be mentioned.

【0010】しかし、本発明の目的に最も好適な原料系
は分子量100以上、ゲル化時間5〜60分のフェノー
ル樹脂にフランあるいはその誘導体化合物を混合した樹
脂組成物である。分子量100以上のフェノール樹脂は
組織強度の高いガラス状カーボン材を得るために有効で
あり、ゲル化時間が5〜60分範囲の性状樹脂は操作上
好ましい硬化速度を与える。フランあるいはその誘導体
化合物を混合して2成分系の樹脂組成物とするのは、焼
成炭化時における炭素化収率を向上させるための要素と
なり、通常40〜60%の炭素化収率を65〜75%ま
で改善することが可能となる。フラン誘導体化合物とし
ては、化学構造中にフラン環を有し、フェノール樹脂と
相溶性のあるものが使用される。代表的な化合物とし
て、フルフリルアルコール、フルフラール、フランカル
ボン酸メチルエステル等が挙げられ、単独もしくは2種
以上を混合して使用に供される。フェノール樹脂に対す
るこれらフラン系成分の混合比率は樹脂性状に応じて適
宜に定められるが、概ね5〜50重量%の範囲内で設定
される。
However, the most preferable raw material system for the purpose of the present invention is a resin composition in which a furan or a derivative compound thereof is mixed with a phenol resin having a molecular weight of 100 or more and a gelation time of 5 to 60 minutes. A phenol resin having a molecular weight of 100 or more is effective for obtaining a glassy carbon material having a high tissue strength, and a property resin having a gelation time in the range of 5 to 60 minutes gives a curing rate which is preferable in operation. Mixing furan or a derivative compound thereof to form a two-component resin composition is an element for improving the carbonization yield at the time of carbonization by firing, and the carbonization yield of 40 to 60% is usually 65 to 65%. It is possible to improve up to 75%. As the furan derivative compound, those having a furan ring in the chemical structure and compatible with the phenol resin are used. Typical compounds include furfuryl alcohol, furfural, and furancarboxylic acid methyl ester, which may be used alone or in combination of two or more. The mixing ratio of these furan-based components to the phenol resin is appropriately determined according to the resin properties, but is generally set within the range of 5 to 50% by weight.

【0011】原料となる熱硬化性樹脂液は、最終的に得
られるガラス状カーボン材の肉厚が4mm以上になるよう
収縮率を見込んで所望の板形状に成形する。成形化は、
例えばモールド成形、射出成形、注型成形、多重成形
(重ね塗り)などの手段を適用することができる。
The thermosetting resin liquid used as a raw material is molded into a desired plate shape in consideration of the shrinkage ratio so that the finally obtained glassy carbon material has a wall thickness of 4 mm or more. Molding is
For example, means such as molding, injection molding, cast molding, and multiple molding (overcoating) can be applied.

【0012】本発明の主要な構成要件は、上記の板状樹
脂成形体をガス流通雰囲気系に浮遊させた状態で硬化処
理を施すところにある。ガス流通雰囲気系に浮遊させた
状態とは、樹脂成形体の全体もしくは大部分が他の部材
に接触することなくガスが連続的に流通する雰囲気系内
に保持された状態をいう。この状態は、例えば多孔質ま
たは無数の貫通孔を有する平面板の下部からガスを急速
かつ均等に噴出させ、そのガス噴流上に板状の樹脂成形
体を浮かせた状態で保持する方法、あるいは樹脂成形体
の端部を掴持した状態で上昇または下降するガス流通雰
囲気系内に垂直に懸架する方法等によって形成すること
ができる。
The main constituent feature of the present invention is that the plate-shaped resin molding is subjected to a curing treatment in a state of being suspended in a gas flow atmosphere system. The state of being suspended in the gas flow atmosphere system means a state in which the whole or most of the resin molded body is held in an atmosphere system in which gas continuously flows without contacting other members. This state is, for example, a method of rapidly and evenly ejecting a gas from the lower part of a flat plate having porous or innumerable through holes, and holding a plate-shaped resin molded body in a floating state on the gas jet flow, or a resin It can be formed by a method of vertically suspending in a gas flow atmosphere system that rises or descends while holding the end portion of the molded body.

【0013】この際、流通するガスの種類には特に限定
はなく、通常、空気や窒素などが用いられる。しかし、
硬化の円滑な促進を図って製品の歩留りを高めるために
は、ガス中に酸素成分が16〜85%の濃度で含有する
組成のものを使用することが好ましい。ガスの温度は、
室温から300℃の範囲で任意に設定することができる
が、設定温度に対し±3℃以内の範囲に制御しながら硬
化処理操作を進行させることが好適な条件となる。ガス
温度が300℃を越えると硬化速度が急速に進行し過
ぎ、また設定温度±3℃の範囲を越える温度差が生じる
と、共に硬化物の内部に組織むらが出来て後工程の焼成
時に割れや変形が発生する原因となる。
At this time, the type of gas flowing is not particularly limited, and air or nitrogen is usually used. But,
In order to accelerate the curing smoothly and increase the product yield, it is preferable to use a gas having a composition containing an oxygen component at a concentration of 16 to 85% in the gas. The temperature of the gas is
The temperature can be arbitrarily set within the range of room temperature to 300 ° C., but it is preferable that the curing treatment operation is carried out while controlling the temperature within a range of ± 3 ° C. with respect to the set temperature. If the gas temperature exceeds 300 ° C, the curing speed will proceed too rapidly, and if there is a temperature difference exceeding the set temperature ± 3 ° C, unevenness of the structure will occur inside the cured product and cracks will occur during firing in the post process. It may cause deformation or deformation.

【0014】このようにして形成された樹脂成形体は、
非酸化性雰囲気に保持された加熱炉に詰め、800℃以
上の温度域で焼成炭化処理する。焼成炭化後の材料は、
必要に応じ前記と同様の非酸化性雰囲気下で2000℃
以上の温度により黒鉛化処理を施して厚肉板状のガラス
状カーボン材を得る。
The resin molding thus formed is
It is packed in a heating furnace kept in a non-oxidizing atmosphere and subjected to calcination and carbonization treatment in a temperature range of 800 ° C. or higher. The material after firing and carbonization is
2000 ° C under the same non-oxidizing atmosphere as above if necessary
Graphitization is performed at the above temperature to obtain a thick plate-like glassy carbon material.

【0015】[0015]

【作用】一般にガラス状カーボン材を製造する工程にお
ける板状樹脂成形体の硬化処理は、樹脂成形体の変形を
防ぐために平面黒鉛板の上に載置したり、平面黒鉛板の
間に挟んで加熱硬化する方法が有効とされている。とこ
ろが、これらの硬化手段による場合には、硬化時に処理
すべき樹脂成形体の組織内部に生成する縮合水や分解ガ
スが、面接触する黒鉛板に阻まれて円滑に組織外へ放出
することができなくなる。このため、樹脂成形体の肉厚
が厚くなるに従って縮合水や分解ガスが組織内に吸蔵す
る度合が高くなり、微細気泡の発生、組織の不均質に基
づく焼成割れや変形の原因となる。そのうえ、黒鉛板で
挟み付ける方法を採る場合には、表面に密着した黒鉛板
が硬化収縮する際に樹脂成形体の表面を傷付けたり、自
由な収縮を妨げて組織にストレスを与える現象が生じた
りする。
[Function] Generally, in the process of manufacturing a glassy carbon material, the plate-shaped resin molded body is cured by placing it on a flat graphite plate to prevent deformation of the resin molded body or by sandwiching it between the flat graphite plates to heat-cure it. The method is effective. However, in the case of using these curing means, condensed water or decomposition gas generated inside the tissue of the resin molded body to be treated at the time of curing can be smoothly released outside the tissue by being blocked by the graphite plate in surface contact. become unable. For this reason, as the wall thickness of the resin molded body increases, the degree to which condensed water and decomposed gas are occluded in the structure increases, which causes generation of fine bubbles and firing cracking and deformation due to inhomogeneity of the structure. In addition, when the method of sandwiching with graphite plates is adopted, the surface of the resin molded body may be damaged when the graphite plate that is in close contact with the surface is cured and contracted, or the phenomenon that free contraction is exerted and stress is applied to the tissue may occur. To do.

【0016】本発明によれば、樹脂成形体はガス流通雰
囲気系に浮遊した状態で硬化処理が進行するから、硬化
過程を通じて組織内に発生する縮合水や分解ガスは外部
の部材に妨げられることなく、三次元方向から組織外に
放散する。したがって、組織内部に微細気泡として吸蔵
残留することがなくなり、焼成時の割れ、変形等の欠陥
現象の発生も効果的に減少する。更に収縮過程で支持部
材の接触や密着のない非接触の状態で硬化操作がおこな
われるため、組織の歪みや表面の傷発生が生じることが
なくなる。このような作用を介して、肉厚が4mmを越
え、5mm以上の均質緻密質を備える板状ガラス状カーボ
ン材を常に歩留りよく工業生産することが可能となる。
According to the present invention, since the hardening process proceeds in a state where the resin molded body is suspended in the gas flow atmosphere system, condensed water and decomposed gas generated in the tissue during the hardening process are prevented by the external member. Instead, it diffuses out of the tissue from three-dimensional directions. Therefore, it does not occlude and remain as fine bubbles inside the structure, and the occurrence of defect phenomena such as cracking and deformation during firing is effectively reduced. Furthermore, since the curing operation is performed in the non-contact state where the support member is not in contact with or in close contact in the shrinking process, distortion of the tissue and occurrence of scratches on the surface do not occur. Through such an action, it becomes possible to industrially produce a plate-like glassy carbon material having a uniform thickness of more than 4 mm and 5 mm or more with a good yield.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら詳細に説明するが、本発明の範囲はこれら実施例に限
定されるものではない。
EXAMPLES Examples of the present invention will be described in detail below in comparison with comparative examples, but the scope of the present invention is not limited to these examples.

【0018】実施例1〜3 減圧蒸留により精製したフェノールとホルマリンをアン
モニア存在下で付加縮合反応させて、分子量132、ゲ
ル化時間14分のフェノール樹脂初期縮合物を調製し
た。このフェノール樹脂液にフルフリルアルコールを3
0重量%添加混合して粘度40ポイズ、樹脂分55%の
樹脂組成物を調製した。
Examples 1 to 3 Phenol purified by vacuum distillation and formalin were subjected to an addition condensation reaction in the presence of ammonia to prepare a phenol resin initial condensate having a molecular weight of 132 and a gelation time of 14 minutes. Add 3 parts of furfuryl alcohol to this phenol resin solution.
0% by weight was added and mixed to prepare a resin composition having a viscosity of 40 poise and a resin content of 55%.

【0019】この樹脂組成物を原料樹脂液としてポリプ
ロピレン製のバットに流し込み、真空デシケータに入れ
て10torr以下の減圧下で脱気処理したのち、所定の酸
素濃度に保持された清浄な電気オーブンに移して80℃
の温度で一昼夜放置して板状成形体を得た。ついで、密
閉容器状のガス溜まり部の上面に直径2mmの貫通孔を等
間隔に穿設したアルミニウム平面板を敷設した構造のガ
ス噴出装置の上に樹脂成形体を載せ、ガス溜まり部に1
50℃に加温した空気を圧入した。この段階で、圧入し
た空気は連続的に貫通孔から上部に噴出し、樹脂成形体
は水平状態で空気噴流上に浮遊した。この浮遊状態を2
4時間継続し、ガス流通雰囲気系に浮遊する状態で硬化
処理をおこなった。
This resin composition was poured as a raw material resin liquid into a polypropylene vat, put in a vacuum desiccator, deaerated under a reduced pressure of 10 torr or less, and then transferred to a clean electric oven maintained at a predetermined oxygen concentration. 80 ℃
The plate-shaped molded body was obtained by leaving it at room temperature for 24 hours. Then, the resin molded body was placed on the gas injection device having a structure in which flat aluminum plates having through holes with a diameter of 2 mm formed at equal intervals were laid on the upper surface of the closed container-shaped gas collection part,
Air heated to 50 ° C. was injected under pressure. At this stage, the press-fitted air continuously ejected from the through hole to the upper part, and the resin molded body floated on the air jet in a horizontal state. This floating state 2
Curing treatment was carried out for 4 hours while floating in the gas distribution atmosphere system.

【0020】ついで、硬化処理された板状成形体を不純
物含有量5ppm 未満の高純度黒鉛板〔東海カーボン
(株)製、G347SS〕で挟み付け、高純度黒鉛ヒータ
ーを装備したパッキングレスの高温加熱炉〔東海高熱工
業(株)製、TP150〕にセットし、炉内雰囲気を不
純物10ppm 未満の高純度アルゴンガスに保持しながら
2000℃まで加熱して焼成炭化処理をおこなった。こ
のようにして肉厚4mm、5mm、6mmの各ガラス状カーボ
ン板を製造し、各種の性状特性および焼成炭化時の歩留
(20検体)を測定した。その結果を表1に示した。
Then, the hardened plate-shaped compact was sandwiched between high-purity graphite plates (G347SS manufactured by Tokai Carbon Co., Ltd.) having an impurity content of less than 5 ppm, and packingless high-temperature heating equipped with a high-purity graphite heater was used. It was set in a furnace [TP150 manufactured by Tokai Kogyo Kogyo Co., Ltd.] and heated to 2000 ° C. while maintaining the atmosphere in the furnace with high-purity argon gas containing less than 10 ppm of impurities to carry out calcination and carbonization. Thus, glassy carbon plates having a wall thickness of 4 mm, 5 mm, and 6 mm were manufactured, and various property characteristics and the yield (20 samples) at the time of carbonization by firing were measured. The results are shown in Table 1.

【0021】比較例1〜3 実施例1〜3による硬化処理操作に代え、樹脂成形体の
両面を厚さ10mmの黒鉛板〔東海カーボン(株)製、G
347〕で挟み付けた状態で150℃の熱風乾燥機に入
れ、24時間放置して硬化処理をおこなった。その他は
実施例1と同一条件により肉厚4mm、5mm、6mmのガラ
ス状カーボン材を製造し、得られた各ガラス状カーボン
材の各種特性および焼成炭化時の歩留(20検体)を表
1に併載した。
Comparative Examples 1 to 3 Instead of the curing treatment operation according to Examples 1 to 3, graphite plates having a thickness of 10 mm on both sides of the resin molding were manufactured by Tokai Carbon Co., Ltd.
347] and placed in a hot air dryer at 150 ° C. and left for 24 hours for curing treatment. Other than that, glassy carbon materials having wall thicknesses of 4 mm, 5 mm, and 6 mm were manufactured under the same conditions as in Example 1, and various characteristics of each of the obtained glassy carbon materials and the yield (20 samples) at the time of carbonization by firing are shown in Table 1. It was also published in.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から、本発明の硬化処理を施し
た実施例によれば高品質の厚肉板状ガラス状カーボン材
を効率よく製造でき、肉厚6mmのガラス状カーボン材で
も製品歩留りよく得られることが認められた。これに対
し、比較例のガラス状カーボン材は同一肉厚において性
状特性、歩留り共に劣っていることが判明する。
From the results shown in Table 1, according to the examples of the present invention, the high-quality thick plate-like glassy carbon material can be efficiently produced, and the product yield can be obtained even with the glassy carbon material having a thickness of 6 mm. It was confirmed that it was well obtained. On the other hand, it is found that the glassy carbonaceous material of the comparative example is inferior in both property characteristics and yield in the same thickness.

【0024】実施例4 実施例1において、空気に代えて150℃に加温した窒
素ガスを用いたガス流動雰囲気系で硬化処理をおこなっ
た以外は、全て同一条件により肉厚4mmのガラス状カー
ボン板を製造した。このガラス状カーボン材の性状特性
は、平均ポア径2μm 、ポア含有率1%、嵩密度1.4
5g/cc、曲げ強度1120kgf/mm2 で、焼成炭化歩留は
76%であった。
Example 4 Glass-like carbon having a thickness of 4 mm was prepared under the same conditions except that the curing treatment was carried out in a gas flowing atmosphere system using nitrogen gas heated to 150 ° C. instead of air. A board was manufactured. The properties of this glassy carbon material are as follows: average pore diameter 2 μm, pore content 1%, bulk density 1.4.
The firing carbonization yield was 76% at 5 g / cc and bending strength of 1120 kgf / mm 2 .

【0025】[0025]

【発明の効果】以上のとおり、本発明に従えば硬化処理
の工程改善を図ることにより、高強度で優れた均質緻密
組織を備える厚肉板状のガラス状カーボン材を効率よく
製造することが可能となる。したがって、4mmを越える
厚肉と高材質特性が要求される半導体分野向け部材など
を対象とするガラス状カーボン材の工業的製造技術とし
て極めて有用である。
As described above, according to the present invention, it is possible to efficiently manufacture a thick plate-like glassy carbon material having high strength and excellent homogeneous and dense structure by improving the curing process. It will be possible. Therefore, it is extremely useful as an industrial manufacturing technology for glassy carbon materials for members for the semiconductor field and the like, which require a thickness of more than 4 mm and high material properties.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 残炭率の高い熱硬化性樹脂液を成形し、
硬化処理したのち、非酸化性雰囲気下で800℃以上の
温度により焼成炭化してガラス状カーボン材に転化する
方法において、樹脂成形体をガス流通雰囲気系に浮遊さ
せた状態で硬化処理することを特徴とするガラス状カー
ボン材の製造方法。
1. A thermosetting resin liquid having a high residual carbon rate is molded,
After the curing treatment, in a method of firing carbonized at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere to convert into a glassy carbon material, the curing treatment may be carried out in a state in which the resin molding is suspended in a gas flow atmosphere system. A method for producing a glassy carbon material characterized.
【請求項2】 ガス流通雰囲気系の温度が室温から30
0℃の範囲にあり、設定温度±3℃以内の温度条件で硬
化処理する請求項1記載のガラス状カーボン材の製造方
法。
2. The temperature of the gas flow atmosphere system is from room temperature to 30.
The method for producing a glassy carbon material according to claim 1, wherein the hardening treatment is carried out under a temperature condition within a range of 0 ° C and within a set temperature ± 3 ° C.
JP5246286A 1993-09-06 1993-09-06 Production of vitreous carbonaceous material Pending JPH0769730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246286A JPH0769730A (en) 1993-09-06 1993-09-06 Production of vitreous carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246286A JPH0769730A (en) 1993-09-06 1993-09-06 Production of vitreous carbonaceous material

Publications (1)

Publication Number Publication Date
JPH0769730A true JPH0769730A (en) 1995-03-14

Family

ID=17146292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246286A Pending JPH0769730A (en) 1993-09-06 1993-09-06 Production of vitreous carbonaceous material

Country Status (1)

Country Link
JP (1) JPH0769730A (en)

Similar Documents

Publication Publication Date Title
JP2003509330A (en) Casting method for pitch-based foam
US5783255A (en) Method for producing shaped article of silicon carbide
JPH0769730A (en) Production of vitreous carbonaceous material
KR20120009698A (en) Graphite crucible with glassy carbon coatings and method for manufacturing the same
JP3342515B2 (en) Method for producing thick glassy carbon material
JP3434538B2 (en) Method for producing glassy carbon material
CN112573928B (en) Preparation method of boron-containing polymer precursor ceramic
JP4600703B2 (en) Method for producing glassy carbon
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
JPH0848509A (en) Production of carbonaceous porous body
JPH04209781A (en) Production of material coated with glassy carbon
JP2617147B2 (en) Method for producing high-density high-purity glassy carbon material
JPH07300307A (en) Production of glassy carbon material
JPH08222357A (en) Manufacture of carbon heating element
JP3543980B2 (en) Method for producing glassy carbon material
Li et al. Enhanced strength and thermal oxidation resistance of shaddock peel-polycarbosilane-derived C–SiC–SiO2 composites
JP2623026B2 (en) Method for producing high-purity glassy carbon material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH04362062A (en) Production of glassy carbon material
JPH05208867A (en) Highly corrosive glassy carbon material
JPH06102530B2 (en) Method for manufacturing graphite molded body
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon
JP3736887B2 (en) Electrode plate for plasma etching
JPH10167826A (en) Production of vitreous carbon material
CN114315400A (en) Composite material preparation method based on hot die pressing cracking