JP4600703B2 - Method for producing glassy carbon - Google Patents

Method for producing glassy carbon Download PDF

Info

Publication number
JP4600703B2
JP4600703B2 JP30235599A JP30235599A JP4600703B2 JP 4600703 B2 JP4600703 B2 JP 4600703B2 JP 30235599 A JP30235599 A JP 30235599A JP 30235599 A JP30235599 A JP 30235599A JP 4600703 B2 JP4600703 B2 JP 4600703B2
Authority
JP
Japan
Prior art keywords
resin
glassy carbon
weight
thickness
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30235599A
Other languages
Japanese (ja)
Other versions
JP2001122662A (en
Inventor
和己 小鍛治
孝幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP30235599A priority Critical patent/JP4600703B2/en
Publication of JP2001122662A publication Critical patent/JP2001122662A/en
Application granted granted Critical
Publication of JP4600703B2 publication Critical patent/JP4600703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れた半導体製造装置用部材、CVD装置用部材、ハードディスク基板等に適したガラス状炭素の製造方法及び該製造方法で得られたガラス状炭素に関する。
【0002】
【従来の技術】
ガラス状炭素は、一般の炭素材料が有する軽量、耐熱性、耐食性、電気伝導性、高純度化が可能である等の性質を備えているほか、ガス不透過性、低発塵性、硬度が高く鏡面加工が可能である等の特徴を持っていることから、エレクトロニクス産業、原子力産業、航空宇宙産業等各種の分野での広範な用途に使用されつつある。
【0003】
ガラス状炭素は熱硬化性樹脂を原料とし、これを硬化した後、不活性雰囲気中又は真空中で焼成炭素化して得られるが、成形から必要に応じて行う黒鉛化までの製造工程においては終始固相状態のままで反応するため、気体又は液体に対して不透過性である。
【0004】
このため、熱硬化性樹脂の硬化過程においては、縮重合反応によって生成する縮合水や分解ガス、原料樹脂に含まれる揮発性モノマーが拡散されにくく、成形体中に閉気孔が生成する要因となる。従来の技術では、このような問題を防止するために樹脂の硬化を長時間かけて行うなどの対策がとられてきた。
【0005】
また、焼成過程において、樹脂の熱分解に伴って発生する分解ガスやタール成分の拡散が不十分になると成形体に発泡や亀裂が発生し、目的とする形状のガラス状炭素が得られなくなる。発泡や亀裂が発生するに至らないまでも、タール成分が膨張して成形体中に大きな閉気孔を生成し易い。
【0006】
焼成過程で発生する分解ガスとは、一酸化炭素、二酸化炭素、水素、メタン、エタン等常温・常圧下において気体である低分子量物質を指し、タール成分とは樹脂が熱分解して生成する雑多な物質で、常温・常圧下において液体である中分子量物質を指す。
【0007】
また、樹脂硬化物からガラス状炭素へ転化させる焼成の過程においては、上記の分解ガスやタール成分の離脱と同時に、樹脂の骨格を形成する炭素原子が黒鉛構造へと再配列し、これに伴い成形体の収縮が起こる。特に肉厚の成形品を焼成する際には、成形体表面と内部とで熱の伝播速度が大きく異なる為、成形体表面と内部との収縮速度に差が生じ、成形体が割れる現象が生じ易い。
【0008】
そのため、硬化に要する時間を大幅に短縮し、かつ焼成時の発泡や亀裂の発生及び大きな閉気孔の生成並びに割れを防止し、目的の形状のガラス状炭素を短期間で歩留良く製造する方法の開発が要望されていた。
【0009】
【発明が解決しようとする課題】
請求項1記載の発明は、原料とする熱硬化性樹脂が有する揮発成分又は硬化の際に生成する揮発成分を効率よく除去して所望の厚さ及び形状の樹脂硬化物を作製するとともに、焼成過程においては発泡、亀裂、大きな閉気孔の生成及び割れを防止し、良好な性状のガラス状炭素を得ることのできるガラス状炭素の製造方法を提供するものである。
【0010】
請求項2記載の発明は、原料とする熱硬化性樹脂が有する揮発成分又は硬化の際に生成する揮発成分が効率よく除去され所望の厚さ及び形状の樹脂硬化物が作製されるとともに、焼成過程においては発泡、亀裂、大きな閉気孔の生成及び割れの防止された、良好な性状のガラス状炭素の製造方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明は、25℃での粘度が0.05〜0.3Pa・sで、かつ不揮発成分の含有量が30〜70重量%の液状熱硬化性樹脂である液状フラン樹脂を用いて、1回の塗布厚さが500μm以下となる樹脂層を形成し、加熱硬化する工程を複数回繰り返し行って樹脂成形体を得た後、700℃までを1.5℃/時間以下の昇温速度で昇温し、焼成することを特徴とするガラス状炭素の製造方法に関する。また、本発明は、上記の製造方法で得られ、かつガラス状炭素の最大閉気孔径が100μm以下及び最大厚さが5mm以上であるガラス状炭素の製造方法に関する。
【0012】
【発明の実施の形態】
本発明のガラス状炭素の製造方法では、25℃での粘度が0.05〜0.3Pa・sで、かつ不揮発成分の含有量が30〜70重量%の範囲の液状熱硬化性樹脂を原料として用いるが、もし出発原料が上記の範囲から外れている熱硬化性樹脂を用いる場合は、熱硬化性樹脂に溶媒を添加して上記の範囲に入るように調整して用いることもできる。
【0013】
前記熱硬化性樹脂としては、フラン樹脂、フェノール樹脂、ジビニルベンゼン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂等を挙げることができる。また、これら樹脂の混合物を用いることもできる。これらの中で、成形時の延伸性、揮発成分の放出速度、炭素化収率等を考慮すると、フラン樹脂、フェノール樹脂又はこれらの混合物が好ましく、フラン樹脂がより好ましい。
【0014】
前記フラン樹脂の種類としては、フルフラール樹脂、フルフラールフェノール樹脂、フルフラールケトン樹脂、フルフリルアルコール樹脂、フルフリルアルコールフェノール樹脂等の樹脂の初期縮合物が好ましいものとして挙げられる。
また、熱硬化性樹脂に添加する溶媒としては、常温常圧で液体の有機溶媒ならば特に制限はなく、前記熱硬化性樹脂のモノマーを用いることも可能である。溶媒として好ましいものは、各種アルコール類で、例えばエタノール、プロパノール、ブタノール等が挙げられる。
【0015】
前記液状熱硬化性樹脂には、必要に応じて前記樹脂の硬化剤を用いることができ、その例としては酸又はアルカリが挙げられる。酸としては硫酸、塩酸、硝酸、りん酸等の無機酸、フェノールスルホン酸、トルエンスルホン酸、メタンスルホン酸、硫酸アニリン、酢酸、トリクロロ酢酸、トリフロロ酢酸等が好ましいものとして挙げられ、このうちフェノールスルホン酸、トルエンスルホン酸、メタンスルホン酸等の有機スルホン酸類、酢酸、トリクロロ酢酸、トリフロロ酢酸等の有機カルボン酸類がより好ましく、フェノールスルホン酸及びトルエン酸がさらに好ましい。アルカリとしてはアンモニア、アミン類、水酸化ナトリウム、水酸化カリウム等が好ましい。
【0016】
硬化剤の使用量は、原料とする熱硬化性樹脂及び溶媒の添加量などにより変動するが、少なすぎると硬化が遅く、かつ不十分となり、多すぎると急激に硬化反応が起こり、発泡又は発火するおそれがあり、きれいな成形体を製造することが困難になる傾向がある。従って熱硬化性樹脂に対して0.01〜20重量%の範囲とすることが好ましく、0.01〜15重量%の範囲とすることがより好ましい。
硬化剤はそのまま又は適宜溶媒に溶解して液状熱硬化性樹脂に添加する。ここで用いる溶媒としては、例えばメタノール、エタノール等の低級アルコール類、アセトン、トルエン等の有機溶媒等が挙げられる。
【0017】
本発明において、不揮発成分とは、主として熱硬化性樹脂初期縮合物中に含まれる未反応モノマーや原料モノマーが2〜3分子重合した低分子重合物を指す。不揮発成分量は、原料となる液状熱硬化性樹脂又は熱硬化性樹脂に溶媒を添加して調製した液状熱硬化性樹脂をアルミシャーレにとり、120℃で3時間放置した後の残留分とした。粘度は、B型粘度計を用い、ロータ回転速度60min-1にて測定した。但し、硬化剤を使用する場合には硬化剤添加前の樹脂に対して粘度測定を行った。
【0018】
液状熱硬化性樹脂を塗布するために用いられる基板、即ち塗布した液状熱硬化性樹脂を加熱硬化した後、焼成してガラス状炭素を製造するまで土台として用いられる基板は、原料として用いる熱硬化性樹脂の延伸性が良好であり、かつ熱硬化性樹脂を硬化する際の最高温度に対して基材の変形、軟化等が起こらないよう十分な耐熱性を有し、さらに硬化した熱硬化性樹脂との剥離性に優れる材料を用いることが好ましく、例えば、アルミニウム、ガラス、塩化ビニル、アクリル、テフロン、黒鉛材、セラミックス材、各種金属材等が好ましいものとして挙げられる。基板となる材料には必要に応じて凹凸、湾曲等を設け、樹脂成形体に所望の形状を付加することも可能である。塗布の方法としては、刷毛などを用いて塗布する他、滴下法、スピンコート法、噴霧法等が挙げられるが、樹脂中に異物が混入することなく、樹脂が均一に塗布されれば特に制限されるものではない。
【0019】
液状熱硬化性樹脂の25℃での粘度は、0.05〜0.3Pa・s、好ましくは0.06〜0.2Pa・s、さらに好ましくは0.06〜0.17Pa・sの範囲とされ、0.05Pa・s未満の場合、特にスピンコート法により塗布する場合は1回に塗布できる厚さが著しく薄い為、塗布回数が多くなり実用的ではない。一方、0.3Pa・sを越えると原料として用いる熱硬化性樹脂の流動性が著しく低下し、注型時に巻き込んだ空気などがそのまま残存し、大きな閉気孔となり易い。
【0020】
液状熱硬化性樹脂の不揮発成分の含有量は、30〜70重量%、好ましくは35〜65重量%、さらに好ましくは40〜60重量%の範囲とされ、30重量%未満では揮発成分の除去が困難となり成形体中に気泡などが残り易く、70重量%を越えると均一に塗布できないという問題が生じる。
【0021】
液状熱硬化性樹脂の1回の塗布厚さは、500μm以下、好ましくは300μm以下、さらに好ましくは280〜180μmの範囲とされ、500μmを越えると、硬化時の揮発成分の逸脱に長時間を要するとともに、揮発成分が硬化体内に残留してボイドの発生原因になり、また、樹脂の硬化が均一に進行せず、大きな圧縮応力が付与されて歪みを持った樹脂成形品となり易く、焼成時においては発生する分解ガス量が増大し、発泡の発生要因になる。
【0022】
基板上に塗布した液状熱硬化性樹脂の硬化は、反応制御の容易さから、30〜300℃が好ましく、50〜250℃がより好ましい。またこの温度範囲より適宜温度を選択し、例えば50℃、100℃、250℃等と段階的に硬化処理することが望ましいが、連続的に昇温し、選択した各温度で保持して硬化処理を行うこともできる。硬化処理に際しては、常圧下のみならず、減圧下又は加圧下で行うことができる。硬化に使用する加熱炉としては、熱風式、遠赤外式、電磁波式等いずれの方式も用いることが可能で、2つ以上の方式を併用することも可能である。
【0023】
以上の方法により得られる樹脂成形体は、次いで焼成してガラス状炭素とされるが、焼成前に機械加工などにより所望の形状に加工することも可能である。その際には、焼成後の寸法収縮を見込んだ加工寸法の設定が必要である。焼成は、ヘリウム、アルゴン等の不活性ガスや窒素、水素、ハロゲン等の非酸化性ガスの少なくとも1種又は2種以上の混合物からなる酸素を含まない雰囲気下又は減圧下で行うことができる。焼成を減圧下で行う際には、樹脂の熱分解に伴って発生する分解ガスやタール成分の拡散が容易になり、より肉厚のガラス状炭素材を得ることができる。減圧の程度としては、1〜25×105Paが望ましい。
【0024】
焼成時の昇温速度は、700℃までを1.5℃/時間以下、好ましくは1℃/時間以下で行うことが必要とされ、これを越える速さで昇温を行うと、成形品の寸法収縮速度が大きくなりすぎて割れが生じ易くなり、特に成形品の最大厚さが5mm以上の肉厚ガラス状炭素を得ることが著しく困難になるとともに、得られたガラス状炭素には圧縮応力が付与され、歪みを持ったガラス状炭素となる。
【0025】
700℃まで昇温し終えたガラス状炭素は、必要に応じて700〜1000℃の温度で焼成を行って脱水素し、さらに3000℃までの黒鉛化処理を行ってもよい。黒鉛化はアルゴンガスなどの非酸化性雰囲気下又は真空下で行うことが望ましい。比重、硬度、耐薬品性等のガラス状炭素材の特性を考慮した場合、熱処理の最高温度は800〜3000℃が好ましく、1100〜2800℃が特に好ましい。
【0026】
また、ガラス状炭素が高純度を要求される用途に使用される場合には、黒鉛化後、一般炭素材料の高純度化処理に用いられる方法、例えばハロゲンガスなどによる脱灰処理などを行って高純度化を行うことも可能である。焼成及び黒鉛化工程には、高純度に純化された治具、炉等を用いることが好ましい。
【0027】
本発明で得られるガラス状炭素は、ハードディスク基板などに要求される表面の平滑さの点で最大閉気孔径が100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましく、0μmであることが最も好ましい。
なお本発明において、最大閉気孔径とは最大閉気孔の形状がほぼ円形の場合はその直径を測定し、楕円形の場合は最大幅を測定した値を示す。
また、ガラス状炭素の厚さは、例えば、半導体製造用部材などに用いる場合には強度の点で5mm以上であることが好ましく、6mm以上であることがより好ましく、7〜12mmの範囲であることがさらに好ましい。
【0028】
本発明においては、必要に応じて、得られたガラス状炭素材をワイヤーカット、放電加工、超音波加工等を用いて最終製品の形状へと加工することもできる。
本発明のガラス状炭素は、プラズマエッチング用電極、ハードディスク基板、りん酸型燃料電池セパレータ、耐酸容器部材、半導体製造用部材、化学分析用電極、スパッタ用カーボンターゲット等として有用である。
【0029】
【実施例】
以下、本発明を実施例により説明する。
実施例1
原料熱硬化性樹脂として25℃での粘度が0.12Pa・s及び不揮発成分が45重量%の液状フラン樹脂(日立化成工業(株)製、商品名VF−302)を用い、この液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで200℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは400μmであった。この作業を25回繰り返して厚さが10mmの樹脂成形体を得た。
【0030】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を1.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、さらに1000〜2600℃の昇温速度を10℃/時間として2600℃で5時間保持してガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは8mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は5μmであった。
【0031】
実施例2
実施例1で用いた液状フラン樹脂100重量部に対し、硬化剤としてトリクロロ酢酸15重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが450μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、遠赤外式乾燥機で10分間、次いで熱風式乾燥機で180℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは350μmであった。この作業を40回繰り返して厚さが14mmの樹脂成形体を得た。
【0032】
この樹脂成形体を、1×103Paの減圧下で900℃までの昇温速度を1.0℃/時間、900〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは11.2mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は10μmであった。
【0033】
実施例3
実施例1で用いた液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで230℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは400μmであった。この作業を20回繰り返して厚さが8mmの樹脂成形体を得た。
【0034】
この樹脂成形体を、窒素雰囲気下で900℃までの昇温速度を0.5℃/時間、900〜1000℃の昇温速度を5℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは6.4mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は10μmであった。
【0035】
実施例4
実施例1で用いた液状フラン樹脂を50℃で10時間加熱処理し、揮発成分の一部を除去した。加熱処理後の樹脂の25℃での粘度は0.28Pa・s及び不揮発成分は66重量%であった。次にこの液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで230℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは450μmであった。この作業を23回繰り返して厚さが10.35mmの樹脂成形体を得た。
【0036】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を1.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは8.3mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は30μmであった。
【0037】
実施例5
実施例1で用いた液状フラン樹脂100重量部に対してエタノール40重量部を添加し、撹拌混合した。撹拌混合した後の液状フラン樹脂の25℃での粘度は0.08Pa・s及び不揮発成分は32重量%であった。次にこの液状フラン樹脂100重量部に対し、硬化剤としてトリクロロ酢酸15重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが400μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで200℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは250μmであった。この作業を28回繰り返して厚さが7mmの樹脂成形体を得た。
【0038】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を1.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは5.6mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は20μmであった。
【0039】
比較例1
実施例1で用いた液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで200℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは400μmであった。この作業を25回繰り返して厚さが10mmの樹脂成形体を得た。
【0040】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を2.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には割れが発生し、目的の形状のものが得られなかった。
【0041】
比較例2
実施例1で用いた液状フラン樹脂を90℃で5時間加熱処理し、揮発成分の一部を除去した。加熱処理後の25℃での樹脂の粘度は0.34Pa・s及び不揮発成分は79重量%であった。次にこの液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで230℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは490μmであった。この作業を21回繰り返して厚さが10.29mmの樹脂成形体を得た。
【0042】
この樹脂成形体を、窒素雰囲気下で900℃までの昇温速度を1.0℃/時間、900〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは8.2mmであった。
しかしながら、上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は200μmと大きなものであった。
【0043】
比較例3
実施例1で用いた液状フラン樹脂を50℃で10時間加熱処理し、揮発成分の一部を除去した。加熱処理後の25℃での樹脂の粘度は0.28Pa・s及び不揮発成分は66重量%であった。次にこの液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが600μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、次いで230℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは540μmであった。この作業を19回繰り返して厚さが10.26mmの樹脂成形体を得た。
【0044】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を1.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡が発生し、目的の形状のものが得られなかった。
【0045】
比較例4
実施例1で用いた液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、遠赤外式乾燥機で5分間、次いで熱風式乾燥機で200℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは400μmであった。この作業を25回繰り返して厚さが10mmの樹脂成形体を得た。
【0046】
この樹脂成形体を、窒素雰囲気下で600℃までの昇温速度を1.0℃/時間、600〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には割れが発生し、目的の形状のものが得られなかった。
【0047】
比較例5
実施例1で用いた液状フラン樹脂100重量部に対してエタノール100重量部を添加し、撹拌混合した。撹拌混合した後の液状フラン樹脂の25℃での粘度は0.06Pa・s及び不揮発成分は22.5重量%であった。次にこの液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、遠赤外式乾燥機で5分間、次いで熱風式乾燥機で200℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは200μmであった。この作業を25回繰り返して厚さが5mmの樹脂成形体を得た。
【0048】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を1.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは4mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は200μmであった。
【0049】
比較例6
実施例1で用いた液状フラン樹脂100重量部に対してアセトン300重量部を添加し、撹拌混合した。撹拌混合した後の液状フラン樹脂の25℃での粘度は0.04Pa・s及び不揮発成分は11.3重量%であった。次にこの液状フラン樹脂100重量部に対し、硬化剤としてパラトルエンスルホン酸0.6重量部を加えて撹拌混合した後、アルミシャーレに1回の塗布厚さが500μmになるように滴下、延伸し、熱風式乾燥機で50℃で5時間、遠赤外式乾燥機で5分間、次いで熱風式乾燥機で200℃で1時間加熱硬化を行った。硬化後の樹脂硬化物の厚さは100μmであった。この作業を100回繰り返して厚さが10mmの樹脂成形体を得た。
【0050】
この樹脂成形体を、窒素雰囲気下で700℃までの昇温速度を1.0℃/時間、700〜1000℃の昇温速度を10℃/時間として1000℃で5時間保持して焼成を行い、ガラス状炭素を得た。得られたガラス状炭素には発泡、亀裂、割れの発生はなかった。また得られたガラス状炭素の最大厚さは8mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行った結果、最大閉気孔径は150μmであった。
【0051】
【発明の効果】
請求項1における方法により得られるガラス状炭素は、原料とする熱硬化性樹脂が有する揮発成分又は硬化の際に生成する揮発成分を効率よく除去して所望の厚さ及び形状の樹脂硬化物を作製するとともに、焼成過程においては発泡、亀裂、大きな閉気孔の生成及び割れを防止し、良好な性状のガラス状炭素である。請求項2におけるガラス状炭素は、原料とする熱硬化性樹脂が有する揮発成分又は硬化の際に生成する揮発成分が効率よく除去され所望の厚さ及び形状の樹脂硬化物が作製されるとともに、焼成過程においては発泡、亀裂、大きな閉気孔の生成及び割れの防止された、良好な性状のガラス状炭素の製造方法である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing glassy carbon suitable for a member for a semiconductor production apparatus, a member for a CVD apparatus, a hard disk substrate and the like having excellent corrosion resistance, and a glassy carbon obtained by the production method.
[0002]
[Prior art]
Glassy carbon has properties such as lightness, heat resistance, corrosion resistance, electrical conductivity, high purity, etc. that general carbon materials have, as well as gas impermeability, low dust generation, and hardness. Since it has a feature such as high mirror finishing, it is being used for a wide range of applications in various fields such as the electronics industry, the nuclear industry, and the aerospace industry.
[0003]
Glassy carbon is obtained from a thermosetting resin as a raw material, and after curing it, it is obtained by calcination carbonization in an inert atmosphere or vacuum, but in the manufacturing process from molding to graphitization as necessary. Since it reacts in a solid state, it is impermeable to gas or liquid.
[0004]
For this reason, in the curing process of the thermosetting resin, the condensed water and decomposition gas generated by the condensation polymerization reaction, and the volatile monomer contained in the raw material resin are not easily diffused, causing closed pores to be generated in the molded body. . In the prior art, measures such as curing the resin for a long time have been taken to prevent such problems.
[0005]
Further, in the firing process, if the decomposition gas and the tar component generated due to the thermal decomposition of the resin are insufficiently diffused, foaming and cracks occur in the molded body, and the glassy carbon having the desired shape cannot be obtained. Even if foaming and cracks do not occur, the tar component expands and large closed pores are easily generated in the molded body.
[0006]
Decomposition gas generated in the firing process refers to low molecular weight substances that are gases at normal temperature and pressure, such as carbon monoxide, carbon dioxide, hydrogen, methane, and ethane, and tar components are miscellaneous products generated by thermal decomposition of the resin. A medium molecular weight substance that is liquid at room temperature and pressure.
[0007]
In addition, in the firing process of converting the resin cured product to glassy carbon, the carbon atoms forming the resin skeleton are rearranged into a graphite structure at the same time as the decomposition gas and the tar component are released, and accompanying this, Shrinkage of the compact occurs. In particular, when firing thick molded products, the speed of heat propagation differs greatly between the molded body surface and the interior, resulting in a difference in the shrinkage speed between the molded body surface and the interior, resulting in the phenomenon that the molded body breaks. easy.
[0008]
Therefore, a method for significantly reducing the time required for curing, producing foam and cracks during firing, generating large closed pores, and preventing cracking, and producing glassy carbon of a desired shape in a short period of time with a high yield The development of was requested.
[0009]
[Problems to be solved by the invention]
The invention according to claim 1 efficiently removes the volatile component of the thermosetting resin used as a raw material or the volatile component generated during curing to produce a cured resin product having a desired thickness and shape, and firing. In the process, a method for producing glassy carbon which can prevent foaming, cracking, generation of large closed pores and cracking and obtain glassy carbon having good properties is provided.
[0010]
In the invention according to claim 2, the volatile component of the thermosetting resin used as a raw material or the volatile component generated during curing is efficiently removed to produce a cured resin product having a desired thickness and shape, and firing. In the process, a method for producing glassy carbon having good properties in which foaming, cracking, generation of large closed pores and cracking are prevented is provided.
[0011]
[Means for Solving the Problems]
The present invention uses a liquid furan resin , which is a liquid thermosetting resin having a viscosity at 25 ° C. of 0.05 to 0.3 Pa · s and a nonvolatile component content of 30 to 70% by weight, once. After forming a resin layer having a coating thickness of 500 μm or less and repeating the heat curing step a plurality of times to obtain a resin molded body, the temperature is increased up to 700 ° C. at a rate of temperature increase of 1.5 ° C./hour or less. The present invention relates to a method for producing glassy carbon characterized by heating and firing. The present invention also relates to a method for producing glassy carbon obtained by the above production method and having a maximum closed pore diameter of 100 μm or less and a maximum thickness of 5 mm or more.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing glassy carbon of the present invention, a liquid thermosetting resin having a viscosity at 25 ° C. of 0.05 to 0.3 Pa · s and a nonvolatile component content of 30 to 70 wt% is used as a raw material. However, if a thermosetting resin whose starting material is out of the above range is used, it can be used by adding a solvent to the thermosetting resin so as to fall within the above range.
[0013]
Examples of the thermosetting resin include furan resin, phenol resin, divinylbenzene resin, unsaturated polyester resin, polyimide resin, diallyl phthalate resin, vinyl ester resin, polyurethane resin, melamine resin, urea resin, and the like. A mixture of these resins can also be used. Of these, furan resin, phenol resin or a mixture thereof is preferable, and furan resin is more preferable in consideration of stretchability during molding, release rate of volatile components, carbonization yield, and the like.
[0014]
Preferred examples of the furan resin include an initial condensate of a resin such as a furfural resin, a furfural phenol resin, a furfural ketone resin, a furfuryl alcohol resin, and a furfuryl alcohol phenol resin.
The solvent to be added to the thermosetting resin is not particularly limited as long as it is an organic solvent that is liquid at normal temperature and pressure, and the monomer of the thermosetting resin can also be used. Preferable examples of the solvent include various alcohols such as ethanol, propanol, and butanol.
[0015]
As the liquid thermosetting resin, a curing agent for the resin can be used as necessary, and examples thereof include acids and alkalis. Preferred acids include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, phenolsulfonic acid, toluenesulfonic acid, methanesulfonic acid, aniline sulfate, acetic acid, trichloroacetic acid, trifluoroacetic acid, and the like. Organic sulfonic acids such as acid, toluenesulfonic acid and methanesulfonic acid, and organic carboxylic acids such as acetic acid, trichloroacetic acid and trifluoroacetic acid are more preferred, and phenolsulfonic acid and toluene acid are more preferred. As the alkali, ammonia, amines, sodium hydroxide, potassium hydroxide and the like are preferable.
[0016]
The amount of curing agent used varies depending on the amount of thermosetting resin and solvent added as raw materials, but if it is too small, curing will be slow and insufficient, and if it is too large, a curing reaction will occur rapidly, causing foaming or ignition. It tends to be difficult to produce a beautiful molded body. Therefore, it is preferable to set it as the range of 0.01-20 weight% with respect to a thermosetting resin, and it is more preferable to set it as the range of 0.01-15 weight%.
The curing agent is added to the liquid thermosetting resin as it is or after being appropriately dissolved in a solvent. Examples of the solvent used here include lower alcohols such as methanol and ethanol, and organic solvents such as acetone and toluene.
[0017]
In the present invention, the non-volatile component refers to a low molecular polymer obtained by polymerizing 2 to 3 molecules of unreacted monomers and raw material monomers mainly contained in the thermosetting resin initial condensate. The amount of the non-volatile component was defined as a residual amount after taking a liquid thermosetting resin as a raw material or a liquid thermosetting resin prepared by adding a solvent to a thermosetting resin in an aluminum petri dish and leaving it at 120 ° C. for 3 hours. The viscosity was measured using a B-type viscometer at a rotor rotational speed of 60 min −1 . However, when a curing agent was used, viscosity measurement was performed on the resin before addition of the curing agent.
[0018]
The substrate used for applying the liquid thermosetting resin, that is, the substrate used as the base until the applied liquid thermosetting resin is heated and cured, and then baked to produce glassy carbon, is used as a raw material. Thermosetting resin has good stretchability and has sufficient heat resistance to prevent deformation, softening, etc. of the base material against the maximum temperature when curing the thermosetting resin. It is preferable to use a material having excellent releasability from the resin, and preferable examples include aluminum, glass, vinyl chloride, acrylic, Teflon, graphite material, ceramic material, and various metal materials. It is also possible to provide the substrate material with irregularities, curvature, etc. as required, and to add a desired shape to the resin molding. Examples of the application method include application using a brush or the like, and a dropping method, a spin coating method, a spraying method, and the like. However, there is no particular limitation as long as the resin is uniformly applied without any foreign matter mixed in the resin. Is not to be done.
[0019]
The liquid thermosetting resin has a viscosity at 25 ° C. of 0.05 to 0.3 Pa · s, preferably 0.06 to 0.2 Pa · s, more preferably 0.06 to 0.17 Pa · s. However, when it is less than 0.05 Pa · s, particularly when applied by a spin coating method, the thickness that can be applied at one time is remarkably thin. On the other hand, if it exceeds 0.3 Pa · s, the fluidity of the thermosetting resin used as a raw material is remarkably lowered, and air entrained at the time of casting remains as it is, and it tends to be large closed pores.
[0020]
The content of the non-volatile component in the liquid thermosetting resin is in the range of 30 to 70% by weight, preferably 35 to 65% by weight, more preferably 40 to 60% by weight. It becomes difficult and air bubbles or the like are likely to remain in the molded body, and when it exceeds 70% by weight, there is a problem that uniform coating cannot be performed.
[0021]
The coating thickness of the liquid thermosetting resin at one time is 500 μm or less, preferably 300 μm or less, more preferably 280 to 180 μm, and if it exceeds 500 μm, it takes a long time to deviate from volatile components during curing. At the same time, volatile components remain in the cured body and cause voids. Also, the resin does not cure uniformly, and a large compression stress is applied to form a distorted resin molded product. Increases the amount of cracked gas generated and becomes a cause of foaming.
[0022]
The curing of the liquid thermosetting resin applied on the substrate is preferably 30 to 300 ° C., more preferably 50 to 250 ° C., because of easy reaction control. In addition, it is desirable to select an appropriate temperature from this temperature range, for example, 50 ° C., 100 ° C., 250 ° C., etc., in a stepwise curing process. However, the temperature is continuously raised and held at each selected temperature for the curing process. Can also be done. The curing treatment can be performed not only under normal pressure but also under reduced pressure or under pressure. As a heating furnace used for curing, any method such as a hot air method, a far infrared method, an electromagnetic wave method, or the like can be used, and two or more methods can be used in combination.
[0023]
The resin molded body obtained by the above method is then fired to form glassy carbon, but it can be processed into a desired shape by machining or the like before firing. At that time, it is necessary to set a processing dimension in consideration of dimensional shrinkage after firing. Calcination can be performed in an atmosphere containing no oxygen or an atmosphere composed of at least one or a mixture of two or more of an inert gas such as helium and argon and a non-oxidizing gas such as nitrogen, hydrogen and halogen. When firing is performed under reduced pressure, diffusion of cracked gas and tar components generated with thermal decomposition of the resin is facilitated, and a thicker glassy carbon material can be obtained. The degree of decompression is preferably 1 to 25 × 10 5 Pa.
[0024]
The heating rate during firing is required to be up to 700 ° C. at 1.5 ° C./hour or less, preferably at 1 ° C./hour or less. The dimensional shrinkage rate becomes too high and cracking is likely to occur. Particularly, it becomes extremely difficult to obtain a thick glassy carbon having a maximum thickness of 5 mm or more, and the obtained glassy carbon has a compressive stress. To give glassy carbon with distortion.
[0025]
The glassy carbon that has been heated to 700 ° C. may be dehydrogenated by firing at a temperature of 700 to 1000 ° C., if necessary, and may be further graphitized to 3000 ° C. Graphitization is desirably performed in a non-oxidizing atmosphere such as argon gas or in a vacuum. In consideration of the characteristics of the glassy carbon material such as specific gravity, hardness and chemical resistance, the maximum temperature of the heat treatment is preferably 800 to 3000 ° C, particularly preferably 1100 to 2800 ° C.
[0026]
In addition, when glassy carbon is used in applications requiring high purity, after graphitization, a method used for high purity treatment of general carbon materials, for example, deashing treatment with halogen gas or the like is performed. High purity can also be achieved. In the firing and graphitization steps, it is preferable to use a highly purified jig, furnace or the like.
[0027]
The glassy carbon obtained by the present invention preferably has a maximum closed pore diameter of 100 μm or less, more preferably 50 μm or less, and more preferably 30 μm or less in terms of surface smoothness required for a hard disk substrate or the like. More preferably, it is most preferably 0 μm.
In the present invention, the maximum closed pore diameter is a value obtained by measuring the diameter when the shape of the maximum closed pore is substantially circular, and measuring the maximum width when the shape is elliptic.
Further, the thickness of the glassy carbon is preferably 5 mm or more, more preferably 6 mm or more, and in the range of 7 to 12 mm, for example, when used for a semiconductor manufacturing member. More preferably.
[0028]
In the present invention, the obtained glassy carbon material can be processed into the shape of the final product using wire cutting, electric discharge machining, ultrasonic machining, or the like, if necessary.
The glassy carbon of the present invention is useful as an electrode for plasma etching, a hard disk substrate, a phosphoric acid fuel cell separator, an acid-resistant container member, a member for semiconductor production, an electrode for chemical analysis, a carbon target for sputtering, and the like.
[0029]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
A liquid furan resin (trade name VF-302, manufactured by Hitachi Chemical Co., Ltd.) having a viscosity of 0.12 Pa · s at 25 ° C. and a non-volatile component of 45% by weight is used as a raw material thermosetting resin. After adding 0.6 parts by weight of para-toluenesulfonic acid as a curing agent to 100 parts by weight and stirring and mixing, it was dropped and stretched to an aluminum petri dish so that the coating thickness at one time became 500 μm, and a hot air dryer And was cured by heating at 200 ° C. for 1 hour. The thickness of the cured resin after curing was 400 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 10 mm.
[0030]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 1.0 ° C./hour and a heating rate of 700 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Furthermore, the temperature increase rate of 1000-2600 degreeC was 10 degreeC / hour, and it hold | maintained at 2600 degreeC for 5 hours, and obtained glassy carbon. The resulting glassy carbon had no foaming, cracking or cracking. Moreover, the maximum thickness of the obtained glassy carbon was 8 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 5 μm.
[0031]
Example 2
After adding 15 parts by weight of trichloroacetic acid as a curing agent to 100 parts by weight of the liquid furan resin used in Example 1, the mixture was stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 450 μm. Then, heat curing was performed at 50 ° C. for 5 hours with a hot air dryer, 10 minutes with a far infrared dryer, and then at 180 ° C. for 1 hour with a hot air dryer. The thickness of the cured resin after curing was 350 μm. This operation was repeated 40 times to obtain a resin molded body having a thickness of 14 mm.
[0032]
This resin molded body is held at 1000 ° C. for 5 hours under a reduced pressure of 1 × 10 3 Pa with a temperature rising rate up to 900 ° C. being 1.0 ° C./hour and a temperature rising rate of 900 to 1000 ° C. being 10 ° C./hour Then, firing was performed to obtain glassy carbon. The resulting glassy carbon had no foaming, cracking or cracking. Further, the maximum thickness of the obtained glassy carbon was 11.2 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 10 μm.
[0033]
Example 3
After adding 0.6 parts by weight of paratoluenesulfonic acid as a curing agent to 100 parts by weight of the liquid furan resin used in Example 1 and stirring and mixing, the coating thickness at one time on an aluminum petri dish is 500 μm. The solution was dropped and stretched, and heat-cured with a hot air dryer at 50 ° C. for 5 hours and then at 230 ° C. for 1 hour. The thickness of the cured resin after curing was 400 μm. This operation was repeated 20 times to obtain a resin molded body having a thickness of 8 mm.
[0034]
The resin molding was fired under a nitrogen atmosphere at a heating rate of up to 900 ° C. at 0.5 ° C./hour and a heating rate of 900-1000 ° C. at 5 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. The resulting glassy carbon had no foaming, cracking or cracking. Moreover, the maximum thickness of the obtained glassy carbon was 6.4 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 10 μm.
[0035]
Example 4
The liquid furan resin used in Example 1 was heat-treated at 50 ° C. for 10 hours to remove a part of the volatile components. The resin after the heat treatment had a viscosity at 25 ° C. of 0.28 Pa · s and a non-volatile component of 66% by weight. Next, with respect to 100 parts by weight of this liquid furan resin, 0.6 parts by weight of paratoluenesulfonic acid as a curing agent was added and stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 500 μm. Then, heat curing was performed with a hot air dryer at 50 ° C. for 5 hours and then at 230 ° C. for 1 hour. The thickness of the cured resin after curing was 450 μm. This operation was repeated 23 times to obtain a resin molded body having a thickness of 10.35 mm.
[0036]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 1.0 ° C./hour and a heating rate of 700 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. The resulting glassy carbon had no foaming, cracking or cracking. Further, the maximum thickness of the obtained glassy carbon was 8.3 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 30 μm.
[0037]
Example 5
40 parts by weight of ethanol was added to 100 parts by weight of the liquid furan resin used in Example 1 and mixed with stirring. The liquid furan resin after stirring and mixing had a viscosity at 25 ° C. of 0.08 Pa · s and a non-volatile component of 32% by weight. Next, to 100 parts by weight of this liquid furan resin, 15 parts by weight of trichloroacetic acid as a curing agent was added and stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 400 μm. Heat curing was performed at 50 ° C. for 5 hours and then at 200 ° C. for 1 hour in a dryer. The thickness of the cured resin after curing was 250 μm. This operation was repeated 28 times to obtain a resin molded body having a thickness of 7 mm.
[0038]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 1.0 ° C./hour and a heating rate of 700 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. The resulting glassy carbon had no foaming, cracking or cracking. The maximum thickness of the obtained glassy carbon was 5.6 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 20 μm.
[0039]
Comparative Example 1
After adding 0.6 parts by weight of paratoluenesulfonic acid as a curing agent to 100 parts by weight of the liquid furan resin used in Example 1 and stirring and mixing, the coating thickness at one time on an aluminum petri dish is 500 μm. The solution was dropped and stretched, and heat-cured with a hot air dryer at 50 ° C. for 5 hours and then at 200 ° C. for 1 hour. The thickness of the cured resin after curing was 400 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 10 mm.
[0040]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 2.0 ° C./hour and a heating rate of 700-1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. Cracks occurred in the obtained glassy carbon, and the desired shape was not obtained.
[0041]
Comparative Example 2
The liquid furan resin used in Example 1 was heat-treated at 90 ° C. for 5 hours to remove a part of the volatile components. The viscosity of the resin at 25 ° C. after the heat treatment was 0.34 Pa · s and the non-volatile component was 79% by weight. Next, with respect to 100 parts by weight of this liquid furan resin, 0.6 parts by weight of paratoluenesulfonic acid as a curing agent was added and stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 500 μm. Then, heat curing was performed with a hot air dryer at 50 ° C. for 5 hours and then at 230 ° C. for 1 hour. The thickness of the cured resin after curing was 490 μm. This operation was repeated 21 times to obtain a resin molded body having a thickness of 10.29 mm.
[0042]
The resin molding was fired under a nitrogen atmosphere at a heating rate of up to 900 ° C. at 1.0 ° C./hour and a heating rate of 900-1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. The resulting glassy carbon had no foaming, cracking or cracking. The maximum thickness of the obtained glassy carbon was 8.2 mm.
However, as a result of rupturing the glassy carbon and observing the closed pores on the fracture surface, the maximum closed pore diameter was as large as 200 μm.
[0043]
Comparative Example 3
The liquid furan resin used in Example 1 was heat-treated at 50 ° C. for 10 hours to remove a part of the volatile components. The viscosity of the resin at 25 ° C. after the heat treatment was 0.28 Pa · s and the non-volatile component was 66% by weight. Next, with respect to 100 parts by weight of this liquid furan resin, 0.6 parts by weight of para-toluenesulfonic acid as a curing agent was added and stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 600 μm. Then, heat curing was performed with a hot air dryer at 50 ° C. for 5 hours and then at 230 ° C. for 1 hour. The thickness of the cured resin after curing was 540 μm. This operation was repeated 19 times to obtain a resin molded body having a thickness of 10.26 mm.
[0044]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 1.0 ° C./hour and a heating rate of 700 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. Foaming occurred in the obtained glassy carbon, and the desired shape was not obtained.
[0045]
Comparative Example 4
After adding 0.6 parts by weight of paratoluenesulfonic acid as a curing agent to 100 parts by weight of the liquid furan resin used in Example 1 and stirring and mixing, the coating thickness at one time on an aluminum petri dish is 500 μm. The solution was dropped and stretched, and heat-cured with a hot air dryer at 50 ° C. for 5 hours, with a far-infrared dryer for 5 minutes, and then with a hot air dryer at 200 ° C. for 1 hour. The thickness of the cured resin after curing was 400 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 10 mm.
[0046]
This resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 600 ° C. at 1.0 ° C./hour and a heating rate of 600 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. Cracks occurred in the obtained glassy carbon, and the desired shape was not obtained.
[0047]
Comparative Example 5
100 parts by weight of ethanol was added to 100 parts by weight of the liquid furan resin used in Example 1, and the mixture was stirred and mixed. The liquid furan resin after stirring and mixing had a viscosity at 25 ° C. of 0.06 Pa · s and a non-volatile component of 22.5% by weight. Next, with respect to 100 parts by weight of this liquid furan resin, 0.6 parts by weight of paratoluenesulfonic acid as a curing agent was added and stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 500 μm. Then, heat curing was performed with a hot air dryer at 50 ° C. for 5 hours, with a far infrared dryer for 5 minutes, and then with a hot air dryer at 200 ° C. for 1 hour. The thickness of the cured resin after curing was 200 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 5 mm.
[0048]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 1.0 ° C./hour and a heating rate of 700 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. The resulting glassy carbon had no foaming, cracking or cracking. Moreover, the maximum thickness of the obtained glassy carbon was 4 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 200 μm.
[0049]
Comparative Example 6
300 parts by weight of acetone was added to 100 parts by weight of the liquid furan resin used in Example 1, and the mixture was stirred and mixed. The liquid furan resin after stirring and mixing had a viscosity at 25 ° C. of 0.04 Pa · s and a non-volatile component of 11.3 wt%. Next, with respect to 100 parts by weight of this liquid furan resin, 0.6 parts by weight of paratoluenesulfonic acid as a curing agent was added and stirred and mixed, and then dropped and stretched on an aluminum petri dish so that the coating thickness at one time became 500 μm. Then, heat curing was performed with a hot air dryer at 50 ° C. for 5 hours, with a far infrared dryer for 5 minutes, and then with a hot air dryer at 200 ° C. for 1 hour. The thickness of the cured resin after curing was 100 μm. This operation was repeated 100 times to obtain a resin molded body having a thickness of 10 mm.
[0050]
The resin molded body was fired under a nitrogen atmosphere at a heating rate of up to 700 ° C. at 1.0 ° C./hour and a heating rate of 700 to 1000 ° C. at 10 ° C./hour for 5 hours at 1000 ° C. Glassy carbon was obtained. The resulting glassy carbon had no foaming, cracking or cracking. Moreover, the maximum thickness of the obtained glassy carbon was 8 mm.
As a result of fracture of the glassy carbon and observation of the closed pores on the fracture surface, the maximum closed pore diameter was 150 μm.
[0051]
【The invention's effect】
The glassy carbon obtained by the method according to claim 1 efficiently removes the volatile component of the thermosetting resin used as a raw material or the volatile component generated during the curing to obtain a cured resin product having a desired thickness and shape. While producing, it is a glassy carbon with good properties, preventing foaming, cracking, generation of large closed pores and cracking in the firing process. The vitreous carbon according to claim 2 is obtained by efficiently removing a volatile component of a thermosetting resin as a raw material or a volatile component generated at the time of curing to produce a resin cured product having a desired thickness and shape, This is a method for producing glassy carbon having good properties, in which foaming, cracking, generation of large closed pores and cracking are prevented in the firing process.

Claims (2)

25℃での粘度が0.05〜0.3Pa・s(0.5〜3ポイズ)で、かつ不揮発成分の含有量が30〜70重量%の液状熱硬化性樹脂である液状フラン樹脂を用いて、1回の塗布厚さが500μm以下となる樹脂層を形成し、加熱硬化する工程を複数回繰り返し行って樹脂成形体を得た後、700℃までを1.5℃/時間以下の昇温速度で昇温し、焼成することを特徴とするガラス状炭素の製造方法。A liquid furan resin , which is a liquid thermosetting resin having a viscosity at 25 ° C. of 0.05 to 0.3 Pa · s (0.5 to 3 poise) and a nonvolatile component content of 30 to 70% by weight , is used. After forming a resin layer having a coating thickness of 500 μm or less once and repeating the heat curing step a plurality of times to obtain a resin molded body, the temperature is increased to 700 ° C. by 1.5 ° C./hour or less. A method for producing glassy carbon, characterized by heating at a temperature rate and firing. 請求項1において、最大閉気孔径が100μm以下及び最大厚さが5mm以上であるガラス状炭素の製造方法。  2. The method for producing glassy carbon according to claim 1, wherein the maximum closed pore diameter is 100 [mu] m or less and the maximum thickness is 5 mm or more.
JP30235599A 1999-10-25 1999-10-25 Method for producing glassy carbon Expired - Fee Related JP4600703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30235599A JP4600703B2 (en) 1999-10-25 1999-10-25 Method for producing glassy carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30235599A JP4600703B2 (en) 1999-10-25 1999-10-25 Method for producing glassy carbon

Publications (2)

Publication Number Publication Date
JP2001122662A JP2001122662A (en) 2001-05-08
JP4600703B2 true JP4600703B2 (en) 2010-12-15

Family

ID=17907922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30235599A Expired - Fee Related JP4600703B2 (en) 1999-10-25 1999-10-25 Method for producing glassy carbon

Country Status (1)

Country Link
JP (1) JP4600703B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086194A (en) * 2001-09-10 2003-03-20 Unitika Ltd Method of manufacturing separator for fuel-cell
US7862897B2 (en) * 2006-01-27 2011-01-04 Carbon Ceramics Company, Llc Biphasic nanoporous vitreous carbon material and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585884A (en) * 1991-09-30 1993-04-06 Toshiba Ceramics Co Ltd Inner shield of apparatus for pulling up single crystal
JPH10172738A (en) * 1996-12-04 1998-06-26 Tokai Carbon Co Ltd Glass like carbon heating element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111916A (en) * 1997-06-23 1999-01-19 Toyo Tanso Kk Vitreous carbon material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585884A (en) * 1991-09-30 1993-04-06 Toshiba Ceramics Co Ltd Inner shield of apparatus for pulling up single crystal
JPH10172738A (en) * 1996-12-04 1998-06-26 Tokai Carbon Co Ltd Glass like carbon heating element

Also Published As

Publication number Publication date
JP2001122662A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
KR100570908B1 (en) Method for producing a member made of glassy carbon
Choe et al. Effect of processing parameters on the mechanical properties of carbonized phenolic resin
JP4600703B2 (en) Method for producing glassy carbon
CN113103478A (en) Processing equipment for casting injection mold
KR101210882B1 (en) Graphite crucible with glassy carbon coatings and method for manufacturing the same
JPH1017382A (en) Production of silicon carbide formed body
US7553470B2 (en) Method of controlling swelling and shrinkage during synthesis of coke
JP2007320787A (en) Silicon carbide sintered compact and its manufacturing method
JP3553329B2 (en) Manufacturing method of glassy carbon material
CN112573928B (en) Preparation method of boron-containing polymer precursor ceramic
JPH1171106A (en) Production of glassy carbon material
JPS62138361A (en) Manufacture of high density formed body from carbon material
JP2001335366A (en) Glassy carbon tube precursor and manufacturing method for the same
CN116355273B (en) Polybenzoxazine aerogel film and preparation method thereof
JP3863308B2 (en) Method for producing glassy carbon pipe
JPH0769730A (en) Production of vitreous carbonaceous material
JPH01197376A (en) Porous carbon material and production thereof
JP2002187772A (en) Method of manufacturing glassy carbon and glassy carbon obtained by this method
JP3198120B2 (en) Method for producing glassy carbon plate
JP2002211979A (en) Member made of glasslike carbon for protecting inner wall of chamber
JP3342515B2 (en) Method for producing thick glassy carbon material
JPS62132716A (en) Production of porous carbon material
JP2001338906A (en) Chamber liner made of glassy carbon
JPS6350480A (en) Production of glassy carbon coated body
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees