JP2001122662A - Method for manufacturing glassy carbon and glassy carbon obtained by the manufacturing method - Google Patents

Method for manufacturing glassy carbon and glassy carbon obtained by the manufacturing method

Info

Publication number
JP2001122662A
JP2001122662A JP30235599A JP30235599A JP2001122662A JP 2001122662 A JP2001122662 A JP 2001122662A JP 30235599 A JP30235599 A JP 30235599A JP 30235599 A JP30235599 A JP 30235599A JP 2001122662 A JP2001122662 A JP 2001122662A
Authority
JP
Japan
Prior art keywords
glassy carbon
resin
thickness
weight
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30235599A
Other languages
Japanese (ja)
Other versions
JP4600703B2 (en
Inventor
Kazumi Kokaji
和己 小鍛治
Takayuki Suzuki
孝幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP30235599A priority Critical patent/JP4600703B2/en
Publication of JP2001122662A publication Critical patent/JP2001122662A/en
Application granted granted Critical
Publication of JP4600703B2 publication Critical patent/JP4600703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing glassy carbon which manufactures the cured matter of a resin having a desired thickness and shape by efficiently removing the volatile component possessed by a thermosetting resin, i.e., a raw material or the volatile component formed during curing, prevents foaming, cracking, formation of large closed pores and crazing and yields the glassy carbon having good characteristics and the glassy carbon. SOLUTION: This method for manufacturing the glassy carbon consists in obtaining a resin molding by repeating, plural times, the stages of forming resin layers with which a coating application thickness of one time is <=500 μm, by using the liquid thermosetting resin having a viscosity at 25 deg.C of 0.05 to 0.3 Pa.s (0.5 to 3 poises) and a content of the volatile component of 3 to 70 wt.%, and then baking the resin molding by heating up to 700 deg.C at the temperature elevation rate of <=1.5 deg.C/hour. The glassy carbon is <=100 μm in the largest closed pore diameter and >=5 mm in the maximum thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性に優れた半
導体製造装置用部材、CVD装置用部材、ハードディス
ク基板等に適したガラス状炭素の製造方法及び該製造方
法で得られたガラス状炭素に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing glassy carbon which is suitable for a member for a semiconductor manufacturing apparatus, a member for a CVD apparatus, a hard disk substrate, etc., having excellent corrosion resistance, and a glassy carbon obtained by the method. .

【0002】[0002]

【従来の技術】ガラス状炭素は、一般の炭素材料が有す
る軽量、耐熱性、耐食性、電気伝導性、高純度化が可能
である等の性質を備えているほか、ガス不透過性、低発
塵性、硬度が高く鏡面加工が可能である等の特徴を持っ
ていることから、エレクトロニクス産業、原子力産業、
航空宇宙産業等各種の分野での広範な用途に使用されつ
つある。
2. Description of the Related Art Vitreous carbon has properties such as light weight, heat resistance, corrosion resistance, electric conductivity, and high purity that general carbon materials have, and gas impermeability and low emission. Due to its features such as high dustiness and high hardness, mirror finishing is possible, the electronics industry, nuclear power industry,
It is being used for a wide range of applications in various fields such as the aerospace industry.

【0003】ガラス状炭素は熱硬化性樹脂を原料とし、
これを硬化した後、不活性雰囲気中又は真空中で焼成炭
素化して得られるが、成形から必要に応じて行う黒鉛化
までの製造工程においては終始固相状態のままで反応す
るため、気体又は液体に対して不透過性である。
[0003] Glassy carbon is made of thermosetting resin,
After this is cured, it is obtained by calcining in an inert atmosphere or in vacuum, but in the manufacturing process from molding to graphitization performed as necessary, it reacts in the solid state throughout, so gas or Impermeable to liquids.

【0004】このため、熱硬化性樹脂の硬化過程におい
ては、縮重合反応によって生成する縮合水や分解ガス、
原料樹脂に含まれる揮発性モノマーが拡散されにくく、
成形体中に閉気孔が生成する要因となる。従来の技術で
は、このような問題を防止するために樹脂の硬化を長時
間かけて行うなどの対策がとられてきた。
[0004] Therefore, in the curing process of the thermosetting resin, condensed water and decomposed gas generated by the condensation polymerization reaction,
Volatile monomers contained in the raw material resin are not easily diffused,
This is a factor in forming closed pores in the molded body. In the prior art, measures have been taken to prevent such a problem, such as curing the resin for a long time.

【0005】また、焼成過程において、樹脂の熱分解に
伴って発生する分解ガスやタール成分の拡散が不十分に
なると成形体に発泡や亀裂が発生し、目的とする形状の
ガラス状炭素が得られなくなる。発泡や亀裂が発生する
に至らないまでも、タール成分が膨張して成形体中に大
きな閉気孔を生成し易い。
[0005] Further, in the firing step, if the decomposition gas or tar component generated due to the thermal decomposition of the resin is insufficiently diffused, foaming and cracks are generated in the molded product, and the desired shape of glassy carbon is obtained. Can not be. Even if foaming or cracking does not occur, the tar component is likely to expand and generate large closed pores in the molded article.

【0006】焼成過程で発生する分解ガスとは、一酸化
炭素、二酸化炭素、水素、メタン、エタン等常温・常圧
下において気体である低分子量物質を指し、タール成分
とは樹脂が熱分解して生成する雑多な物質で、常温・常
圧下において液体である中分子量物質を指す。
[0006] The decomposition gas generated in the calcination process is a low molecular weight substance such as carbon monoxide, carbon dioxide, hydrogen, methane, ethane, etc., which is a gas at normal temperature and normal pressure. It is a miscellaneous substance that is produced and refers to a medium molecular weight substance that is liquid at normal temperature and pressure.

【0007】また、樹脂硬化物からガラス状炭素へ転化
させる焼成の過程においては、上記の分解ガスやタール
成分の離脱と同時に、樹脂の骨格を形成する炭素原子が
黒鉛構造へと再配列し、これに伴い成形体の収縮が起こ
る。特に肉厚の成形品を焼成する際には、成形体表面と
内部とで熱の伝播速度が大きく異なる為、成形体表面と
内部との収縮速度に差が生じ、成形体が割れる現象が生
じ易い。
In the firing process for converting the cured resin to glassy carbon, the carbon atoms forming the skeleton of the resin are rearranged into a graphite structure simultaneously with the release of the decomposition gas and the tar component. Along with this, the compact shrinks. In particular, when firing thick molded products, the heat propagation speed differs greatly between the surface of the molded body and the inside, causing a difference in the shrinkage speed between the surface of the molded body and the inside, and the phenomenon of the molded body breaking. easy.

【0008】そのため、硬化に要する時間を大幅に短縮
し、かつ焼成時の発泡や亀裂の発生及び大きな閉気孔の
生成並びに割れを防止し、目的の形状のガラス状炭素を
短期間で歩留良く製造する方法の開発が要望されてい
た。
For this reason, the time required for curing is greatly reduced, and the occurrence of foaming and cracking during firing and the generation and cracking of large closed pores are prevented, and the yield of glassy carbon having the desired shape can be improved in a short period of time. Development of a manufacturing method was desired.

【0009】[0009]

【発明が解決しようとする課題】請求項1記載の発明
は、原料とする熱硬化性樹脂が有する揮発成分又は硬化
の際に生成する揮発成分を効率よく除去して所望の厚さ
及び形状の樹脂硬化物を作製するとともに、焼成過程に
おいては発泡、亀裂、大きな閉気孔の生成及び割れを防
止し、良好な性状のガラス状炭素を得ることのできるガ
ラス状炭素の製造方法を提供するものである。
According to the first aspect of the present invention, a volatile component contained in a thermosetting resin as a raw material or a volatile component generated during curing is efficiently removed to obtain a desired thickness and shape. In addition to producing a cured resin, foaming, cracking, and prevention of formation and cracking of large closed pores in the firing process, a method for producing glassy carbon capable of obtaining glassy carbon having good properties is provided. is there.

【0010】請求項2記載の発明は、原料とする熱硬化
性樹脂が有する揮発成分又は硬化の際に生成する揮発成
分が効率よく除去され所望の厚さ及び形状の樹脂硬化物
が作製されるとともに、焼成過程においては発泡、亀
裂、大きな閉気孔の生成及び割れの防止された、良好な
性状のガラス状炭素を提供するものである。
According to the second aspect of the present invention, a volatile resin contained in a thermosetting resin as a raw material or a volatile component generated during curing is efficiently removed, and a cured resin product having a desired thickness and shape is produced. In addition, the present invention provides good-quality glassy carbon in which foaming, cracking, generation of large closed pores and cracking are prevented in the firing step.

【0011】[0011]

【課題を解決するための手段】本発明は、25℃での粘
度が0.05〜0.3Pa・sで、かつ不揮発成分の含有量
が30〜70重量%の液状熱硬化性樹脂を用いて、1回
の塗布厚さが500μm以下となる樹脂層を形成し、加
熱硬化する工程を複数回繰り返し行って樹脂成形体を得
た後、700℃までを1.5℃/時間以下の昇温速度で
昇温し、焼成することを特徴とするガラス状炭素の製造
方法に関する。また、本発明は、上記の製造方法で得ら
れ、かつガラス状炭素の最大閉気孔径が100μm以下
及び最大厚さが5mm以上であるガラス状炭素に関する。
The present invention uses a liquid thermosetting resin having a viscosity at 25 ° C. of 0.05 to 0.3 Pa · s and a nonvolatile content of 30 to 70% by weight. After forming a resin layer having a coating thickness of 500 μm or less at one time and heating and curing the resin layer a plurality of times to obtain a resin molded body, the temperature is raised to 700 ° C. at a rate of 1.5 ° C./hour or less. The present invention relates to a method for producing glassy carbon, which comprises raising the temperature at a temperature rate and firing the same. The present invention also relates to a glassy carbon obtained by the above-mentioned production method, wherein the maximum closed pore diameter of the glassy carbon is 100 μm or less and the maximum thickness is 5 mm or more.

【0012】[0012]

【発明の実施の形態】本発明のガラス状炭素の製造方法
では、25℃での粘度が0.05〜0.3Pa・sで、かつ
不揮発成分の含有量が30〜70重量%の範囲の液状熱
硬化性樹脂を原料として用いるが、もし出発原料が上記
の範囲から外れている熱硬化性樹脂を用いる場合は、熱
硬化性樹脂に溶媒を添加して上記の範囲に入るように調
整して用いることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing glassy carbon of the present invention, the viscosity at 25 ° C. is 0.05 to 0.3 Pa · s, and the content of the non-volatile component is 30 to 70% by weight. Liquid thermosetting resin is used as the raw material, but if the starting raw material uses a thermosetting resin that is out of the above range, a solvent is added to the thermosetting resin and adjusted so as to fall within the above range. Can also be used.

【0013】前記熱硬化性樹脂としては、フラン樹脂、
フェノール樹脂、ジビニルベンゼン樹脂、不飽和ポリエ
ステル樹脂、ポリイミド樹脂、ジアリルフタレート樹
脂、ビニルエステル樹脂、ポリウレタン樹脂、メラミン
樹脂、ユリア樹脂等を挙げることができる。また、これ
ら樹脂の混合物を用いることもできる。これらの中で、
成形時の延伸性、揮発成分の放出速度、炭素化収率等を
考慮すると、フラン樹脂、フェノール樹脂又はこれらの
混合物が好ましく、フラン樹脂がより好ましい。
As the thermosetting resin, furan resin,
Phenol resin, divinylbenzene resin, unsaturated polyester resin, polyimide resin, diallyl phthalate resin, vinyl ester resin, polyurethane resin, melamine resin, urea resin and the like can be mentioned. Also, a mixture of these resins can be used. Among these,
In consideration of the stretchability during molding, the release rate of volatile components, the carbonization yield, and the like, a furan resin, a phenol resin, or a mixture thereof is preferable, and a furan resin is more preferable.

【0014】前記フラン樹脂の種類としては、フルフラ
ール樹脂、フルフラールフェノール樹脂、フルフラール
ケトン樹脂、フルフリルアルコール樹脂、フルフリルア
ルコールフェノール樹脂等の樹脂の初期縮合物が好まし
いものとして挙げられる。また、熱硬化性樹脂に添加す
る溶媒としては、常温常圧で液体の有機溶媒ならば特に
制限はなく、前記熱硬化性樹脂のモノマーを用いること
も可能である。溶媒として好ましいものは、各種アルコ
ール類で、例えばエタノール、プロパノール、ブタノー
ル等が挙げられる。
Preferred examples of the type of the furan resin include initial condensates of resins such as furfural resin, furfural phenol resin, furfural ketone resin, furfuryl alcohol resin, and furfuryl alcohol phenol resin. The solvent to be added to the thermosetting resin is not particularly limited as long as it is an organic solvent that is liquid at normal temperature and normal pressure, and it is also possible to use a monomer of the thermosetting resin. Preferred solvents are various alcohols such as ethanol, propanol and butanol.

【0015】前記液状熱硬化性樹脂には、必要に応じて
前記樹脂の硬化剤を用いることができ、その例としては
酸又はアルカリが挙げられる。酸としては硫酸、塩酸、
硝酸、りん酸等の無機酸、フェノールスルホン酸、トル
エンスルホン酸、メタンスルホン酸、硫酸アニリン、酢
酸、トリクロロ酢酸、トリフロロ酢酸等が好ましいもの
として挙げられ、このうちフェノールスルホン酸、トル
エンスルホン酸、メタンスルホン酸等の有機スルホン酸
類、酢酸、トリクロロ酢酸、トリフロロ酢酸等の有機カ
ルボン酸類がより好ましく、フェノールスルホン酸及び
トルエン酸がさらに好ましい。アルカリとしてはアンモ
ニア、アミン類、水酸化ナトリウム、水酸化カリウム等
が好ましい。
As the liquid thermosetting resin, a curing agent for the resin can be used if necessary, and examples thereof include acids and alkalis. As the acid, sulfuric acid, hydrochloric acid,
Inorganic acids such as nitric acid and phosphoric acid, phenolsulfonic acid, toluenesulfonic acid, methanesulfonic acid, aniline sulfate, acetic acid, trichloroacetic acid, trifluoroacetic acid and the like are preferred, and among them, phenolsulfonic acid, toluenesulfonic acid, methane Organic sulfonic acids such as sulfonic acid, and organic carboxylic acids such as acetic acid, trichloroacetic acid, and trifluoroacetic acid are more preferable, and phenolsulfonic acid and toluene acid are more preferable. As the alkali, ammonia, amines, sodium hydroxide, potassium hydroxide and the like are preferable.

【0016】硬化剤の使用量は、原料とする熱硬化性樹
脂及び溶媒の添加量などにより変動するが、少なすぎる
と硬化が遅く、かつ不十分となり、多すぎると急激に硬
化反応が起こり、発泡又は発火するおそれがあり、きれ
いな成形体を製造することが困難になる傾向がある。従
って熱硬化性樹脂に対して0.01〜20重量%の範囲
とすることが好ましく、0.01〜15重量%の範囲と
することがより好ましい。硬化剤はそのまま又は適宜溶
媒に溶解して液状熱硬化性樹脂に添加する。ここで用い
る溶媒としては、例えばメタノール、エタノール等の低
級アルコール類、アセトン、トルエン等の有機溶媒等が
挙げられる。
The amount of the curing agent used varies depending on the amounts of the thermosetting resin and the solvent used as the raw materials, but if the amount is too small, the curing is slow and inadequate. If the amount is too large, the curing reaction occurs rapidly, There is a risk of foaming or ignition, and it tends to be difficult to produce a clean molded article. Accordingly, the content is preferably in the range of 0.01 to 20% by weight, more preferably 0.01 to 15% by weight, based on the thermosetting resin. The curing agent is added to the liquid thermosetting resin as it is or after being appropriately dissolved in a solvent. Examples of the solvent used here include lower alcohols such as methanol and ethanol, and organic solvents such as acetone and toluene.

【0017】本発明において、不揮発成分とは、主とし
て熱硬化性樹脂初期縮合物中に含まれる未反応モノマー
や原料モノマーが2〜3分子重合した低分子重合物を指
す。不揮発成分量は、原料となる液状熱硬化性樹脂又は
熱硬化性樹脂に溶媒を添加して調製した液状熱硬化性樹
脂をアルミシャーレにとり、120℃で3時間放置した
後の残留分とした。粘度は、B型粘度計を用い、ロータ
回転速度60min-1にて測定した。但し、硬化剤を使用
する場合には硬化剤添加前の樹脂に対して粘度測定を行
った。
In the present invention, the non-volatile component mainly refers to a low molecular weight polymer obtained by polymerizing two to three molecules of unreacted monomers and raw material monomers contained in a thermosetting resin precondensate. The amount of the non-volatile component was defined as a residual amount after the liquid thermosetting resin as a raw material or the liquid thermosetting resin prepared by adding a solvent to the thermosetting resin was placed in an aluminum Petri dish and left at 120 ° C. for 3 hours. The viscosity was measured using a B-type viscometer at a rotor rotation speed of 60 min -1 . However, when a curing agent was used, the viscosity of the resin before the addition of the curing agent was measured.

【0018】液状熱硬化性樹脂を塗布するために用いら
れる基板、即ち塗布した液状熱硬化性樹脂を加熱硬化し
た後、焼成してガラス状炭素を製造するまで土台として
用いられる基板は、原料として用いる熱硬化性樹脂の延
伸性が良好であり、かつ熱硬化性樹脂を硬化する際の最
高温度に対して基材の変形、軟化等が起こらないよう十
分な耐熱性を有し、さらに硬化した熱硬化性樹脂との剥
離性に優れる材料を用いることが好ましく、例えば、ア
ルミニウム、ガラス、塩化ビニル、アクリル、テフロ
ン、黒鉛材、セラミックス材、各種金属材等が好ましい
ものとして挙げられる。基板となる材料には必要に応じ
て凹凸、湾曲等を設け、樹脂成形体に所望の形状を付加
することも可能である。塗布の方法としては、刷毛など
を用いて塗布する他、滴下法、スピンコート法、噴霧法
等が挙げられるが、樹脂中に異物が混入することなく、
樹脂が均一に塗布されれば特に制限されるものではな
い。
The substrate used for applying the liquid thermosetting resin, that is, the substrate used as a base until the applied liquid thermosetting resin is heated and cured and then baked to produce glassy carbon, is used as a raw material. The stretchability of the thermosetting resin used is good, and the substrate has sufficient heat resistance to prevent deformation, softening, and the like with respect to the maximum temperature when the thermosetting resin is cured, and is further cured. It is preferable to use a material having excellent releasability from the thermosetting resin, and examples thereof include aluminum, glass, vinyl chloride, acryl, Teflon, graphite, ceramics, and various metal materials. The substrate material may be provided with irregularities, curvatures, and the like, as needed, to add a desired shape to the resin molded body. As a method of application, besides applying using a brush or the like, a dropping method, a spin coating method, a spraying method, and the like can be mentioned, without mixing foreign matter into the resin,
There is no particular limitation as long as the resin is uniformly applied.

【0019】液状熱硬化性樹脂の25℃での粘度は、
0.05〜0.3Pa・s、好ましくは0.06〜0.2Pa
・s、さらに好ましくは0.06〜0.17Pa・sの範囲と
され、0.05Pa・s未満の場合、特にスピンコート法に
より塗布する場合は1回に塗布できる厚さが著しく薄い
為、塗布回数が多くなり実用的ではない。一方、0.3
Pa・sを越えると原料として用いる熱硬化性樹脂の流動性
が著しく低下し、注型時に巻き込んだ空気などがそのま
ま残存し、大きな閉気孔となり易い。
The viscosity of the liquid thermosetting resin at 25 ° C. is as follows:
0.05 to 0.3 Pa · s, preferably 0.06 to 0.2 Pa
S, more preferably in the range of 0.06 to 0.17 Pa · s, and if less than 0.05 Pa · s, especially when applied by spin coating, the thickness that can be applied at one time is extremely thin. It is not practical because the number of times of application increases. On the other hand, 0.3
When the pressure exceeds Pa · s, the fluidity of the thermosetting resin used as a raw material is remarkably reduced, and air or the like entrained during casting remains as it is, and large closed pores are easily formed.

【0020】液状熱硬化性樹脂の不揮発成分の含有量
は、30〜70重量%、好ましくは35〜65重量%、
さらに好ましくは40〜60重量%の範囲とされ、30
重量%未満では揮発成分の除去が困難となり成形体中に
気泡などが残り易く、70重量%を越えると均一に塗布
できないという問題が生じる。
The content of the nonvolatile component in the liquid thermosetting resin is 30 to 70% by weight, preferably 35 to 65% by weight,
More preferably, the content is in the range of 40 to 60% by weight,
If the amount is less than 70% by weight, it is difficult to remove volatile components, and air bubbles and the like are likely to remain in the molded body.

【0021】液状熱硬化性樹脂の1回の塗布厚さは、5
00μm以下、好ましくは300μm以下、さらに好ま
しくは280〜180μmの範囲とされ、500μmを
越えると、硬化時の揮発成分の逸脱に長時間を要すると
ともに、揮発成分が硬化体内に残留してボイドの発生原
因になり、また、樹脂の硬化が均一に進行せず、大きな
圧縮応力が付与されて歪みを持った樹脂成形品となり易
く、焼成時においては発生する分解ガス量が増大し、発
泡の発生要因になる。
The thickness of one application of the liquid thermosetting resin is 5
When the thickness exceeds 500 μm, it takes a long time for the volatile components to deviate during curing, and the volatile components remain in the cured body to generate voids. In addition, the curing of the resin does not proceed uniformly, and a large compressive stress is applied, so that it becomes easy to become a resin molded product with distortion, the amount of decomposition gas generated during firing increases, and the factor of foaming become.

【0022】基板上に塗布した液状熱硬化性樹脂の硬化
は、反応制御の容易さから、30〜300℃が好まし
く、50〜250℃がより好ましい。またこの温度範囲
より適宜温度を選択し、例えば50℃、100℃、25
0℃等と段階的に硬化処理することが望ましいが、連続
的に昇温し、選択した各温度で保持して硬化処理を行う
こともできる。硬化処理に際しては、常圧下のみなら
ず、減圧下又は加圧下で行うことができる。硬化に使用
する加熱炉としては、熱風式、遠赤外式、電磁波式等い
ずれの方式も用いることが可能で、2つ以上の方式を併
用することも可能である。
The curing of the liquid thermosetting resin applied on the substrate is preferably 30 to 300 ° C., more preferably 50 to 250 ° C., from the viewpoint of easy control of the reaction. Further, an appropriate temperature is selected from this temperature range, for example, 50 ° C., 100 ° C., 25 ° C.
Although it is desirable to carry out the curing treatment stepwise at 0 ° C. or the like, it is also possible to carry out the curing treatment while continuously raising the temperature and holding at each selected temperature. The curing treatment can be performed not only under normal pressure but also under reduced pressure or increased pressure. As a heating furnace used for curing, any method such as a hot-air method, a far-infrared method, and an electromagnetic wave method can be used, and two or more methods can be used in combination.

【0023】以上の方法により得られる樹脂成形体は、
次いで焼成してガラス状炭素とされるが、焼成前に機械
加工などにより所望の形状に加工することも可能であ
る。その際には、焼成後の寸法収縮を見込んだ加工寸法
の設定が必要である。焼成は、ヘリウム、アルゴン等の
不活性ガスや窒素、水素、ハロゲン等の非酸化性ガスの
少なくとも1種又は2種以上の混合物からなる酸素を含
まない雰囲気下又は減圧下で行うことができる。焼成を
減圧下で行う際には、樹脂の熱分解に伴って発生する分
解ガスやタール成分の拡散が容易になり、より肉厚のガ
ラス状炭素材を得ることができる。減圧の程度として
は、1〜25×105Paが望ましい。
The resin molded product obtained by the above method is
Then, it is fired to obtain glassy carbon, but it is also possible to process it into a desired shape by machining or the like before firing. At that time, it is necessary to set the processing dimensions in consideration of the dimensional shrinkage after firing. The calcination can be performed in an oxygen-free atmosphere or a reduced pressure comprising at least one or a mixture of two or more of an inert gas such as helium and argon and a non-oxidizing gas such as nitrogen, hydrogen and halogen. When baking is performed under reduced pressure, the decomposition gas and tar components generated due to the thermal decomposition of the resin are easily diffused, and a thicker glassy carbon material can be obtained. The degree of pressure reduction is desirably 1 to 25 × 10 5 Pa.

【0024】焼成時の昇温速度は、700℃までを1.
5℃/時間以下、好ましくは1℃/時間以下で行うこと
が必要とされ、これを越える速さで昇温を行うと、成形
品の寸法収縮速度が大きくなりすぎて割れが生じ易くな
り、特に成形品の最大厚さが5mm以上の肉厚ガラス状炭
素を得ることが著しく困難になるとともに、得られたガ
ラス状炭素には圧縮応力が付与され、歪みを持ったガラ
ス状炭素となる。
The rate of temperature rise during firing is up to 700 ° C.
It is necessary to carry out at a temperature of 5 ° C./hour or less, preferably 1 ° C./hour or less. If the temperature is raised at a rate exceeding this, the dimensional shrinkage rate of the molded article becomes too large, and cracks easily occur, In particular, it becomes extremely difficult to obtain a thick glassy carbon having a maximum thickness of 5 mm or more of the molded product, and a compression stress is applied to the obtained glassy carbon, whereby the glassy carbon becomes strained.

【0025】700℃まで昇温し終えたガラス状炭素
は、必要に応じて700〜1000℃の温度で焼成を行
って脱水素し、さらに3000℃までの黒鉛化処理を行
ってもよい。黒鉛化はアルゴンガスなどの非酸化性雰囲
気下又は真空下で行うことが望ましい。比重、硬度、耐
薬品性等のガラス状炭素材の特性を考慮した場合、熱処
理の最高温度は800〜3000℃が好ましく、110
0〜2800℃が特に好ましい。
The glassy carbon which has been heated to 700 ° C. may be subjected to firing at a temperature of 700 to 1000 ° C. for dehydrogenation if necessary, and further subjected to a graphitization treatment to 3000 ° C. The graphitization is desirably performed in a non-oxidizing atmosphere such as argon gas or in a vacuum. In consideration of the properties of the glassy carbon material such as specific gravity, hardness, and chemical resistance, the maximum temperature of the heat treatment is preferably 800 to 3000 ° C,
0 to 2800 ° C. is particularly preferred.

【0026】また、ガラス状炭素が高純度を要求される
用途に使用される場合には、黒鉛化後、一般炭素材料の
高純度化処理に用いられる方法、例えばハロゲンガスな
どによる脱灰処理などを行って高純度化を行うことも可
能である。焼成及び黒鉛化工程には、高純度に純化され
た治具、炉等を用いることが好ましい。
When the glassy carbon is used for applications requiring high purity, a method used for purifying general carbon materials after graphitization, such as a deashing treatment using a halogen gas or the like, is used. To perform high purification. In the firing and graphitizing steps, it is preferable to use a jig, a furnace, or the like purified to high purity.

【0027】本発明で得られるガラス状炭素は、ハード
ディスク基板などに要求される表面の平滑さの点で最大
閉気孔径が100μm以下であることが好ましく、50
μm以下であることがより好ましく、30μm以下であ
ることがさらに好ましく、0μmであることが最も好ま
しい。なお本発明において、最大閉気孔径とは最大閉気
孔の形状がほぼ円形の場合はその直径を測定し、楕円形
の場合は最大幅を測定した値を示す。また、ガラス状炭
素の厚さは、例えば、半導体製造用部材などに用いる場
合には強度の点で5mm以上であることが好ましく、6mm
以上であることがより好ましく、7〜12mmの範囲であ
ることがさらに好ましい。
The glassy carbon obtained by the present invention preferably has a maximum closed pore diameter of 100 μm or less from the viewpoint of surface smoothness required for a hard disk substrate or the like.
μm or less, more preferably 30 μm or less, and most preferably 0 μm. In the present invention, the maximum closed pore diameter indicates a value obtained by measuring the diameter when the shape of the maximum closed pore is substantially circular, and measuring the maximum width when the shape is elliptical. Further, the thickness of the glassy carbon is preferably 5 mm or more in terms of strength, for example, when used as a member for semiconductor production, and 6 mm.
More preferably, it is more preferably in the range of 7 to 12 mm.

【0028】本発明においては、必要に応じて、得られ
たガラス状炭素材をワイヤーカット、放電加工、超音波
加工等を用いて最終製品の形状へと加工することもでき
る。本発明のガラス状炭素は、プラズマエッチング用電
極、ハードディスク基板、りん酸型燃料電池セパレー
タ、耐酸容器部材、半導体製造用部材、化学分析用電
極、スパッタ用カーボンターゲット等として有用であ
る。
In the present invention, the obtained glassy carbon material can be processed into a shape of a final product by wire cutting, electric discharge machining, ultrasonic machining or the like, if necessary. The glassy carbon of the present invention is useful as an electrode for plasma etching, a hard disk substrate, a phosphoric acid type fuel cell separator, an acid-resistant container member, a member for semiconductor production, an electrode for chemical analysis, a carbon target for sputtering, and the like.

【0029】[0029]

【実施例】以下、本発明を実施例により説明する。 実施例1 原料熱硬化性樹脂として25℃での粘度が0.12Pa・s
及び不揮発成分が45重量%の液状フラン樹脂(日立化
成工業(株)製、商品名VF−302)を用い、この液状
フラン樹脂100重量部に対し、硬化剤としてパラトル
エンスルホン酸0.6重量部を加えて撹拌混合した後、
アルミシャーレに1回の塗布厚さが500μmになるよ
うに滴下、延伸し、熱風式乾燥機で50℃で5時間、次
いで200℃で1時間加熱硬化を行った。硬化後の樹脂
硬化物の厚さは400μmであった。この作業を25回
繰り返して厚さが10mmの樹脂成形体を得た。
The present invention will be described below with reference to examples. Example 1 A raw material thermosetting resin having a viscosity at 25 ° C. of 0.12 Pa · s
And a liquid furan resin having a nonvolatile component of 45% by weight (manufactured by Hitachi Chemical Co., Ltd., trade name: VF-302), and 0.6 parts by weight of paratoluenesulfonic acid as a curing agent with respect to 100 parts by weight of the liquid furan resin. After adding and mixing with stirring,
It was dropped and stretched on an aluminum Petri dish such that the thickness of one coating was 500 μm, and heat-cured at 50 ° C. for 5 hours and then at 200 ° C. for 1 hour using a hot-air dryer. The thickness of the cured resin after curing was 400 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 10 mm.

【0030】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を1.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、さらに1000〜2600℃の昇
温速度を10℃/時間として2600℃で5時間保持し
てガラス状炭素を得た。得られたガラス状炭素には発
泡、亀裂、割れの発生はなかった。また得られたガラス
状炭素の最大厚さは8mmであった。上記のガラス状炭素
を破断して破面の閉気孔観察を行った結果、最大閉気孔
径は5μmであった。
The resin molded body was placed in a nitrogen atmosphere at 700
At a heating rate of 1.0 ° C./hour, 700 to 1000 ° C.
The temperature was raised at a rate of 10 ° C./hour at 1000 ° C. for 5 hours for baking, and the temperature was raised from 1000 to 2600 ° C. at a rate of 10 ° C./hour at 2600 ° C. for 5 hours. Obtained. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 8 mm. As a result of breaking the glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 5 μm.

【0031】実施例2 実施例1で用いた液状フラン樹脂100重量部に対し、
硬化剤としてトリクロロ酢酸15重量部を加えて撹拌混
合した後、アルミシャーレに1回の塗布厚さが450μ
mになるように滴下、延伸し、熱風式乾燥機で50℃で
5時間、遠赤外式乾燥機で10分間、次いで熱風式乾燥
機で180℃で1時間加熱硬化を行った。硬化後の樹脂
硬化物の厚さは350μmであった。この作業を40回
繰り返して厚さが14mmの樹脂成形体を得た。
Example 2 100 parts by weight of the liquid furan resin used in Example 1 was
After adding 15 parts by weight of trichloroacetic acid as a curing agent and stirring and mixing, a single application thickness of 450 μm was applied to an aluminum dish.
m, and cured by heating at 50 ° C. for 5 hours with a hot-air dryer, 10 minutes with a far-infrared dryer, and then at 180 ° C. for 1 hour with a hot-air dryer. The thickness of the cured resin after curing was 350 μm. This operation was repeated 40 times to obtain a resin molded body having a thickness of 14 mm.

【0032】この樹脂成形体を、1×103Paの減圧下
で900℃までの昇温速度を1.0℃/時間、900〜
1000℃の昇温速度を10℃/時間として1000℃
で5時間保持して焼成を行い、ガラス状炭素を得た。得
られたガラス状炭素には発泡、亀裂、割れの発生はなか
った。また得られたガラス状炭素の最大厚さは11.2
mmであった。上記のガラス状炭素を破断して破面の閉気
孔観察を行った結果、最大閉気孔径は10μmであっ
た。
The resin molded body was heated under a reduced pressure of 1 × 10 3 Pa to a temperature of 900 ° C. at a rate of 1.0 ° C./hour,
1000 ° C. with the temperature rising rate of 1000 ° C. being 10 ° C./hour
And firing for 5 hours to obtain glassy carbon. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 11.2.
mm. As a result of breaking the glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 10 μm.

【0033】実施例3 実施例1で用いた液状フラン樹脂100重量部に対し、
硬化剤としてパラトルエンスルホン酸0.6重量部を加
えて撹拌混合した後、アルミシャーレに1回の塗布厚さ
が500μmになるように滴下、延伸し、熱風式乾燥機
で50℃で5時間、次いで230℃で1時間加熱硬化を
行った。硬化後の樹脂硬化物の厚さは400μmであっ
た。この作業を20回繰り返して厚さが8mmの樹脂成形
体を得た。
Example 3 With respect to 100 parts by weight of the liquid furan resin used in Example 1,
After adding 0.6 parts by weight of p-toluenesulfonic acid as a curing agent and stirring and mixing, the mixture is dropped and stretched on an aluminum Petri dish so that the thickness of a single coating is 500 μm, and stretched at 50 ° C. for 5 hours using a hot-air dryer. Then, heat curing was performed at 230 ° C. for 1 hour. The thickness of the cured resin after curing was 400 μm. This operation was repeated 20 times to obtain a resin molded body having a thickness of 8 mm.

【0034】この樹脂成形体を、窒素雰囲気下で900
℃までの昇温速度を0.5℃/時間、900〜1000
℃の昇温速度を5℃/時間として1000℃で5時間保
持して焼成を行い、ガラス状炭素を得た。得られたガラ
ス状炭素には発泡、亀裂、割れの発生はなかった。また
得られたガラス状炭素の最大厚さは6.4mmであった。
上記のガラス状炭素を破断して破面の閉気孔観察を行っ
た結果、最大閉気孔径は10μmであった。
This resin molded body was placed in a nitrogen atmosphere at 900
0.5 ° C./hour to 900 ° C.
Firing was performed while maintaining the temperature at 1000 ° C. for 5 hours at a temperature increasing rate of 5 ° C./hour, and glassy carbon was obtained. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 6.4 mm.
As a result of breaking the glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 10 μm.

【0035】実施例4 実施例1で用いた液状フラン樹脂を50℃で10時間加
熱処理し、揮発成分の一部を除去した。加熱処理後の樹
脂の25℃での粘度は0.28Pa・s及び不揮発成分は6
6重量%であった。次にこの液状フラン樹脂100重量
部に対し、硬化剤としてパラトルエンスルホン酸0.6
重量部を加えて撹拌混合した後、アルミシャーレに1回
の塗布厚さが500μmになるように滴下、延伸し、熱
風式乾燥機で50℃で5時間、次いで230℃で1時間
加熱硬化を行った。硬化後の樹脂硬化物の厚さは450
μmであった。この作業を23回繰り返して厚さが1
0.35mmの樹脂成形体を得た。
Example 4 The liquid furan resin used in Example 1 was subjected to a heat treatment at 50 ° C. for 10 hours to remove a part of volatile components. The viscosity of the resin after heat treatment at 25 ° C. is 0.28 Pa · s and the non-volatile component is 6
It was 6% by weight. Next, with respect to 100 parts by weight of the liquid furan resin, 0.6 parts of
After adding the parts by weight and stirring and mixing, the mixture was dropped and stretched on an aluminum Petri dish so that the thickness of each coating was 500 μm, stretched, and heated and cured at 50 ° C. for 5 hours at 230 ° C. for 1 hour. went. The thickness of the cured resin after curing is 450
μm. This operation is repeated 23 times and the thickness becomes 1
A 0.35 mm resin molded body was obtained.

【0036】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を1.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には発泡、亀裂、割れの発生はなかった。ま
た得られたガラス状炭素の最大厚さは8.3mmであっ
た。上記のガラス状炭素を破断して破面の閉気孔観察を
行った結果、最大閉気孔径は30μmであった。
This resin molded body was placed under a nitrogen atmosphere at 700
At a heating rate of 1.0 ° C./hour, 700 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 8.3 mm. As a result of breaking the above glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 30 μm.

【0037】実施例5 実施例1で用いた液状フラン樹脂100重量部に対して
エタノール40重量部を添加し、撹拌混合した。撹拌混
合した後の液状フラン樹脂の25℃での粘度は0.08
Pa・s及び不揮発成分は32重量%であった。次にこの液
状フラン樹脂100重量部に対し、硬化剤としてトリク
ロロ酢酸15重量部を加えて撹拌混合した後、アルミシ
ャーレに1回の塗布厚さが400μmになるように滴
下、延伸し、熱風式乾燥機で50℃で5時間、次いで2
00℃で1時間加熱硬化を行った。硬化後の樹脂硬化物
の厚さは250μmであった。この作業を28回繰り返
して厚さが7mmの樹脂成形体を得た。
Example 5 40 parts by weight of ethanol was added to 100 parts by weight of the liquid furan resin used in Example 1, and the mixture was stirred and mixed. The viscosity at 25 ° C. of the liquid furan resin after stirring and mixing is 0.08.
Pa · s and nonvolatile components were 32% by weight. Next, 15 parts by weight of trichloroacetic acid as a curing agent was added to 100 parts by weight of this liquid furan resin, and the mixture was stirred and mixed. 5 hours at 50 ° C in a dryer, then 2
Heat curing was performed at 00 ° C. for 1 hour. The thickness of the cured resin after curing was 250 μm. This operation was repeated 28 times to obtain a resin molded body having a thickness of 7 mm.

【0038】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を1.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には発泡、亀裂、割れの発生はなかった。ま
た得られたガラス状炭素の最大厚さは5.6mmであっ
た。上記のガラス状炭素を破断して破面の閉気孔観察を
行った結果、最大閉気孔径は20μmであった。
This resin molded body was placed under a nitrogen atmosphere at 700
At a heating rate of 1.0 ° C./hour, 700 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 5.6 mm. As a result of breaking the glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 20 μm.

【0039】比較例1 実施例1で用いた液状フラン樹脂100重量部に対し、
硬化剤としてパラトルエンスルホン酸0.6重量部を加
えて撹拌混合した後、アルミシャーレに1回の塗布厚さ
が500μmになるように滴下、延伸し、熱風式乾燥機
で50℃で5時間、次いで200℃で1時間加熱硬化を
行った。硬化後の樹脂硬化物の厚さは400μmであっ
た。この作業を25回繰り返して厚さが10mmの樹脂成
形体を得た。
Comparative Example 1 100 parts by weight of the liquid furan resin used in Example 1 was
After adding 0.6 parts by weight of p-toluenesulfonic acid as a curing agent and stirring and mixing, the mixture is dropped and stretched on an aluminum Petri dish so that the thickness of a single coating is 500 μm, and stretched at 50 ° C. for 5 hours using a hot-air dryer. Then, heat curing was performed at 200 ° C. for 1 hour. The thickness of the cured resin after curing was 400 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 10 mm.

【0040】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を2.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には割れが発生し、目的の形状のものが得ら
れなかった。
This resin molded body was placed under a nitrogen atmosphere at 700
At a rate of 2.0 ° C./hour, 700 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. Cracks occurred in the obtained glassy carbon, and the desired shape could not be obtained.

【0041】比較例2 実施例1で用いた液状フラン樹脂を90℃で5時間加熱
処理し、揮発成分の一部を除去した。加熱処理後の25
℃での樹脂の粘度は0.34Pa・s及び不揮発成分は79
重量%であった。次にこの液状フラン樹脂100重量部
に対し、硬化剤としてパラトルエンスルホン酸0.6重
量部を加えて撹拌混合した後、アルミシャーレに1回の
塗布厚さが500μmになるように滴下、延伸し、熱風
式乾燥機で50℃で5時間、次いで230℃で1時間加
熱硬化を行った。硬化後の樹脂硬化物の厚さは490μ
mであった。この作業を21回繰り返して厚さが10.
29mmの樹脂成形体を得た。
Comparative Example 2 The liquid furan resin used in Example 1 was heated at 90 ° C. for 5 hours to remove a part of volatile components. 25 after heat treatment
The resin has a viscosity of 0.34 Pa · s at 70 ° C. and a non-volatile component of 79
% By weight. Next, 0.6 parts by weight of p-toluenesulfonic acid as a curing agent was added to 100 parts by weight of the liquid furan resin, and the mixture was stirred and mixed. Then, the mixture was dropped and stretched on an aluminum Petri dish so that the thickness of one application was 500 μm. Then, heat curing was performed at 50 ° C. for 5 hours and then at 230 ° C. for 1 hour using a hot-air dryer. The thickness of the cured resin after curing is 490μ
m. This operation was repeated 21 times to obtain a thickness of 10.
A 29 mm resin molded body was obtained.

【0042】この樹脂成形体を、窒素雰囲気下で900
℃までの昇温速度を1.0℃/時間、900〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には発泡、亀裂、割れの発生はなかった。ま
た得られたガラス状炭素の最大厚さは8.2mmであっ
た。しかしながら、上記のガラス状炭素を破断して破面
の閉気孔観察を行った結果、最大閉気孔径は200μm
と大きなものであった。
This resin molded body was placed under a nitrogen atmosphere at 900
Temperature rise rate to 1.0 ° C / hour, 900 to 1000
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 8.2 mm. However, as a result of observing the closed pores of the fracture surface by breaking the glassy carbon, the maximum closed pore diameter was 200 μm.
And it was a big one.

【0043】比較例3 実施例1で用いた液状フラン樹脂を50℃で10時間加
熱処理し、揮発成分の一部を除去した。加熱処理後の2
5℃での樹脂の粘度は0.28Pa・s及び不揮発成分は6
6重量%であった。次にこの液状フラン樹脂100重量
部に対し、硬化剤としてパラトルエンスルホン酸0.6
重量部を加えて撹拌混合した後、アルミシャーレに1回
の塗布厚さが600μmになるように滴下、延伸し、熱
風式乾燥機で50℃で5時間、次いで230℃で1時間
加熱硬化を行った。硬化後の樹脂硬化物の厚さは540
μmであった。この作業を19回繰り返して厚さが1
0.26mmの樹脂成形体を得た。
Comparative Example 3 The liquid furan resin used in Example 1 was heated at 50 ° C. for 10 hours to remove a part of volatile components. 2 after heat treatment
The resin has a viscosity of 0.28 Pa · s at 5 ° C. and a non-volatile component of 6
It was 6% by weight. Next, with respect to 100 parts by weight of the liquid furan resin, 0.6 parts of paratoluenesulfonic acid was used as a curing agent.
After adding the parts by weight and stirring and mixing, the mixture was dropped and stretched on an aluminum Petri dish so that the thickness of each coating was 600 μm, and the mixture was cured by heating with a hot air dryer at 50 ° C. for 5 hours and then at 230 ° C. for 1 hour. went. The thickness of the cured resin after curing is 540
μm. This operation is repeated 19 times and the thickness becomes 1
A 0.26 mm resin molded body was obtained.

【0044】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を1.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には発泡が発生し、目的の形状のものが得ら
れなかった。
This resin molded body was placed in a nitrogen atmosphere at 700
At a heating rate of 1.0 ° C./hour, 700 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. Foaming occurred in the obtained glassy carbon, and the desired shape could not be obtained.

【0045】比較例4 実施例1で用いた液状フラン樹脂100重量部に対し、
硬化剤としてパラトルエンスルホン酸0.6重量部を加
えて撹拌混合した後、アルミシャーレに1回の塗布厚さ
が500μmになるように滴下、延伸し、熱風式乾燥機
で50℃で5時間、遠赤外式乾燥機で5分間、次いで熱
風式乾燥機で200℃で1時間加熱硬化を行った。硬化
後の樹脂硬化物の厚さは400μmであった。この作業
を25回繰り返して厚さが10mmの樹脂成形体を得た。
Comparative Example 4 With respect to 100 parts by weight of the liquid furan resin used in Example 1,
After adding 0.6 parts by weight of p-toluenesulfonic acid as a curing agent and stirring and mixing, the mixture is dropped and stretched on an aluminum Petri dish so that the thickness of a single coating is 500 μm, and stretched at 50 ° C. for 5 hours using a hot-air dryer. Then, heat curing was performed for 5 minutes with a far-infrared dryer and then at 200 ° C. for 1 hour with a hot-air dryer. The thickness of the cured resin after curing was 400 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 10 mm.

【0046】この樹脂成形体を、窒素雰囲気下で600
℃までの昇温速度を1.0℃/時間、600〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には割れが発生し、目的の形状のものが得ら
れなかった。
The resin molded body was placed in a nitrogen atmosphere at 600
At a rate of 1.0 ° C./hour, 600 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. Cracks occurred in the obtained glassy carbon, and the desired shape could not be obtained.

【0047】比較例5 実施例1で用いた液状フラン樹脂100重量部に対して
エタノール100重量部を添加し、撹拌混合した。撹拌
混合した後の液状フラン樹脂の25℃での粘度は0.0
6Pa・s及び不揮発成分は22.5重量%であった。次に
この液状フラン樹脂100重量部に対し、硬化剤として
パラトルエンスルホン酸0.6重量部を加えて撹拌混合
した後、アルミシャーレに1回の塗布厚さが500μm
になるように滴下、延伸し、熱風式乾燥機で50℃で5
時間、遠赤外式乾燥機で5分間、次いで熱風式乾燥機で
200℃で1時間加熱硬化を行った。硬化後の樹脂硬化
物の厚さは200μmであった。この作業を25回繰り
返して厚さが5mmの樹脂成形体を得た。
Comparative Example 5 100 parts by weight of ethanol was added to 100 parts by weight of the liquid furan resin used in Example 1, and the mixture was stirred and mixed. After stirring and mixing, the liquid furan resin has a viscosity at 25 ° C of 0.0
6 Pa · s and the non-volatile component were 22.5% by weight. Next, 0.6 parts by weight of paratoluenesulfonic acid as a curing agent was added to 100 parts by weight of the liquid furan resin, and the mixture was stirred and mixed.
And stretched at 50 ° C. with a hot air drier.
Heat curing was performed for 5 minutes with a far-infrared dryer and then at 200 ° C. for 1 hour with a hot-air dryer. The thickness of the cured resin after curing was 200 μm. This operation was repeated 25 times to obtain a resin molded body having a thickness of 5 mm.

【0048】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を1.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には発泡、亀裂、割れの発生はなかった。ま
た得られたガラス状炭素の最大厚さは4mmであった。上
記のガラス状炭素を破断して破面の閉気孔観察を行った
結果、最大閉気孔径は200μmであった。
The resin molded body was placed under a nitrogen atmosphere at 700
At a heating rate of 1.0 ° C./hour, 700 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 4 mm. As a result of breaking the above glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 200 μm.

【0049】比較例6 実施例1で用いた液状フラン樹脂100重量部に対して
アセトン300重量部を添加し、撹拌混合した。撹拌混
合した後の液状フラン樹脂の25℃での粘度は0.04
Pa・s及び不揮発成分は11.3重量%であった。次にこ
の液状フラン樹脂100重量部に対し、硬化剤としてパ
ラトルエンスルホン酸0.6重量部を加えて撹拌混合し
た後、アルミシャーレに1回の塗布厚さが500μmに
なるように滴下、延伸し、熱風式乾燥機で50℃で5時
間、遠赤外式乾燥機で5分間、次いで熱風式乾燥機で2
00℃で1時間加熱硬化を行った。硬化後の樹脂硬化物
の厚さは100μmであった。この作業を100回繰り
返して厚さが10mmの樹脂成形体を得た。
Comparative Example 6 300 parts by weight of acetone was added to 100 parts by weight of the liquid furan resin used in Example 1, and the mixture was stirred and mixed. The viscosity at 25 ° C. of the liquid furan resin after stirring and mixing is 0.04.
Pa · s and the nonvolatile component were 11.3% by weight. Next, 0.6 parts by weight of p-toluenesulfonic acid as a curing agent was added to 100 parts by weight of the liquid furan resin, and the mixture was stirred and mixed. 5 hours at 50 ° C. in a hot-air dryer, 5 minutes in a far-infrared dryer, and 2 hours in a hot-air dryer.
Heat curing was performed at 00 ° C. for 1 hour. The thickness of the cured resin after curing was 100 μm. This operation was repeated 100 times to obtain a resin molded body having a thickness of 10 mm.

【0050】この樹脂成形体を、窒素雰囲気下で700
℃までの昇温速度を1.0℃/時間、700〜1000
℃の昇温速度を10℃/時間として1000℃で5時間
保持して焼成を行い、ガラス状炭素を得た。得られたガ
ラス状炭素には発泡、亀裂、割れの発生はなかった。ま
た得られたガラス状炭素の最大厚さは8mmであった。上
記のガラス状炭素を破断して破面の閉気孔観察を行った
結果、最大閉気孔径は150μmであった。
This resin molded body was placed in a nitrogen atmosphere at 700
At a heating rate of 1.0 ° C./hour, 700 to 1000 ° C.
Firing was performed at 1000 ° C. for 5 hours at a temperature increasing rate of 10 ° C./hour at a temperature of 10 ° C. to obtain glassy carbon. There was no foaming, cracking or cracking in the obtained glassy carbon. The maximum thickness of the obtained glassy carbon was 8 mm. As a result of breaking the glassy carbon and observing closed pores on the fracture surface, the maximum closed pore diameter was 150 μm.

【0051】[0051]

【発明の効果】請求項1における方法により得られるガ
ラス状炭素は、原料とする熱硬化性樹脂が有する揮発成
分又は硬化の際に生成する揮発成分を効率よく除去して
所望の厚さ及び形状の樹脂硬化物を作製するとともに、
焼成過程においては発泡、亀裂、大きな閉気孔の生成及
び割れを防止し、良好な性状のガラス状炭素である。請
求項2におけるガラス状炭素は、原料とする熱硬化性樹
脂が有する揮発成分又は硬化の際に生成する揮発成分が
効率よく除去され所望の厚さ及び形状の樹脂硬化物が作
製されるとともに、焼成過程においては発泡、亀裂、大
きな閉気孔の生成及び割れの防止された、良好な性状の
ガラス状炭素である。
The glassy carbon obtained by the method according to claim 1 has a desired thickness and shape by efficiently removing volatile components of the thermosetting resin as a raw material or volatile components generated during curing. While preparing a resin cured product of
It is a vitreous carbon having good properties by preventing foaming, cracking, formation and cracking of large closed pores in the firing process. The glassy carbon according to claim 2 is a volatile resin having a thermosetting resin as a raw material or a volatile component generated during curing is efficiently removed to produce a resin cured product having a desired thickness and shape, It is a glassy carbon of good properties, in which foaming, cracking, formation of large closed pores and cracking are prevented in the firing process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 25℃での粘度が0.05〜0.3Pa・s
(0.5〜3ポイズ)で、かつ不揮発成分の含有量が3
0〜70重量%の液状熱硬化性樹脂を用いて、1回の塗
布厚さが500μm以下となる樹脂層を形成し、加熱硬
化する工程を複数回繰り返し行って樹脂成形体を得た
後、700℃までを1.5℃/時間以下の昇温速度で昇
温し、焼成することを特徴とするガラス状炭素の製造方
法。
1. A composition having a viscosity at 25 ° C. of 0.05 to 0.3 Pa · s.
(0.5-3 poises) and the content of non-volatile components is 3
Using a liquid thermosetting resin of 0 to 70% by weight to form a resin layer having a coating thickness of 500 μm or less at one time, and repeating the step of heating and curing a plurality of times to obtain a resin molded body, A method for producing glassy carbon, comprising raising the temperature up to 700 ° C. at a rate of 1.5 ° C./hour or less and firing.
【請求項2】 請求項1記載の製造方法で得られ、かつ
ガラス状炭素の最大閉気孔径が100μm以下及び最大
厚さが5mm以上であるガラス状炭素。
2. A glassy carbon obtained by the production method according to claim 1, wherein the maximum closed pore diameter of the glassy carbon is 100 μm or less and the maximum thickness is 5 mm or more.
JP30235599A 1999-10-25 1999-10-25 Method for producing glassy carbon Expired - Fee Related JP4600703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30235599A JP4600703B2 (en) 1999-10-25 1999-10-25 Method for producing glassy carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30235599A JP4600703B2 (en) 1999-10-25 1999-10-25 Method for producing glassy carbon

Publications (2)

Publication Number Publication Date
JP2001122662A true JP2001122662A (en) 2001-05-08
JP4600703B2 JP4600703B2 (en) 2010-12-15

Family

ID=17907922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30235599A Expired - Fee Related JP4600703B2 (en) 1999-10-25 1999-10-25 Method for producing glassy carbon

Country Status (1)

Country Link
JP (1) JP4600703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086194A (en) * 2001-09-10 2003-03-20 Unitika Ltd Method of manufacturing separator for fuel-cell
JP2009529481A (en) * 2006-01-27 2009-08-20 カーボン セラミックス カンパニー,エルエルシー Two-phase nanoporous glassy carbon material and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585884A (en) * 1991-09-30 1993-04-06 Toshiba Ceramics Co Ltd Inner shield of apparatus for pulling up single crystal
JPH10172738A (en) * 1996-12-04 1998-06-26 Tokai Carbon Co Ltd Glass like carbon heating element
JPH1111916A (en) * 1997-06-23 1999-01-19 Toyo Tanso Kk Vitreous carbon material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585884A (en) * 1991-09-30 1993-04-06 Toshiba Ceramics Co Ltd Inner shield of apparatus for pulling up single crystal
JPH10172738A (en) * 1996-12-04 1998-06-26 Tokai Carbon Co Ltd Glass like carbon heating element
JPH1111916A (en) * 1997-06-23 1999-01-19 Toyo Tanso Kk Vitreous carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086194A (en) * 2001-09-10 2003-03-20 Unitika Ltd Method of manufacturing separator for fuel-cell
JP2009529481A (en) * 2006-01-27 2009-08-20 カーボン セラミックス カンパニー,エルエルシー Two-phase nanoporous glassy carbon material and method for producing the same

Also Published As

Publication number Publication date
JP4600703B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
KR19990088371A (en) Process for manufacturing a product of glassy carbon
CN114213664A (en) Synthesis method of five-component SiBCNZr ceramic precursor
JP2001122662A (en) Method for manufacturing glassy carbon and glassy carbon obtained by the manufacturing method
CN113103478A (en) Processing equipment for casting injection mold
JP3553329B2 (en) Manufacturing method of glassy carbon material
JPH1171106A (en) Production of glassy carbon material
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
JPH04209781A (en) Production of material coated with glassy carbon
CN112573928A (en) Preparation method of boron-containing polymer precursor ceramic
JP2001335366A (en) Glassy carbon tube precursor and manufacturing method for the same
JP2002187772A (en) Method of manufacturing glassy carbon and glassy carbon obtained by this method
JP3342515B2 (en) Method for producing thick glassy carbon material
JP3863308B2 (en) Method for producing glassy carbon pipe
JP3198120B2 (en) Method for producing glassy carbon plate
KR102492915B1 (en) Manufacturing method for film type carbon material with continuous skeleton structure
JPH0769730A (en) Production of vitreous carbonaceous material
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon
JPS6350480A (en) Production of glassy carbon coated body
JPH01197376A (en) Porous carbon material and production thereof
JP3859868B2 (en) Glassy electrode plate for plasma etching
JP2001338906A (en) Chamber liner made of glassy carbon
JPS62132716A (en) Production of porous carbon material
JPS62270491A (en) Production of susceptor
JP2002211979A (en) Member made of glasslike carbon for protecting inner wall of chamber
JPH04342464A (en) Production of glassy carbon board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees