JP3859868B2 - Glassy electrode plate for plasma etching - Google Patents

Glassy electrode plate for plasma etching Download PDF

Info

Publication number
JP3859868B2
JP3859868B2 JP15108998A JP15108998A JP3859868B2 JP 3859868 B2 JP3859868 B2 JP 3859868B2 JP 15108998 A JP15108998 A JP 15108998A JP 15108998 A JP15108998 A JP 15108998A JP 3859868 B2 JP3859868 B2 JP 3859868B2
Authority
JP
Japan
Prior art keywords
resin
plasma etching
electrode plate
plate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15108998A
Other languages
Japanese (ja)
Other versions
JPH1174255A (en
Inventor
和己 小鍛治
幸次郎 太田
充志 鎌田
孝幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP15108998A priority Critical patent/JP3859868B2/en
Publication of JPH1174255A publication Critical patent/JPH1174255A/en
Application granted granted Critical
Publication of JP3859868B2 publication Critical patent/JP3859868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平行平板型のプラズマエッチング装置に使用されるガラス状炭素製プラズマエッチング用電極板に関する。
【0002】
【従来の技術】
ガラス状炭素は、一般の炭素材料が有する軽量、耐熱性、耐食性、電気伝導性、高純度化が可能等の性質を備えているほか、ガス不透過性で硬度が高い、発塵性が低い等の特徴を持っていることから、エレクトロニクス産業、原子力産業、航空産業等各種の分野での広範な用途に使用されつつある。
最近は、炭素粒子の脱落や付着がない性質を利用して、半導体集積回路を製造する際のウェハーのプラズマエッチング用電極板として使用されている。
【0003】
しかしながら、近年の半導体製造工程においてウェハーの大口径化にともない、プラズマエッチング時にウェハーの中央部と外周部とでエッチングレートのばらつきが大きくなるという問題が生じている。
エッチングレートのばらつきの原因としては、プラズマエッチング用電極板にソリや歪みがあるためにウェハーとプラズマエッチング用電極板との距離が不均一となり、ウェハーの中央部と外周部とでプラズマの生成状態が微妙に異なることが挙げられる。
【0004】
プラズマエッチング用電極板にソリや歪みが発生するのは、プラズマエッチング用電極板がプラズマによって消耗し、プラズマエッチング用電極板が持つ圧縮応力のバランスが崩れるためである。
【0005】
プラズマエッチング用電極板に内在する圧縮応力は、原料となる樹脂を成形し、硬化、不融化等の処理をする段階において、得られる樹脂板が、成形時の形状の履歴を保持しているか、樹脂板の内部と表面で樹脂の硬化、不融化等の状態がわずかに異なるために不可避的に生成する力である。
【0006】
プラズマ損傷によって、プラズマエッチング電極板に内在する圧縮応力のバランスが崩れると、ソリや歪みが発生する。このソリや歪みがプラズマエッチング用電極板のプラズマ面側に凸に発生すると、プラズマエッチング用電極板とウェハー間の距離に中央部と外周部とで差異が生じ、中央部の方が外周部よりもウェハーに近くなることとなる。その結果、ウェハー中央部の方がプラズマ生成の確率が高くなり、中央部のエッチングレートが高くなり、エッチングの均一性が低下する。
この様な不具合を防ぐためには、エッチング時にプラズマエッチング用電極板がプラズマ消耗しても、プラズマエッチング用電極板とバックプレートとの密着性が保たれる必要がある。
【0007】
【発明が解決しようとする課題】
本発明は上記の要求を満足するものである。
即ち請求項1及び2記載の発明は、プラズマ消耗しても、プラズマエッチング用電極板とバックプレートとの密着性を高度に保ち、電極板の外周部と中央部でのエッチングレートを均一に保つことが可能なプラズマエッチング用電極板を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、プラズマによって消耗されるに従い、プラズマエッチング用電極板自体が取付面側に凸に反る圧縮応力が付与されてなるガラス状炭素製プラズマエッチング用電極板であって、該電極板の消耗量が0.1〜2mmの際の、取付面側への反り量が、0.1〜3mmであることを特徴とする前記のガラス状炭素製プラズマエッチング用電極板に関する。
【0009】
本発明のプラズマエッチング用電極板は、一般に円板形状である。本発明では、ガラス状炭素製プラズマエッチング用電極板の圧縮応力を、プラズマによって消耗されるに従い、プラズマエッチング用電極板自体が取付面側に凸に反るように付与される。
前記の圧縮応力の付与する量は、電極消耗量が0.1〜2mmの範囲の何れか、好ましくは消耗量が1.0〜1.5mmの際に、プラズマエッチング電極を装置からはずした際の、取付面側への反り量により規定することができる。電極消耗量は、最も消耗の多い部分の消耗量で定義することができる。この電極反り量は、電極をはずした際の電極取付面側(バックプレート側)の外周部12点の平均の高さと中心1点の高さの差をもって示すことができる。その量は、0.1〜3mmであることが好ましく、0.2〜2mmであることがより好ましい。
【0010】
プラズマエッチング用電極板の大きさは、エッチングするシリコンウエハの大きさにより異なるが、その直径が200mm〜450mmのものであることが好ましい。
前記圧縮応力を付与する方法としては、ガラス状炭素に積極的に片面に反る圧縮応力を付与し、取付面側に凸に反るように表面と裏面を選択して加工する方法がある。具体的には次の方法が挙げられる。
【0011】
1つは、ガラス状炭素材の出発原料となる樹脂を液体状態で、円筒状の金型内で遠心成形法により均一肉厚に成形する方法がある。このときに得られる樹脂板は、円筒状であるが、成形直後に一片で切断すると、ゴム状で柔軟性があるために平板状となる。遠心成形機の金型が曲面であるために、遠心成形機の金型に接していた面に凸になる履歴を保持している。この履歴は、続く硬化、焼成炭素化、高温での熱処理を通して消滅せず、プラズマエッチング用電極板にまで保持させることが可能である。
【0012】
別の方法としては、ガラス状炭素材の出発原料となる樹脂を注形法により適当な大きさの樹脂板にした後、赤外線照射、熱風等により、樹脂板の片面を他面よりも硬化促進することによって樹脂板内の硬化度に傾斜を付け、硬化度の相違によって、樹脂板に圧縮応力を付与する方法が挙げられる。この圧縮応力もまた、続く焼成炭素化、高温での熱処理を通して消滅せず、プラズマエッチング用電極板にまで保持させることが可能である。
なお、その他、本発明のプラズマエッチング用電極板が得られる方法であれば特にその方法は制限されない。
【0013】
ガラス状炭素材の出発原料となる熱硬化性樹脂としては、フラン樹脂、フェノール樹脂、アミノ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキッド樹脂、キシレン樹脂等を挙げることができる。また、これら樹脂の混合物を用いることもできる。これらの中で、炭化性、成形加工性等を考慮すると、フラン樹脂又はフェノール樹脂が好ましく、フラン樹脂がより好ましい。前記フラン樹脂の種類としては、フルフラール樹脂、フルフラールフェノール樹脂、フルフラールケトン樹脂、フルフリルアルコール樹脂、フルフリルアルコールフェノール樹脂などの樹脂の初期縮合物が好ましいものとして挙げられる。
【0014】
樹脂の硬化剤として、通常、酸又はアルカリが用いられる。酸としては硫酸、塩酸、硝酸、りん酸等の無機酸、p−トルエンスルホン酸、メタンスルホン酸等の有機スルホン酸、酢酸、トリクロロ酢酸、トリフロロ酢酸等の有機カルボン酸等が好ましい。アルカリとしてはアンモニア、アミン類、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が好ましい。
【0015】
硬化剤の使用量は、使用した樹脂の種類などによって変動するが、少なすぎると十分に硬化できず、多すぎると急激に硬化反応がおこり発泡等がおこってきれいな成形体を製造することが困難になるので、熱硬化性樹脂に対して0.001〜20重量%の範囲とすることが好ましく、0.01〜15重量%の範囲とすることがより好ましい。
硬化剤は、そのまま、又は適宜溶媒に溶解して熱硬化性樹脂に添加する。ここで用いる溶媒としては、例えば、メチルアルコール、エチルアルコール等のアルコール類、アセトン等のケトン類、トルエン等の芳香族類などが挙げられる。
【0016】
硬化剤を樹脂に添加し、撹拌混合して組成物とした後、好ましくは50〜200℃で、前述のいずれかの方法にて成形し硬化する。所定の形状に成形した後、更に、好ましくは80〜200℃の温度で硬化処理する。次いで、電極板の形状にするために必要な加工を行なう。
なお、これらの加工においては、樹脂板の成形、硬化条件を考慮し、プラズマエッチング用電極板が取付面側に凸に反る圧縮応力が付与されるよう、表面及び裏面を決定し、加工することが必要である。
【0017】
ついで炭素化を行う。炭素化には、高度に純化された治具及び炉などを用いることができる。炭素化における温度は300〜2500℃が好ましい。炭化時間は5時間以上が好ましい。炭化が終了した後、必要に応じて、更に高温で熱処理することができる。このときの温度は、炭化の温度以上3500℃以下が好ましい。時間は2時間以上が好ましい。
【0018】
なお、前記方法により得られた樹脂板には、圧縮応力が内在しているため、樹脂板に反りが発生し易い。その発生を抑えるため、前記炭素化時及び/又は高温熱処理時には、高純度化した任意基材のホルダーなどで保持し反りの発生を抑制することもできる。
こうしてガラス状の破面を有する炭素化物が得られる。
さらに、必要に応じて、熱処理終了後、放電加工又は超音波加工で、所定の形状への加工、ガス吹出し穴の形成などを行ってもよい。その後、脱灰炉などにより塩素、フレオン等の精製ガスを吹込んで高純度化処理することが好ましい。
【0019】
以上のようにして得られる本発明のプラズマエッチング用電極板は、エッチング時にプラズマによって消耗し、圧縮応力のバランスが崩れると、取付面側に凸に反り、プラズマエッチング用電極板とバックプレートとの密着性が維持される。そのため、プラズマエッチング電極板が消耗しても中央部および外周部からウェハーまでの距離が常に一定に保たれるため、エッチングレートの均一性が維持される。
【0020】
【実施例】
以下、本発明の実施例を説明する。
実施例1
原料樹脂にフラン樹脂(日立化成工業株式会社製、ヒタフランVF303)を用い、これに硬化剤としてトリクロロ酢酸7重量%(フラン樹脂に対して)を加え、70℃の加熱下、円筒状の金型を有する遠心成形機を用いて周速700m/分で10時間成形を行い、得られた円筒状の樹脂成型品の一片を直線状に切断し、ゴム硬度70、厚み6mmのゴム状樹脂板を得た。この樹脂板を直径400mmの円盤状に切出し、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で2800℃まで昇温して熱処理した。得られたガラス状炭素平板に、樹脂成形時に遠心成形機の金型面に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
なお、ゴム硬度は、JIS−K6301に準拠してゴム硬度計((株)テクロック製 ゴム硬度計 GS−706N)を用いて測定した。
【0021】
上記の高純度プラズマエッチング用電極板を、プラズマエッチング装置に取付け、反応ガスとしてトリフロロメタン、フッ化メタンを流し、電源周波数400KHz、反応チャンバー内のガス圧0.05Torrの条件でシリコン酸化膜のエッチング加工を行った。評価結果を表1に示した。
【0022】
実施例2
原料樹脂にフラン樹脂(日立化成工業株式会社製、ヒタフランVF303)を用い、これに硬化剤としてトリクロロ酢酸7重量%(フラン樹脂に対して)を加え、70℃の加熱下、円筒状の金型を有する遠心成形機を用いて周速1200m/分で10時間成形を行い、得られた円筒状の樹脂成型品の一片を直線状に切断し、ゴム硬度72、厚み6mmのゴム状樹脂板を得た。この樹脂板を直径400mmの円盤状に切出し、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で2800℃まで昇温して熱処理した。得られたガラス状炭素平板に、樹脂成形時に遠心成形機の金型面に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を用いて、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0023】
実施例3
原料樹脂にフェノール樹脂(日立化成工業株式会社製、VP−112N)を用い、これに硬化剤としてパラトルエンスルホン酸0.6重量%(前記フェノール樹脂に対して)を加え、70℃の加熱下、円筒状の金型を有する遠心成形機を用いて周速700m/分で10時間成形を行い、得られた円筒状の樹脂成型品の一片を直線状に切断し、ゴム硬度63、厚さ6mmのゴム状樹脂板を得た。この樹脂板を直径400mmの円盤状に切出し、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高2800℃まで昇温し熱処理した。得られたガラス状炭素平板に、樹脂成形時に遠心成形機の金型面に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を用いて、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0024】
実施例4
原料樹脂にフラン樹脂(日立化成工業株式会社製、ヒタフランVF303)を用い、これに硬化剤としてトリクロロ酢酸14重量%(フラン樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注形して10時間成形を行い、ゴム硬度61、厚み6mmのゴム状樹脂板を得た。この樹脂板を直径400mmに切出し、熱風を一定の面に吹きかけながら50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高2800℃まで昇温し熱処理した。得られたガラス状炭素平板に、樹脂成形時に遠心成形機の金型面に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を用いて、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0025】
実施例5
原料樹脂にフラン樹脂(日立化成工業株式会社製、ヒタフランVF303)を用い、これに硬化剤としてトリクロロ酢酸14重量%(フラン樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注型して10時間成形を行い、ゴム硬度61、厚み7mmのゴム状樹脂板を得た。この樹脂板を直径400mmの円盤状に切出し、熱風を成型時に空気に接していた面に吹きかけながら、50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で2800℃まで昇温して熱処理した。得られたガラス状炭素平板に、樹脂成形時にアルミシャーレの底に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とした。ついでラップ機を用いて樹脂成型時にアルミシャーレの底面に接していた面から、0.40mm、反対面から0.1mm削って厚さを5mmとした。次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0026】
実施例6
原料樹脂にフラン樹脂(日立化成工業株式会社製、ヒタフランVF303)を用い、これに硬化剤としてトリクロロ酢酸14重量%(フラン樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注型して10時間成形を行い、ゴム硬度61、厚み7mmのゴム状樹脂板を得た。この樹脂板を直径400mmの円盤状に切出し、熱風を成型時に空気に接していた面に吹きかけながら、50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で2800℃まで昇温して熱処理した。得られたガラス状炭素平板に、樹脂成形時にアルミシャーレの底に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とした。ついでラップ機を用いて樹脂成型時にアルミシャーレの底面に接していた面から、0.1mm、反対面から0.4mm削って厚さを5mmとした。次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0027】
比較例1
原料樹脂にフラン樹脂(VF303)を用い、これに硬化剤としてトリクロロ酢酸14重量%(フラン樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注形して10時間成形を行い、ゴム硬度61、厚み6mmのゴム状樹脂板を得た。この樹脂板を、50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高2800℃まで昇温して熱処理した。得られたガラス状炭素平板に、アルミシャーレの底部に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を用いて、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0028】
比較例2
原料樹脂にフラン樹脂(VF303)を用い、これに硬化剤としてパラトルエンスルホン酸0.5重量%(フラン樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注形して10時間成形を行い、ゴム硬度59、厚み6mmのゴム状樹脂板を得た。この樹脂板を50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高2800℃まで昇温して熱処理した。得られたガラス状炭素平板にアルミシャーレの底部に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を用いて、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0029】
比較例3
原料樹脂にフェノール樹脂(VP−112N)を用い、これに硬化剤としてトリクロロ酢酸7重量%(フェノール樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注形して15時間成形を行い、ゴム硬度66、厚み6mmのゴム状樹脂板を得た。この樹脂板を50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高2800℃まで昇温して熱処理した。得られたガラス状炭素平板にアルミシャーレの底部に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とし、次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。
上記の高純度プラズマエッチング用電極板を用いて、実施例1と同様にエッチング加工を行った。評価結果を表1に示した。
【0030】
表1中、電極消耗量は、プラズマ電極面の最も消耗の多い部分の消耗量で示した。また、電極反り量は、電極をはずしてバックプレート側の電極の外周部12点の平均高さと中心1点の高さを求め、その差として示した。また、エッチングレートの均一性とあるのはウェハー上15点における消耗量を測定し、消耗量の最大値と最小値の比率を示すものであり、この値が小さいほど優れた特性であることを示す。
【0031】
実施例7
原料樹脂にフラン樹脂(日立化成工業株式会社製、ヒタフランVF303)を用い、これに硬化剤としてトリクロロ酢酸14重量%(フラン樹脂に対して)を加え、50℃の加熱下、アルミシャーレに注型して10時間成形を行い、ゴム硬度61、厚み7mmのゴム状樹脂板を得た。この樹脂板を直径400mmの円盤状に切出し、熱風を成型時に空気に接していた面に吹きかけながら、50℃で3日、70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で2800℃まで昇温して熱処理した。得られたガラス状炭素平板に、樹脂成形時にアルミシャーレの底に接していた面がバックプレート側になるように、放電加工によってガス吹出し穴等を形成してプラズマエッチング用電極板の形状とした。ついでラップ機を用いて樹脂成型時にアルミシャーレの底面に接していた面から、0.05mm、反対面から0.45mm削って厚さを5mmとした。次いで塩素ガスを用いて脱灰処理を行った。高純度化処理後のプラズマエッチング用電極板の不純物は3ppm以下であった。 上記の高純度プラズマエッチング用電極板を、実施例1と同様にエッチング加工を行った。しかしながら、使用中に取付部が破損した。取付部が破損するまでの評価結果を表1に示した。
【0032】
【表1】

Figure 0003859868
【0033】
【発明の効果】
本発明になるプラズマエッチング用電極板は、エッチング処理を行った場合、プラズマエッチング用電極板がプラズマによって消耗されるとともに取付面側に凸に反るものなので、ウェハーのエッチングレートが均一に維持できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glassy carbon plasma etching electrode plate used in a parallel plate type plasma etching apparatus.
[0002]
[Prior art]
Glassy carbon has properties such as lightness, heat resistance, corrosion resistance, electrical conductivity, and high purity that general carbon materials have, and is also gas impermeable, high in hardness, and low in dust generation. Therefore, it is being used for a wide range of applications in various fields such as the electronics industry, the nuclear industry, and the aviation industry.
Recently, it has been used as an electrode plate for plasma etching of a wafer when manufacturing a semiconductor integrated circuit by utilizing the property that carbon particles do not fall off or adhere.
[0003]
However, with the recent increase in wafer diameter in semiconductor manufacturing processes, there has been a problem that the etching rate varies greatly between the central portion and the outer peripheral portion of the wafer during plasma etching.
The cause of variations in the etching rate is that the distance between the wafer and the plasma etching electrode plate is uneven because the plasma etching electrode plate is warped or distorted, and the state of plasma generation at the center and outer periphery of the wafer Is slightly different.
[0004]
The reason why warping or distortion occurs in the electrode plate for plasma etching is that the electrode plate for plasma etching is consumed by plasma, and the balance of compressive stress of the electrode plate for plasma etching is lost.
[0005]
The compressive stress inherent in the electrode plate for plasma etching is to mold the resin as a raw material, and in the stage of curing, infusibilization, etc., the obtained resin plate holds the history of the shape at the time of molding, This is a force that is inevitably generated because the resin hardening and infusibility are slightly different between the inside and the surface of the resin plate.
[0006]
If the balance of compressive stress inherent in the plasma etching electrode plate is lost due to plasma damage, warping or distortion occurs. If this warp or distortion occurs convexly on the plasma surface side of the plasma etching electrode plate, the distance between the plasma etching electrode plate and the wafer is different between the central portion and the outer peripheral portion, and the central portion is more than the outer peripheral portion. Will be close to the wafer. As a result, the probability of plasma generation is higher in the central portion of the wafer, the etching rate in the central portion is higher, and the etching uniformity is reduced.
In order to prevent such a problem, it is necessary to maintain the adhesion between the plasma etching electrode plate and the back plate even when the plasma etching electrode plate is consumed by plasma during etching.
[0007]
[Problems to be solved by the invention]
The present invention satisfies the above requirements.
That is, according to the first and second aspects of the present invention, even when plasma is consumed, the adhesion between the electrode plate for plasma etching and the back plate is maintained at a high level, and the etching rate at the outer peripheral portion and the central portion of the electrode plate is kept uniform. An electrode plate for plasma etching is provided.
[0008]
[Means for Solving the Problems]
The present invention relates to a glass-like carbon plasma etching electrode plate to which a compressive stress is applied, in which the plasma etching electrode plate itself warps convexly toward the mounting surface as it is consumed by the plasma. It relates to the glassy carbon plasma etching electrode plate, wherein the amount of warpage to the mounting surface side when the consumption amount is 0.1 to 2 mm is 0.1 to 3 mm.
[0009]
The electrode plate for plasma etching of the present invention is generally disc-shaped. In the present invention, the compressive stress of the glassy carbon plasma etching electrode plate is applied so that the plasma etching electrode plate itself warps convexly toward the mounting surface as it is consumed by the plasma.
The amount of compressive stress is applied when the electrode consumption is in the range of 0.1 to 2 mm, and preferably when the plasma etching electrode is removed from the apparatus when the consumption is 1.0 to 1.5 mm. It can prescribe | regulate by the curvature amount to the attachment surface side. The electrode consumption amount can be defined by the consumption amount of the most consumed portion. This amount of electrode warpage can be indicated by the difference between the average height of 12 outer peripheral portions on the electrode mounting surface side (back plate side) when the electrode is removed and the height of one central point. The amount is preferably 0.1 to 3 mm, and more preferably 0.2 to 2 mm.
[0010]
The size of the electrode plate for plasma etching varies depending on the size of the silicon wafer to be etched, but preferably has a diameter of 200 mm to 450 mm.
As a method for applying the compressive stress, there is a method in which a compressive stress that positively warps one side is applied to glassy carbon, and the front surface and the back surface are selected and processed so as to warp convexly on the mounting surface side. Specifically, the following method is mentioned.
[0011]
One is a method in which a resin, which is a starting material for the glassy carbon material, is formed in a liquid state in a uniform thickness by a centrifugal molding method in a cylindrical mold. The resin plate obtained at this time has a cylindrical shape, but if it is cut in one piece immediately after molding, it becomes a flat plate because it is rubbery and flexible. Since the mold of the centrifugal molding machine is a curved surface, it retains a history of convexity on the surface that was in contact with the mold of the centrifugal molding machine. This history does not disappear through subsequent curing, calcination carbonization, and heat treatment at a high temperature, and can be maintained on the electrode plate for plasma etching.
[0012]
As another method, the resin used as the starting material for the glassy carbon material is made into a resin plate of an appropriate size by the casting method, and then curing of one side of the resin plate is promoted more than the other side by infrared irradiation, hot air, etc. There is a method in which the degree of cure in the resin plate is inclined by applying a compressive stress to the resin plate depending on the difference in the degree of cure. This compressive stress can also be maintained up to the electrode plate for plasma etching without disappearing through subsequent calcination carbonization and heat treatment at a high temperature.
In addition, the method is not particularly limited as long as it is a method for obtaining the plasma etching electrode plate of the present invention.
[0013]
Examples of the thermosetting resin that is a starting material for the glassy carbon material include furan resin, phenol resin, amino resin, epoxy resin, unsaturated polyester resin, alkyd resin, and xylene resin. A mixture of these resins can also be used. Among these, considering carbonization, moldability, etc., furan resin or phenol resin is preferable, and furan resin is more preferable. Preferred examples of the furan resin include an initial condensate of a resin such as a furfural resin, a furfural phenol resin, a furfural ketone resin, a furfuryl alcohol resin, and a furfuryl alcohol phenol resin.
[0014]
As the resin curing agent, an acid or an alkali is usually used. As the acid, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, organic sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid, and organic carboxylic acids such as acetic acid, trichloroacetic acid and trifluoroacetic acid are preferable. As the alkali, ammonia, amines, sodium hydroxide, potassium hydroxide, lithium hydroxide and the like are preferable.
[0015]
The amount of curing agent used varies depending on the type of resin used, but if it is too small, it cannot be cured sufficiently, and if it is too large, a curing reaction takes place and foaming occurs, making it difficult to produce a beautiful molded product. Therefore, it is preferable to set it as the range of 0.001-20 weight% with respect to a thermosetting resin, and it is more preferable to set it as the range of 0.01-15 weight%.
The curing agent is added to the thermosetting resin as it is or after being appropriately dissolved in a solvent. Examples of the solvent used here include alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone, and aromatics such as toluene.
[0016]
After adding a hardening | curing agent to resin and stirring and mixing and setting it as a composition, Preferably it shape | molds by one of the above-mentioned methods at 50-200 degreeC, and is hardened | cured. After forming into a predetermined shape, it is preferably cured at a temperature of 80 to 200 ° C. Next, processing necessary to form the electrode plate is performed.
In these processes, considering the molding and curing conditions of the resin plate, the front and back surfaces are determined and processed so that the plasma etching electrode plate is given a compressive stress that warps convexly toward the mounting surface. It is necessary.
[0017]
Next, carbonization is performed. For carbonization, highly purified jigs and furnaces can be used. The temperature in carbonization is preferably 300 to 2500 ° C. The carbonization time is preferably 5 hours or more. After the carbonization is completed, heat treatment can be performed at a higher temperature as necessary. The temperature at this time is preferably not less than the temperature of carbonization and not more than 3500 ° C. The time is preferably 2 hours or more.
[0018]
In addition, since the resin plate obtained by the said method has a compressive stress, the resin plate tends to warp. In order to suppress the occurrence, warp generation can be suppressed by holding with a highly purified holder of an arbitrary base material during the carbonization and / or high-temperature heat treatment.
Thus, a carbonized product having a glass-like fracture surface is obtained.
Furthermore, if necessary, after completion of the heat treatment, processing to a predetermined shape, formation of a gas blowing hole, or the like may be performed by electric discharge machining or ultrasonic machining. Then, it is preferable to inject | pour refined gas, such as chlorine and a freon, with a deashing furnace etc., and to perform a highly purified process.
[0019]
When the electrode plate for plasma etching of the present invention obtained as described above is consumed by plasma during etching and the balance of compressive stress is lost, the electrode plate for plasma etching warps convexly on the mounting surface side, and the electrode plate for plasma etching and the back plate Adhesion is maintained. Therefore, even if the plasma etching electrode plate is consumed, the distance from the central portion and the outer peripheral portion to the wafer is always kept constant, so that the uniformity of the etching rate is maintained.
[0020]
【Example】
Examples of the present invention will be described below.
Example 1
Furan resin (Hitafuran VF303, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 7% by weight of trichloroacetic acid (based on the furan resin) is added to this as a curing agent. Is molded at a peripheral speed of 700 m / min for 10 hours using a centrifugal molding machine, and a piece of the obtained cylindrical resin molded product is cut into a straight line to form a rubber-like resin plate having a rubber hardness of 70 and a thickness of 6 mm. Obtained. This resin plate was cut into a disk shape having a diameter of 400 mm, cured by heating at 70 ° C. for 3 days, and at 90 ° C. for 3 days, and then calcined and carbonized at 1 ° C./min. The temperature was raised to 2800 ° C. at a rate of 5 ° C./minute for heat treatment. In the obtained glassy carbon flat plate, gas blowout holes and the like are formed by electric discharge machining so that the surface that is in contact with the mold surface of the centrifugal molding machine at the time of resin molding becomes the back plate side, and the electrode plate for plasma etching is formed. It was made into a shape and then decalcified using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
In addition, rubber hardness was measured using a rubber hardness meter (Rubber hardness meter GS-706N, manufactured by Tecrock Co., Ltd.) in accordance with JIS-K6301.
[0021]
The electrode plate for high-purity plasma etching is attached to a plasma etching apparatus, trifluoromethane or fluorinated methane is flowed as a reaction gas, and the silicon oxide film is formed under the conditions of a power supply frequency of 400 kHz and a gas pressure of 0.05 Torr in the reaction chamber. Etching was performed. The evaluation results are shown in Table 1.
[0022]
Example 2
Furan resin (Hitafuran VF303, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 7% by weight of trichloroacetic acid (based on the furan resin) is added to this as a curing agent. Is molded at a peripheral speed of 1200 m / min for 10 hours using a centrifugal molding machine, and a piece of the resulting cylindrical resin molded product is cut into a straight line to form a rubber-like resin plate having a rubber hardness of 72 and a thickness of 6 mm. Obtained. This resin plate was cut into a disk shape having a diameter of 400 mm, cured by heating at 70 ° C. for 3 days, and at 90 ° C. for 3 days, and then calcined and carbonized at 1 ° C./min. The temperature was raised to 2800 ° C. at a rate of 5 ° C./minute for heat treatment. In the obtained glassy carbon flat plate, gas blowout holes and the like are formed by electric discharge machining so that the surface that is in contact with the mold surface of the centrifugal molding machine at the time of resin molding becomes the back plate side, and the electrode plate for plasma etching is formed. It was made into a shape and then decalcified using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
Etching was performed in the same manner as in Example 1 using the above electrode plate for high purity plasma etching. The evaluation results are shown in Table 1.
[0023]
Example 3
A phenol resin (manufactured by Hitachi Chemical Co., Ltd., VP-112N) is used as a raw material resin, and 0.6% by weight of paratoluenesulfonic acid (based on the phenol resin) is added as a curing agent to the resin and heated at 70 ° C. Using a centrifugal molding machine having a cylindrical mold, molding was performed at a peripheral speed of 700 m / min for 10 hours, and a piece of the resulting cylindrical resin molded product was cut into a straight line, with a rubber hardness of 63 and a thickness of A 6 mm rubber-like resin plate was obtained. This resin plate was cut into a disk shape having a diameter of 400 mm, cured by heating at 70 ° C. for 3 days, and at 90 ° C. for 3 days, and then calcined and carbonized at 1 ° C./min. The temperature was raised to a maximum of 2800 ° C. at 5 ° C./minute and heat treatment was performed. In the obtained glassy carbon flat plate, gas blowout holes and the like are formed by electric discharge machining so that the surface that is in contact with the mold surface of the centrifugal molding machine at the time of resin molding becomes the back plate side, and the electrode plate for plasma etching is formed. It was made into a shape and then decalcified using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
Etching was performed in the same manner as in Example 1 using the above electrode plate for high purity plasma etching. The evaluation results are shown in Table 1.
[0024]
Example 4
Furan resin (Hitafuran VF303, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 14% by weight of trichloroacetic acid (based on furan resin) is added to this as a curing agent, and cast into an aluminum petri dish under heating at 50 ° C. Then, molding was performed for 10 hours to obtain a rubber-like resin plate having a rubber hardness of 61 and a thickness of 6 mm. This resin plate is cut out to a diameter of 400 mm and heated and cured at 50 ° C. for 3 days, 70 ° C. for 3 days, and 90 ° C. for 3 days while blowing hot air on a certain surface, and then the maximum temperature increase rate of 1 ° C./min. The carbonization was carried out at 900 ° C., and then the temperature was raised to a maximum of 2800 ° C. at a heating rate of 5 ° C./min for heat treatment. In the obtained glassy carbon flat plate, gas blowout holes and the like are formed by electric discharge machining so that the surface that is in contact with the mold surface of the centrifugal molding machine at the time of resin molding becomes the back plate side, and the electrode plate for plasma etching is formed. It was made into a shape and then decalcified using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
Etching was performed in the same manner as in Example 1 using the above electrode plate for high purity plasma etching. The evaluation results are shown in Table 1.
[0025]
Example 5
Furan resin (Hitafuran VF303, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 14% by weight of trichloroacetic acid (based on furan resin) is added as a curing agent to the aluminum resin under heating at 50 ° C. Then, molding was performed for 10 hours to obtain a rubber-like resin plate having a rubber hardness of 61 and a thickness of 7 mm. This resin plate was cut into a disk shape having a diameter of 400 mm and heated and cured at 50 ° C. for 3 days, 70 ° C. for 3 days, and 90 ° C. for 3 days while blowing hot air on the surface that was in contact with the air at the time of molding. Firing and carbonization was performed at a maximum temperature of 900 ° C. at a temperature increase rate of 0 ° C./minute, and then heat treatment was performed by increasing the temperature to 2800 ° C. at a temperature increase rate of 5 ° C./minute. On the obtained glassy carbon flat plate, gas blowout holes and the like were formed by electric discharge machining so that the surface that was in contact with the bottom of the aluminum petri dish at the time of resin molding was on the back plate side, and the electrode plate for plasma etching was formed. . Then, using a lapping machine, 0.40 mm was cut from the surface that was in contact with the bottom of the aluminum petri dish during resin molding, and 0.1 mm was cut from the opposite surface to a thickness of 5 mm. Next, deashing treatment was performed using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
The above high purity plasma etching electrode plate was etched in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0026]
Example 6
Furan resin (Hitafuran VF303, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 14% by weight of trichloroacetic acid (based on furan resin) is added as a curing agent to the aluminum resin under heating at 50 ° C. Then, molding was performed for 10 hours to obtain a rubber-like resin plate having a rubber hardness of 61 and a thickness of 7 mm. This resin plate was cut into a disk shape having a diameter of 400 mm and heated and cured at 50 ° C. for 3 days, 70 ° C. for 3 days, and 90 ° C. for 3 days while blowing hot air on the surface that was in contact with the air at the time of molding. Firing and carbonization was performed at a maximum temperature of 900 ° C. at a temperature increase rate of 0 ° C./minute, and then heat treatment was performed by increasing the temperature to 2800 ° C. at a temperature increase rate of 5 ° C./minute. On the obtained glassy carbon flat plate, gas blowout holes and the like were formed by electric discharge machining so that the surface that was in contact with the bottom of the aluminum petri dish at the time of resin molding was on the back plate side, and the electrode plate for plasma etching was formed. . Then, using a lapping machine, 0.1 mm was cut from the surface that was in contact with the bottom of the aluminum petri dish during resin molding, and 0.4 mm was cut from the opposite surface to a thickness of 5 mm. Next, deashing treatment was performed using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
The above high purity plasma etching electrode plate was etched in the same manner as in Example 1. The evaluation results are shown in Table 1.
[0027]
Comparative Example 1
Using furan resin (VF303) as a raw material resin, adding 14% by weight of trichloroacetic acid (based on furan resin) as a curing agent, casting into an aluminum petri dish under heating at 50 ° C., and molding for 10 hours, A rubber-like resin plate having a rubber hardness of 61 and a thickness of 6 mm was obtained. The resin plate was heat-cured at 50 ° C. for 3 days, 70 ° C. for 3 days, and 90 ° C. for 3 days, and then calcined and carbonized at a rate of 1 ° C./min. The temperature was raised to 2800 ° C. at a rate of ° C./min and heat-treated. On the obtained glassy carbon flat plate, gas blowout holes and the like are formed by electric discharge machining so that the surface in contact with the bottom of the aluminum petri dish is on the back plate side, and the electrode plate for plasma etching is formed, and then chlorine gas The decalcification process was performed using. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
Etching was performed in the same manner as in Example 1 using the above electrode plate for high purity plasma etching. The evaluation results are shown in Table 1.
[0028]
Comparative Example 2
Using furan resin (VF303) as raw material resin, adding 0.5% by weight of paratoluenesulfonic acid (based on furan resin) as a curing agent, casting into an aluminum petri dish under heating at 50 ° C. for 10 hours Molding was performed to obtain a rubber-like resin plate having a rubber hardness of 59 and a thickness of 6 mm. The resin plate was heat-cured at 50 ° C. for 3 days, at 70 ° C. for 3 days, and at 90 ° C. for 3 days, then calcined and carbonized at a rate of 1 ° C./min. The temperature was increased to 2800 ° C. at a rate of 1 / min and heat-treated. A gas blowout hole or the like is formed by electric discharge machining so that the surface of the obtained glassy carbon flat plate in contact with the bottom of the aluminum petri dish is on the back plate side to form the shape of an electrode plate for plasma etching, and then chlorine gas is added. A decalcification treatment was performed. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
Etching was performed in the same manner as in Example 1 using the above electrode plate for high purity plasma etching. The evaluation results are shown in Table 1.
[0029]
Comparative Example 3
Use phenol resin (VP-112N) as raw material resin, add 7% by weight of trichloroacetic acid (based on phenol resin) as a curing agent, and cast into aluminum petri dish under heating at 50 ° C for 15 hours. A rubber-like resin plate having a rubber hardness of 66 and a thickness of 6 mm was obtained. The resin plate was heat-cured at 50 ° C. for 3 days, at 70 ° C. for 3 days, and at 90 ° C. for 3 days, then calcined and carbonized at a rate of 1 ° C./min. The temperature was increased to 2800 ° C. at a rate of 1 / min and heat-treated. A gas blowout hole or the like is formed by electric discharge machining so that the surface of the obtained glassy carbon flat plate in contact with the bottom of the aluminum petri dish is on the back plate side to form the shape of an electrode plate for plasma etching, and then chlorine gas is added. A decalcification treatment was performed. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less.
Etching was performed in the same manner as in Example 1 using the above electrode plate for high purity plasma etching. The evaluation results are shown in Table 1.
[0030]
In Table 1, the amount of electrode consumption is shown as the amount of consumption of the most consumed portion of the plasma electrode surface. Further, the amount of electrode warpage is shown as the difference between the average height of 12 points on the outer peripheral portion of the electrode on the back plate side and the height of one point at the center after removing the electrode. In addition, the uniformity of the etching rate is measured by measuring the amount of wear at 15 points on the wafer and showing the ratio between the maximum value and the minimum value of the amount of wear. The smaller this value, the better the characteristics. Show.
[0031]
Example 7
Furan resin (Hitafuran VF303, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 14% by weight of trichloroacetic acid (based on furan resin) is added as a curing agent to the aluminum resin under heating at 50 ° C. Then, molding was performed for 10 hours to obtain a rubber-like resin plate having a rubber hardness of 61 and a thickness of 7 mm. This resin plate was cut into a disk shape having a diameter of 400 mm and heated and cured at 50 ° C. for 3 days, 70 ° C. for 3 days, and 90 ° C. for 3 days while blowing hot air on the surface that was in contact with the air at the time of molding. Firing and carbonization was performed at a maximum temperature of 900 ° C. at a temperature increase rate of 0 ° C./minute, and then heat treatment was performed by increasing the temperature to 2800 ° C. at a temperature increase rate of 5 ° C./minute. On the obtained glassy carbon flat plate, gas blowout holes and the like were formed by electric discharge machining so that the surface that was in contact with the bottom of the aluminum petri dish at the time of resin molding was on the back plate side, and the electrode plate for plasma etching was formed. . Then, using a lapping machine, the thickness was reduced to 0.05 mm from the surface that was in contact with the bottom surface of the aluminum petri dish during resin molding, and 0.45 mm from the opposite surface. Next, deashing treatment was performed using chlorine gas. The impurity in the electrode plate for plasma etching after the purification treatment was 3 ppm or less. The above high purity plasma etching electrode plate was etched in the same manner as in Example 1. However, the mounting portion was damaged during use. Table 1 shows the evaluation results until the mounting portion was damaged.
[0032]
[Table 1]
Figure 0003859868
[0033]
【The invention's effect】
In the plasma etching electrode plate according to the present invention, when the etching process is performed, since the plasma etching electrode plate is consumed by the plasma and warps convexly to the mounting surface side, the wafer etching rate can be maintained uniformly. .

Claims (2)

プラズマによって消耗されるに従い、プラズマエッチング用電極板自体が取付面側に凸に反る圧縮応力が付与されてなるガラス状炭素製プラズマエッチング用電極板であって、該電極板の消耗量が0.1〜2mmの際の、取付面側への反り量が、0.1〜3mmであることを特徴とするガラス状炭素製プラズマエッチング用電極板。  As the electrode plate for plasma etching itself is applied with compressive stress that warps convexly toward the mounting surface as it is consumed by the plasma, the electrode plate for plasma etching is made of glassy carbon, and the consumption amount of the electrode plate is 0 An electrode plate for plasma etching made of glassy carbon, wherein the amount of warpage to the mounting surface side in the case of 1 to 2 mm is 0.1 to 3 mm. 取付面側への反り量が、0.2〜2mmである請求項1記載のガラス状炭素製プラズマエッチング用電極板。  The electrode plate for glassy carbon plasma etching according to claim 1, wherein a warpage amount toward the mounting surface side is 0.2 to 2 mm.
JP15108998A 1997-06-06 1998-06-01 Glassy electrode plate for plasma etching Expired - Lifetime JP3859868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15108998A JP3859868B2 (en) 1997-06-06 1998-06-01 Glassy electrode plate for plasma etching

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14921197 1997-06-06
JP9-149211 1997-06-06
JP15108998A JP3859868B2 (en) 1997-06-06 1998-06-01 Glassy electrode plate for plasma etching

Publications (2)

Publication Number Publication Date
JPH1174255A JPH1174255A (en) 1999-03-16
JP3859868B2 true JP3859868B2 (en) 2006-12-20

Family

ID=26479161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15108998A Expired - Lifetime JP3859868B2 (en) 1997-06-06 1998-06-01 Glassy electrode plate for plasma etching

Country Status (1)

Country Link
JP (1) JP3859868B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246154B2 (en) * 2018-10-02 2023-03-27 東京エレクトロン株式会社 Plasma processing apparatus and electrostatic adsorption method

Also Published As

Publication number Publication date
JPH1174255A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP4037956B2 (en) Chamber inner wall protection member
JP3859868B2 (en) Glassy electrode plate for plasma etching
JP2000058510A (en) Electrode plate for plasma etching
JP2002043397A (en) Susceptor
JPH1161451A (en) Focus ring of plasma etching equipment and plasma etching equipment
JPH10130055A (en) Production of electrode plate for plasma treatment device
JPS62252942A (en) Electrode plate for plasma etching
JPH06128762A (en) Electrode plate for plasma etching
KR100463491B1 (en) Plasma-etching electrode plate
JP3461120B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JPH11162940A (en) Plasma etching electrode
JP2003023002A (en) Chamber inner wall protecting member and plasma processing equipment
JP2002373930A (en) Susceptor
JP2001176846A (en) Electrode plate for plasma etching and method of production
JP3831313B2 (en) Glassy carbon CVD equipment parts
JPH11189471A (en) Roll made of vitrified carbon, its production, plasma generator, its chamber inner wall protecting member, protection of the chamber inner wall and plasma treatment
JP2002280356A (en) Glass-like carbon electrode plate and plasma etching device mounted with the same
JP2001148373A (en) Electrode plate for plasma etching
JPH11131265A (en) Electrode sheet for plasma etching
JP2002211979A (en) Member made of glasslike carbon for protecting inner wall of chamber
JP2000040689A (en) Plasma etching electrode plate
JP2002151483A (en) Plasma etching device
JP3255586B2 (en) Electrode plate for plasma etching
JPH1192123A (en) Electrode made of vitreous carbon for plasma etching and its production
JPH0955373A (en) Manufacture of electrode plate for plasma etching and electrode plate, for plasma etching, obtained by said manufacture

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term