JPH1161451A - Focus ring of plasma etching equipment and plasma etching equipment - Google Patents

Focus ring of plasma etching equipment and plasma etching equipment

Info

Publication number
JPH1161451A
JPH1161451A JP22693597A JP22693597A JPH1161451A JP H1161451 A JPH1161451 A JP H1161451A JP 22693597 A JP22693597 A JP 22693597A JP 22693597 A JP22693597 A JP 22693597A JP H1161451 A JPH1161451 A JP H1161451A
Authority
JP
Japan
Prior art keywords
focus ring
plasma
surface roughness
plasma etching
principal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22693597A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
孝幸 鈴木
Mitsuji Kamata
充志 鎌田
Yoshimitsu Watanabe
善光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP22693597A priority Critical patent/JPH1161451A/en
Publication of JPH1161451A publication Critical patent/JPH1161451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the blank discharge time required for reducing the amount of foreign matter that is formed in the initial discharge stage, (initial discharge foreign matter), and to improve the etching productivity by specifying the average surface roughness of each of the principal plane and the other surfaces, all of which are in contact with a plasma, of a focus ring placed in the equipment. SOLUTION: In the focus ring 1 of this equipment, the ten-point average surface roughness of a principal plane 2 in contact with a plasma is adjusted to <=5 μm and also the ten-point average surface roughness of each of a peripheral vertical surface 5 and the other surfaces other than the principal plane 2, all of which are in contact with the plasma, is adjusted to <=30 μm, wherein the adjustment of surface roughness is performed by subjecting such a surface to finish working in surface polishing. When the average surface roughness of the principal plane 2 is >5 μm, a large amount of initial discharge foreign matter is formed during the period from the beginning of the use of this focus ring 1 to the point of time, at which the principal plane 2 is worn by the plasma so as to sufficiently smooth the plane 2. When the average surface roughness of any of the surfaces in contact with the plasma, other than the principal plane 2, is >30 μm, formation of the initial discharge foreign matter is caused. Desirably, the material of the focus ring 1 is glassy carbon that is an amorphous carbon material obtained by baking and carbonizing a cured material of a thermosetting resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイス製
造工程のプラズマエッチング装置に使用するフォーカス
リング及びこれを用いたプラズマエッチング装置に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a focus ring used for a plasma etching apparatus in a semiconductor device manufacturing process and a plasma etching apparatus using the same.

【0002】[0002]

【従来の技術】半導体デバイス製造工程の一つに、半導
体ウエハに回路パターンを形成するエッチングの工程が
ある。このうち平行平板型と呼ばれるプラズマエッチン
グ装置では、下部電極上に半導体ウエハを配置し、これ
と平行に設置された、反応ガスを流通させるための多数
の貫通孔を有する上部電極との間に、高周波プラズマを
発生させ、ウエハのエッチングを行う。
2. Description of the Related Art One of semiconductor device manufacturing processes includes an etching process for forming a circuit pattern on a semiconductor wafer. Among these, in a plasma etching apparatus called a parallel plate type, a semiconductor wafer is arranged on a lower electrode, and is provided in parallel with the upper electrode having a large number of through holes for flowing a reaction gas. A high frequency plasma is generated to etch the wafer.

【0003】この装置において、ウエハ周辺のプラズマ
の拡散を防止し、反応性イオンを効果的にウエハに入射
させるため、フォーカスリングと呼ばれる、リング状の
部材が下部電極の外側に配置されている。このフォーカ
スリングには石英、シリコン等の他に、ガラス状炭素が
使用されている。ガラス状炭素とは熱硬化性樹脂を炭化
焼成して得られる炭素材料で、ガラス状の非常に均質、
緻密な構造を有する。この材料は、一般の炭素材料の特
徴である導電性、化学的安定性、耐熱性、高純度等の性
質に加え、構成粒子の脱落がないという優れた特長を有
する。このため、ガラス状炭素は半導体製造装置部材に
好適であると言われている。
In this apparatus, a ring-shaped member called a focus ring is arranged outside the lower electrode in order to prevent the diffusion of plasma around the wafer and effectively cause reactive ions to enter the wafer. The focus ring uses glassy carbon in addition to quartz, silicon, and the like. Glassy carbon is a carbon material obtained by carbonizing and sintering a thermosetting resin.
It has a dense structure. This material has not only characteristics such as conductivity, chemical stability, heat resistance, and high purity, which are the characteristics of general carbon materials, but also excellent characteristics such that constituent particles do not fall off. For this reason, it is said that glassy carbon is suitable for semiconductor manufacturing equipment members.

【0004】半導体ウエハのプラズマエッチング工程に
おいては、ウエハ上への放電異物の落下は、デバイスの
歩留り低下を引き起こす。したがってエッチング装置の
部材は、放電異物が少ないことが要求される。通常、プ
ラズマに接する部材を新規に取り付けた直後には、放電
異物が多量に発生する。このため、取り付け直後には空
放電を行い、初期放電異物を低減してから、製品デバイ
スのエッチングを行うのが一般的である。この空放電
は、装置の生産性を低下させる大きな要因の一つとなっ
ている。
In a plasma etching process of a semiconductor wafer, a fall of a discharge foreign substance onto the wafer causes a decrease in the yield of devices. Therefore, members of the etching apparatus are required to have a small amount of discharge foreign substances. Normally, immediately after a new member in contact with the plasma is newly attached, a large amount of discharge foreign matter is generated. For this reason, it is common to perform an empty discharge immediately after mounting to reduce initial discharge foreign substances, and then to etch a product device. This empty discharge is one of the major factors that reduce the productivity of the device.

【0005】[0005]

【発明が解決しようとする課題】請求項1記載の発明
は、この初期放電異物低減の空放電時間が短かい、プラ
ズマエッチング装置のフォーカスリングを提供するもの
である。請求項2記載の発明は、フォーカスリング交換
後の初期放電異物低減の空放電時間が短かい、プラズマ
エッチング装置を提供するものである。
SUMMARY OF THE INVENTION The first aspect of the present invention is to provide a focus ring for a plasma etching apparatus, which has a short idle discharge time for reducing the initial discharge foreign matter. A second aspect of the present invention is to provide a plasma etching apparatus in which the idle discharge time for reducing the initial discharge foreign matter after the focus ring replacement is short.

【0006】[0006]

【課題を解決するための手段】本発明は、プラズマに接
触する主平面の10点平均面粗さが5μm以下、主平面
以外のプラズマが接触する面の10点平均面粗さが、全
て30μm以下であるプラズマエッチング装置のフォー
カスリングに関する。また本発明は、前記フォーカスリ
ングを有してなるプラズマエッチング装置に関する。
According to the present invention, the 10-point average surface roughness of the principal plane contacting the plasma is 5 μm or less, and the 10-point average surface roughness of the plasma contact surface other than the principal plane is all 30 μm. The following relates to a focus ring of a plasma etching apparatus. Further, the present invention relates to a plasma etching apparatus having the focus ring.

【0007】[0007]

【発明の実施の形態】本発明においてプラズマエッチン
グ装置のフォーカスリングは、一般にリング状の部材で
ある。一例のフォーカスリングをプラズマエッチング装
置に搭載し、シリコンウエハをおいた状態におけるフォ
ーカスリング及びその周辺の部分拡大断面図を図1に、
他の例を図2に示す。図1に示すフォーカスリング1及
び図2に示すフォーカスリング10は、装置上では、半
導体ウエハと平行面上に配置され、実質的にプラズマに
対向する平面であって最も面積の大きい、主平面(図1
における2及び図2における11)を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a focus ring of a plasma etching apparatus is generally a ring-shaped member. FIG. 1 is a partial enlarged cross-sectional view of a focus ring and its surroundings in a state where a focus ring of an example is mounted on a plasma etching apparatus and a silicon wafer is placed thereon.
Another example is shown in FIG. The focus ring 1 shown in FIG. 1 and the focus ring 10 shown in FIG. 2 are arranged on a plane parallel to the semiconductor wafer on the apparatus, and are substantially the plane facing the plasma and having the largest area. FIG.
2 and 11) in FIG.

【0008】また、前記主平面以外の面でプラズマが接
触する面とは、外周垂直面(図1における5及び図2に
おける12)の他は、フォーカスリングの形状及び処理
されるシリコンウエハを搭載したときの状態による。図
1に示すフォーカスリング1のように、その内周に段差
を有する場合で、シリコンウエハ8が内周垂直面6と上
部電極との間にまで達する大きさである場合(即ち、シ
リコンウエハ8の外径が、フォーカスリング1の内径よ
り大きい場合)は、段差水平面3及び段差垂直面4がプ
ラズマが接触する面となり、内周垂直面6はプラズマが
接触する面とはならない。また、図2に示すフォーカス
リング10のように、その内周に段差を有しない場合
で、シリコンウエハ15が内周垂直面13と上部電極と
の間にまで達する大きさである場合(即ち、シリコンウ
エハ15の外径が、フォーカスリング10の内径より大
きい場合)は、外周垂直面12以外にはプラズマが接触
する面はない。しかしながら、図2において、シリコン
ウエハ15の外径がフォーカスリングの内径より小さい
場合は、フォーカスリングの内周垂直面はプラズマが接
触する面となる。なお、フォーカスリングの裏面(図1
における7及び図2における14)は、プラズマが接触
する面にはならない。
The surface other than the main plane, which is in contact with the plasma, includes the outer peripheral vertical surface (5 in FIG. 1 and 12 in FIG. 2), as well as the shape of the focus ring and the silicon wafer to be processed. Depends on the state at the time. As in the case of the focus ring 1 shown in FIG. 1, when there is a step on the inner periphery, and when the silicon wafer 8 is large enough to reach between the inner peripheral vertical surface 6 and the upper electrode (that is, the silicon wafer 8 Is larger than the inner diameter of the focus ring 1), the step horizontal surface 3 and the step vertical surface 4 are surfaces that come into contact with the plasma, and the inner peripheral vertical surface 6 is not the surface that comes into contact with the plasma. Also, as in the case of the focus ring 10 shown in FIG. 2, there is no step on the inner periphery, and the silicon wafer 15 is large enough to reach between the inner peripheral vertical surface 13 and the upper electrode (ie, In the case where the outer diameter of the silicon wafer 15 is larger than the inner diameter of the focus ring 10, there is no surface other than the outer peripheral vertical surface 12 that contacts the plasma. However, in FIG. 2, when the outer diameter of the silicon wafer 15 is smaller than the inner diameter of the focus ring, the inner peripheral vertical surface of the focus ring is a surface with which plasma contacts. The back of the focus ring (Fig. 1
7 and 14) in FIG. 2 do not form a surface where the plasma contacts.

【0009】フォーカスリングの形状としては、円形の
内周及び外周を有するリング状(例えば前記図2のも
の)や内周に段差を有するリング状(例えば前記図1の
もの)の他、シリコンウエハに形成されているオリエン
テーションフラット(オリフラ)を考慮し、このオリフ
ラ付きウエハの外径形状に合わせたフォーカスリング形
状としてもよい。フォーカスリングの大きさは、搭載さ
れるプラズマエッチング装置によって、またエッチング
の対象となるシリコンウエハの大きさによって、異な
る。シリコンウエハの大きさは、一般に6インチ、8イ
ンチ、12インチ等がある。フォーカスリングの内径と
しては、これらのシリコンウエハの外径と同じかこれよ
り小さいものが好ましく、シリコンウエハの外径より
0.1〜10mm小さいことがより好ましい。またフォー
カスリングの幅(即ち、内径と外径の差)としては、1
0〜100mmであることが好ましく、厚さとしては、1
〜5mmであることが好ましい。
The shape of the focus ring may be a ring shape having a circular inner periphery and an outer periphery (for example, the one shown in FIG. 2), a ring shape having a step on the inner periphery (for example, the one shown in FIG. 1), or a silicon wafer. In consideration of the orientation flat (orientation flat) formed on the wafer, the focus ring shape may be adapted to the outer diameter of the wafer with the orientation flat. The size of the focus ring differs depending on the mounted plasma etching apparatus and the size of the silicon wafer to be etched. The size of the silicon wafer is generally 6 inches, 8 inches, 12 inches, or the like. The inner diameter of the focus ring is preferably equal to or smaller than the outer diameter of these silicon wafers, and more preferably 0.1 to 10 mm smaller than the outer diameter of the silicon wafer. The width of the focus ring (ie, the difference between the inner diameter and the outer diameter) is 1
The thickness is preferably 0 to 100 mm, and the thickness is 1
It is preferably about 5 mm.

【0010】本発明のフォーカスリングにおいては、前
記主平面が、10点平均面粗さ(以下Rzと表記する)
5μm以下であり、それ以外のプラズマが接触する面の
Rzが全て、30μmであることを特徴とする。ここ
で、前記主平面の面粗さが大きく、Rzで5μmを超え
ると、使用開始からプラズマにより表面が消耗し平滑化
されるまでの間に、多量の放電異物が発生する。この使
用初期の放電異物が減少し、異物数が安定するまでの時
間は、製品デバイスを処理しない空放電となってしま
う。空放電時間をより短くするためには、Rzは1μm
以下とすることが好ましく、0.5μm以下とすること
がより好ましい。また、主平面は、完全に平滑であるこ
とが好ましい。ほとんど平滑であっても、キズ、スジ等
が残っている場合には、その部分から放電異物が発生す
る傾向にある。なお、RzはJIS B 0601に従
って、測定することができる。
[0010] In the focus ring of the present invention, the principal plane has an average surface roughness of 10 points (hereinafter referred to as Rz).
Rz of 5 μm or less, and Rz of all other surfaces contacting the plasma is 30 μm. Here, if the surface roughness of the main plane is large and exceeds 5 μm in Rz, a large amount of discharge foreign matter is generated from the start of use until the surface is consumed and smoothed by plasma. The time required for the discharge foreign substances to decrease in the initial stage of use and for the number of foreign substances to stabilize is an empty discharge in which the product device is not processed. In order to make the air discharge time shorter, Rz should be 1 μm
Or less, more preferably 0.5 μm or less. Further, it is preferable that the main plane is completely smooth. If scratches, streaks, and the like remain even if the surface is almost smooth, discharge foreign matter tends to be generated from that portion. In addition, Rz can be measured according to JIS B0601.

【0011】また、主平面以外のプラズマが接触する面
のいずれかの面のRzが30μmを超えても、放電異物
の発生原因となる。空放電時間をより短くするために
は、これらの主平面以外のプラズマに接触する面のRz
が10μm以下とすることが好ましく、5μm以下とす
ることがより好ましい。前記のような表面の状態を形成
する方法は特に制限されないが、ダイアモンドペースト
等の研磨剤を使用してバフ布等で研磨する鏡面研磨処理
を、全面にわたって均等に行うことが、容易に均一な面
粗さの面を作成することができるので好ましい。
[0011] Further, even if Rz of any surface other than the main plane, which is in contact with the plasma, exceeds 30 µm, it may cause discharge foreign matter. In order to make the air discharge time shorter, the Rz of the surface in contact with the plasma other than the main plane is
Is preferably 10 μm or less, more preferably 5 μm or less. The method of forming the surface state as described above is not particularly limited, but it is easy and uniform to perform a mirror polishing process of polishing with a buff cloth or the like using a polishing agent such as a diamond paste. This is preferable because a surface having a surface roughness can be formed.

【0012】本発明において、プラズマが接触する面と
なる各面は一般にほぼ均一な面粗さを有し、Rzのばら
つきは少ないので、Rzを各面1点のみ測定した値が上
記範囲であればよいが、各面の均一性を確かめるため
に、各面において、面の全範囲からほぼ均等間隔に抽出
した5点について測定して、それらの最大値が上記範囲
になることが好ましい。Rzの測定対象となる10点は
直線上に分布するものであるが、その直線の方向として
は、図1及び図2において、主平面2及び11並びに段
差水平面3では動径方向(即ちリングの中心点から外周
への方向)、段差垂直面4、外周垂直面5及び12並び
に内周垂直面6及び13では垂直方向(即ちリングの厚
さ方向)であることが好ましい。
In the present invention, each surface to be in contact with the plasma generally has substantially uniform surface roughness, and there is little variation in Rz. In order to confirm the uniformity of each surface, it is preferable to measure five points extracted at substantially equal intervals from the entire surface of each surface, and it is preferable that the maximum value be within the above range. The 10 points to be measured for Rz are distributed on a straight line, and the direction of the straight line in FIGS. 1 and 2 is the radial direction (that is, the ring plane) in the main planes 2 and 11 and the step horizontal plane 3. The vertical direction (ie, the thickness direction of the ring) is preferably the vertical direction of the step 4, the vertical surfaces 5 and 12, and the vertical surfaces 6 and 13 of the step.

【0013】本発明のフォーカスリングの材質として
は、ガラス状炭素、石英、単結晶シリコン、多結晶シリ
コン等が挙げられるが、金属不純物の発生が無く、容易
に良好な特性を示すフォーカスリングを得ることができ
るので、ガラス状炭素であることが好ましい。ここで、
ガラス状炭素とは、熱硬化性樹脂の硬化物を、焼成、炭
化して得られる、ガラス状の性質を示す非晶質の炭素材
料である。用いられる熱硬化性樹脂としては特に制限は
ないが、フェノール樹脂、エポキシ樹脂、不飽和ポリエ
ステル樹脂、フラン樹脂、メラミン樹脂、アルキッド樹
脂、キシレン樹脂、これら樹脂の混合物等を挙げること
ができる。中でも良好な特性のガラス状炭素が得られる
ので、フラン樹脂、フェノール樹脂又はこれらの混合樹
脂が好ましい。
Examples of the material of the focus ring of the present invention include glassy carbon, quartz, single crystal silicon, and polycrystalline silicon. A focus ring which does not generate metal impurities and easily exhibits good characteristics can be obtained. Therefore, glassy carbon is preferable. here,
The glassy carbon is an amorphous carbon material having a glassy property obtained by firing and carbonizing a cured product of a thermosetting resin. The thermosetting resin used is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, an unsaturated polyester resin, a furan resin, a melamine resin, an alkyd resin, a xylene resin, and a mixture of these resins. Above all, furan resin, phenolic resin, or a mixed resin thereof is preferable because glassy carbon having good characteristics can be obtained.

【0014】熱硬化性樹脂の種類に応じて、硬化剤が用
いられる。硬化剤としては、硫酸、塩酸、硝酸、リン酸
等の無機酸、p−トルエンスルホン酸、メタンスルホン
酸等の有機スルホン酸、酢酸、トリクロロ酢酸、トリフ
ロロ酢酸等のカルボン酸等が上げられる。アルカリとし
ては、アンモニア、アミン、水酸化ナトリウム、水酸化
カリウム、水酸化リチウム等が挙げられる。硬化剤は熱
硬化性樹脂に対して0.001〜20重量%使用するこ
とが好ましい。
A curing agent is used according to the type of the thermosetting resin. Examples of the curing agent include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid; organic sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid; and carboxylic acids such as acetic acid, trichloroacetic acid, and trifluoroacetic acid. Examples of the alkali include ammonia, amine, sodium hydroxide, potassium hydroxide, lithium hydroxide and the like. The curing agent is preferably used in an amount of 0.001 to 20% by weight based on the thermosetting resin.

【0015】前記熱硬化性樹脂は、必要に応じて前記硬
化剤を添加した後、目的とする形状に応じて各種成形方
法で成形し、硬化処理する。この硬化は130〜200
℃の温度で熱処理して行うことが好ましい。安定した樹
脂板を得るため、樹脂の成形硬化は硬化の為の触媒量を
適正な量に設定し、縮合水等が外部に抜け易い加熱条件
及び昇温速度で行なうことが好ましい。
The thermosetting resin is molded by various molding methods according to the desired shape after the addition of the curing agent as required, and then cured. This curing is 130-200
The heat treatment is preferably performed at a temperature of ° C. In order to obtain a stable resin plate, it is preferable that the molding and curing of the resin be performed under a heating condition and a heating rate in which the amount of catalyst for curing is set to an appropriate amount and condensed water or the like easily escapes to the outside.

【0016】次いで、フォーカスリングの形状にするた
め所定の加工を行なった後、高度に純化された治具及び
炉を用い不活性雰囲気中(通常、ヘリウム、アルゴン等
の不活性ガスや窒素、水素、ハロゲンガス等の非酸化性
ガスの少なくとも一種の気体からなる酸素を含まない雰
囲気、減圧又は真空下)において、好ましくは300〜
2500℃、特に好ましくは約1000℃の温度で焼成
炭化する。ついで好ましくは1300〜3500℃の温
度で熱処理しガラス状炭素を得ることができる。なお、
前記方法以外に、より大きな成形硬化品を該炉にて該雰
囲気にて炭化焼成しガラス状炭素とした後、ドリル加
工、放電加工あるいは超音波加工等の公知の方法でフォ
ーカスリングの形状に加工してもよい。ついで得られた
フォーカスリングは、前記10点平均面粗さとするため
に、前記表面研磨の仕上げ加工を行うことができる。
Next, after performing a predetermined processing for forming a shape of the focus ring, a highly purified jig and a furnace are used in an inert atmosphere (usually, an inert gas such as helium, argon, nitrogen, hydrogen or the like). , An oxygen-free atmosphere composed of at least one kind of non-oxidizing gas such as halogen gas, under reduced pressure or vacuum),
It is calcined and carbonized at a temperature of 2500 ° C., particularly preferably about 1000 ° C. Then, heat treatment is preferably performed at a temperature of 1300 to 3500 ° C. to obtain glassy carbon. In addition,
In addition to the above method, a larger molded and cured product is carbonized and fired in the furnace in the atmosphere to form glassy carbon, and then processed into a focus ring shape by a known method such as drilling, electric discharge machining, or ultrasonic machining. May be. Then, the obtained focus ring can be subjected to the finish processing of the surface polishing in order to obtain the 10-point average surface roughness.

【0017】本発明のプラズマエッチング装置は、前記
フォーカスリングを有してなるものであり、それ以外の
装置の構成については特に制限はされない。その装置の
一例を図3に示す。図3は平行平板型プラズマエッチン
グ装置の概略断面図である。図3において、プラズマエ
ッチング装置17には、上部電極18及び下部電極19
が設けられ、下部電極の上にフォーカスリング20が設
置されている。シリコンウエハ21は上部電極から吹き
出すエッチング用プロセスガスによりエッチング処理さ
れる。本発明のプラズマエッチング装置は、フォーカス
リング交換後の初期放電異物低減の空放電時間が短かい
ものとなる。
The plasma etching apparatus of the present invention has the above-mentioned focus ring, and the configuration of the other apparatuses is not particularly limited. An example of the device is shown in FIG. FIG. 3 is a schematic sectional view of a parallel plate type plasma etching apparatus. In FIG. 3, the plasma etching apparatus 17 includes an upper electrode 18 and a lower electrode 19.
Are provided, and a focus ring 20 is provided on the lower electrode. The silicon wafer 21 is etched by an etching process gas blown from the upper electrode. In the plasma etching apparatus according to the present invention, the idle discharge time for reducing the initial discharge foreign matter after the replacement of the focus ring is short.

【0018】[0018]

【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1〜9及び比較例1〜4 フラン樹脂初期縮合物(日立化成工業(株)製VF−30
2)100重量部に、パラトルエンスルホン酸0.3重
量部、エチレングリコール0.3重量部を添加し、十分
混合した後、該樹脂を型に注入し50℃で3日、70℃
で3日、90℃で3日乾燥硬化した後、160℃までを
5℃/時間で昇温し、160℃で3日間保持し硬化処理
を行ない厚さ5mmで直径350mmの円盤状樹脂成形体を
得た。該成形体に予め焼成の寸法収縮(約20%収縮)
を見込んだ所定の形状に加工した後、160℃までを5
℃/時間で昇温し、160℃で3日間保持し硬化処理を
行ない円盤状樹脂成形体を得た。該成形体を電気炉に入
れ窒素気流中で1000℃の温度で焼成炭化した後、高
純度に処理した治具及び雰囲気炉を用い不活性雰囲気下
で2000℃の温度で高温処理を行ないガラス状炭素円
盤を得た。該ガラス状炭素円盤を超音波加工機で加工
し、外径260mm、内径198mm、厚さ3.5mmのリン
グ形状で、内周部に幅3.5mm、深さ0.5mmの段差の
有る、フォーカスリングを製作した。さらに、このフォ
ーカスリングの主平面を、ポリッシングマシンを使用
し、ダイヤモンドペーストを研磨剤として、バフ布によ
る研磨を行った。なお、異なる面粗さを得るために、ダ
イヤモンドペーストの砥粒の大きさを変化させて研磨を
行った。また、主平面以外の面についても、同様の方法
でダイヤモンドペーストによる研磨を行い均一な所要の
面粗さに仕上げた。研磨後には、有機溶剤及び純水によ
る超音波洗浄を実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. Examples 1 to 9 and Comparative Examples 1 to 4 Furan resin precondensate (VF-30 manufactured by Hitachi Chemical Co., Ltd.)
2) To 100 parts by weight, 0.3 parts by weight of paratoluenesulfonic acid and 0.3 parts by weight of ethylene glycol were added, and after sufficient mixing, the resin was poured into a mold and heated at 50 ° C for 3 days at 70 ° C.
After drying and curing at 90 ° C. for 3 days, the temperature is raised to 160 ° C. at a rate of 5 ° C./hour, kept at 160 ° C. for 3 days, and cured to perform a 5 mm thick disk-shaped resin molded article having a diameter of 350 mm. I got Pre-sintering dimensional shrinkage (approximately 20% shrinkage)
After processing into a predetermined shape that allows for
The temperature was raised at a rate of ° C./hour, and a curing treatment was carried out at 160 ° C. for 3 days to obtain a disk-shaped resin molded product. The molded body is placed in an electric furnace and calcined and carbonized at a temperature of 1000 ° C. in a nitrogen stream, and then subjected to a high-temperature treatment at a temperature of 2000 ° C. in an inert atmosphere using a jig and an atmosphere furnace which have been treated with high purity. A carbon disk was obtained. The glassy carbon disk is processed by an ultrasonic processing machine, and has a ring shape of 260 mm in outer diameter, 198 mm in inner diameter, and 3.5 mm in thickness, and has a step of 3.5 mm in width and 0.5 mm in depth at the inner periphery. I made a focus ring. Further, the main plane of the focus ring was polished with a buff cloth using a polishing machine and a diamond paste as an abrasive. In addition, in order to obtain different surface roughness, polishing was performed by changing the size of the abrasive grains of the diamond paste. Also, the surfaces other than the main plane were polished with a diamond paste in the same manner to finish the surface to a uniform required surface roughness. After the polishing, ultrasonic cleaning with an organic solvent and pure water was performed.

【0019】各実施例及び比較例で得られたフォーカス
リングの各面の10点平均面粗さ(Rz)を表1及び表
2に示す。測定装置は、(株)東京精密製の表面粗さ形状
測定機 サーフコム503Bを用いた。なお、Rzは各
面において、面全体から均等な間隔で抽出した5点につ
いて測定し、表1及び表2にはそのうちの最大値を示し
た。またRzの測定の基準長さは0.8mm、測定の方向
は前述の好ましい方向にして行った。
Tables 1 and 2 show the 10-point average surface roughness (Rz) of each surface of the focus ring obtained in each of the examples and comparative examples. As a measuring device, a surface roughness profile measuring device Surfcom 503B manufactured by Tokyo Seimitsu Co., Ltd. was used. Note that Rz was measured for each surface at five points extracted at equal intervals from the entire surface, and Tables 1 and 2 show the maximum values among them. The reference length for the measurement of Rz was 0.8 mm, and the measurement was performed in the preferred direction described above.

【0020】次にこのフォーカスリングを8インチシリ
コンウェハのプラズマエッチング装置にセットした。こ
のフォーカスリング及びその周辺の断面拡大図を図1に
示す。次に、ハロゲン系の反応ガスを流しながら空放電
を行い、ウエハ上の放電異物数が15ヶ/ウエハ以下で
安定となるまでの時間を評価した。表1及び表2に放電
異物数が安定するまでの時間を空放電時間として示す。
Next, the focus ring was set in an 8-inch silicon wafer plasma etching apparatus. FIG. 1 is an enlarged cross-sectional view of the focus ring and its periphery. Next, empty discharge was performed while flowing a halogen-based reaction gas, and the time required until the number of discharged foreign substances on the wafer became 15 or less and the wafer became stable was evaluated. Tables 1 and 2 show the time required for the number of discharged foreign substances to stabilize as a blank discharge time.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】実施例10〜14及び比較例5〜7 上記実施例と同様の樹脂、同様の工程により得られたガ
ラス状炭素円盤を、同様の方法で加工して、外径290
mm、内径200mm、厚さ2.5mmのリング形状のフォー
カスリングを製作した。さらに、このフォーカスリング
の各面を上記実施例と同様の樹脂、同様の工程により得
られたガラス状炭素円盤を、同様の方法で加工して、外
径290mm、内径200mm、厚さ2.5mmのリング形状
のフォーカスリングを製作した。上記実施例と同様にし
て面粗さを変えて研磨し、洗浄を行って仕上げた。次に
このフォーカスリングを前述と同様の方法で、ウエハ上
の放電異物数が安定するまでの空時間を評価した。図2
にこのフォーカスリング及びその周辺の断面拡大図を示
す。また表3にフォーカスリングの各面の粗さと、放電
異物数が安定するまでの時間を空放電時間として示す。
Examples 10 to 14 and Comparative Examples 5 to 7 The same resin as in the above example and the glassy carbon disk obtained by the same steps were processed in the same manner to give an outer diameter of 290.
A ring-shaped focus ring having a diameter of 200 mm, an inner diameter of 200 mm and a thickness of 2.5 mm was manufactured. Further, each surface of the focus ring was processed by the same method using the same resin as in the above-described example and a glassy carbon disk obtained by the same process, and the outer diameter was 290 mm, the inner diameter was 200 mm, and the thickness was 2.5 mm. A focus ring with a ring shape was manufactured. Polishing was carried out in the same manner as in the above-mentioned embodiment with changing surface roughness, and washing was performed to finish. Next, the focus ring was evaluated for the free time until the number of foreign particles on the wafer was stabilized by the same method as described above. FIG.
FIG. 2 shows an enlarged cross-sectional view of the focus ring and its periphery. Also, Table 3 shows the roughness of each surface of the focus ring and the time until the number of discharge foreign substances is stabilized as an idle discharge time.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】請求項1記載のフォーカスリングは、こ
の初期放電異物低減の空放電時間が短かく、エッチング
の生産性が向上でき、産業上きわめて有益である。請求
項2記載のプラズマエッチング装置は、フォーカスリン
グ交換後の初期放電異物低減の空放電時間が短かい、エ
ッチングの生産性の高いものである。
The focus ring according to the first aspect of the present invention is very useful in industry because the idle discharge time for reducing the initial discharge foreign matter is short, and the productivity of etching can be improved. In the plasma etching apparatus according to the second aspect, the idle discharge time for reducing the initial discharge foreign matter after the replacement of the focus ring is short, and the etching productivity is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフォーカスリングが設置された状態の
一例を示す部分拡大断面図である。
FIG. 1 is a partially enlarged sectional view showing an example of a state where a focus ring of the present invention is installed.

【図2】本発明のフォーカスリングが設置された状態の
一例を示す部分拡大断面図である。
FIG. 2 is a partially enlarged sectional view showing an example of a state where a focus ring of the present invention is installed.

【図3】本発明のプラズマエッチング装置の一例を示す
概略断面図である。
FIG. 3 is a schematic sectional view showing one example of a plasma etching apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 フォーカスリング 2 主平面 3 段差水平面 4 段差垂直面 5 外周垂直面 6 内周垂直面 7 裏面 8 シリコンウエハ 9 下部電極 10 フォーカスリング 11 主平面 12 外周垂直面 13 内周垂直面 14 裏面 15 シリコンウエハ 16 下部電極 17 プラズマエッチング装置 18 上部電極 19 下部電極 20 フォーカスリング 21 シリコンウエハ REFERENCE SIGNS LIST 1 focus ring 2 main plane 3 step horizontal plane 4 step vertical plane 5 outer circumference vertical plane 6 inner circumference vertical plane 7 back surface 8 silicon wafer 9 lower electrode 10 focus ring 11 main plane 12 outer circumference vertical plane 13 inner circumference vertical plane 14 back surface 15 silicon wafer Reference Signs List 16 lower electrode 17 plasma etching apparatus 18 upper electrode 19 lower electrode 20 focus ring 21 silicon wafer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラズマに接触する主平面の10点平均
面粗さが5μm以下、主平面以外のプラズマが接触する
面の10点平均面粗さが、全て30μm以下であるプラ
ズマエッチング装置のフォーカスリング。
1. A focus of a plasma etching apparatus in which a 10-point average surface roughness of a main plane contacting plasma is 5 μm or less, and a 10-point average surface roughness of a surface other than the main plane which is in contact with plasma is 30 μm or less. ring.
【請求項2】 請求項1記載のフォーカスリングを有し
てなるプラズマエッチング装置。
2. A plasma etching apparatus comprising the focus ring according to claim 1.
JP22693597A 1997-08-25 1997-08-25 Focus ring of plasma etching equipment and plasma etching equipment Pending JPH1161451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22693597A JPH1161451A (en) 1997-08-25 1997-08-25 Focus ring of plasma etching equipment and plasma etching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22693597A JPH1161451A (en) 1997-08-25 1997-08-25 Focus ring of plasma etching equipment and plasma etching equipment

Publications (1)

Publication Number Publication Date
JPH1161451A true JPH1161451A (en) 1999-03-05

Family

ID=16852921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22693597A Pending JPH1161451A (en) 1997-08-25 1997-08-25 Focus ring of plasma etching equipment and plasma etching equipment

Country Status (1)

Country Link
JP (1) JPH1161451A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197604A (en) * 2001-12-25 2003-07-11 Matsushita Electric Ind Co Ltd Device and method for plasma treatment
JP2005303045A (en) * 2004-04-13 2005-10-27 Mitsubishi Materials Corp Silicon component and manufacturing method thereof
JP2007081382A (en) * 2005-08-18 2007-03-29 Mitsubishi Materials Corp Silicon ring for use of plasma etcher
JP2009010017A (en) * 2007-06-26 2009-01-15 Mitsubishi Materials Corp Focus ring for plasma etching apparatus generating fewer particles
CN100456433C (en) * 2004-11-15 2009-01-28 东京毅力科创株式会社 Focus ring, plasma etching apparatus and plasma etching method
US8192577B2 (en) * 2004-11-15 2012-06-05 Tokyo Electron Limited Focus ring, plasma etching apparatus and plasma etching method
KR20170028849A (en) 2015-09-04 2017-03-14 도쿄엘렉트론가부시키가이샤 Focus ring and substrate processing apparatus
KR102676461B1 (en) * 2023-05-30 2024-06-28 솔믹스 주식회사 parts for a semiconductor device manufacturing device, a semiconductor device manufacturing device including the same and a method for manufacturing a semiconductor device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197604A (en) * 2001-12-25 2003-07-11 Matsushita Electric Ind Co Ltd Device and method for plasma treatment
JP2005303045A (en) * 2004-04-13 2005-10-27 Mitsubishi Materials Corp Silicon component and manufacturing method thereof
JP4531435B2 (en) * 2004-04-13 2010-08-25 三菱マテリアル株式会社 Silicon member and manufacturing method thereof
CN100456433C (en) * 2004-11-15 2009-01-28 东京毅力科创株式会社 Focus ring, plasma etching apparatus and plasma etching method
US8192577B2 (en) * 2004-11-15 2012-06-05 Tokyo Electron Limited Focus ring, plasma etching apparatus and plasma etching method
JP2007081382A (en) * 2005-08-18 2007-03-29 Mitsubishi Materials Corp Silicon ring for use of plasma etcher
JP4517370B2 (en) * 2005-08-18 2010-08-04 三菱マテリアル株式会社 Silicon ring for plasma etching equipment
JP2009010017A (en) * 2007-06-26 2009-01-15 Mitsubishi Materials Corp Focus ring for plasma etching apparatus generating fewer particles
KR20170028849A (en) 2015-09-04 2017-03-14 도쿄엘렉트론가부시키가이샤 Focus ring and substrate processing apparatus
KR102676461B1 (en) * 2023-05-30 2024-06-28 솔믹스 주식회사 parts for a semiconductor device manufacturing device, a semiconductor device manufacturing device including the same and a method for manufacturing a semiconductor device using the same

Similar Documents

Publication Publication Date Title
JP4037956B2 (en) Chamber inner wall protection member
JP4213790B2 (en) Plasma-resistant member and plasma processing apparatus using the same
JP2003146751A (en) Plasma-resistant member and method of producing the same
US20050133068A1 (en) Method for cleaning a creamic member for use in a system for producing semiconductors, a cleaning agent and a combination of cleaning agents
JPH1161451A (en) Focus ring of plasma etching equipment and plasma etching equipment
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JPH10229115A (en) Vacuum chuck for wafer
JP2000058510A (en) Electrode plate for plasma etching
KR100476350B1 (en) Method for manufacturing electrode plate for plasma processing device
JP2002043397A (en) Susceptor
JPH11209182A (en) Plasma corrosion resistant member
KR20040014257A (en) Component of glassy carbon for cvd apparatus and process for production thereof
JP2001176846A (en) Electrode plate for plasma etching and method of production
JP2002293630A (en) Plasma resistant member and method of producing the same
JP3461120B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JP3631368B2 (en) Plasma etching electrode and plasma etching apparatus using the same
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JP3859868B2 (en) Glassy electrode plate for plasma etching
JP2000164568A (en) Manufacture of plasma etching electrode
JP2003023002A (en) Chamber inner wall protecting member and plasma processing equipment
JP2002373930A (en) Susceptor
JP2003059903A (en) Gas blow-off plate of plasma etching apparatus, and method of manufacturing the same
JP2004119475A (en) Manufacturing method of component to be used in plasma processing apparatus and component used in plasma prossing apparatus
JP4021325B2 (en) Manufacturing method of parts for plasma processing apparatus
JPH11189471A (en) Roll made of vitrified carbon, its production, plasma generator, its chamber inner wall protecting member, protection of the chamber inner wall and plasma treatment