JPH10167826A - Production of vitreous carbon material - Google Patents

Production of vitreous carbon material

Info

Publication number
JPH10167826A
JPH10167826A JP8340538A JP34053896A JPH10167826A JP H10167826 A JPH10167826 A JP H10167826A JP 8340538 A JP8340538 A JP 8340538A JP 34053896 A JP34053896 A JP 34053896A JP H10167826 A JPH10167826 A JP H10167826A
Authority
JP
Japan
Prior art keywords
thermosetting resin
carbonization
carbon
carbon material
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8340538A
Other languages
Japanese (ja)
Inventor
Toshitaka Ohashi
敏孝 大橋
Hiroki Katsumata
弘樹 勝亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP8340538A priority Critical patent/JPH10167826A/en
Publication of JPH10167826A publication Critical patent/JPH10167826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a vitreous carbon material having a homogeneous and dense structure, impermeability for gases and >6mm thickness by a simple method with a good production yield. SOLUTION: One or more kinds of monomers, prepolymers and low mol.wt. polymers of a thermosetting resin which converts into vitreous carbon by carbonization is mixed with a carbon black having <=20nm average primary particle size and <=100ml/100g oil absorption of dibutyl phthalate measured by a mechanical method as it is or uniformly dispersed in an org. solvent. The mixture is compacted, hardened and then calcined for carbonization by heating at >=800 deg.C in an inert gas atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、均質緻密な組織構
造を備えるガラス状カーボン材の製造方法、特に厚さが
6mmを超える肉厚形状を有する高品位のガラス状カーボ
ン材を簡易な方法を用いて製品歩留まり良く製造する方
法に関する。
The present invention relates to a method for producing a glassy carbon material having a homogeneous and dense structure, and more particularly to a simple method for producing a high-quality glassy carbon material having a thickness exceeding 6 mm. The present invention relates to a method for producing a product with high yield using the same.

【0002】[0002]

【従来の技術】一般に、ガラス状カーボン材はガラス質
の緻密な組織構造を有する異質な炭素材料で、通常のカ
ーボン材に比べて化学的安定性、気体不透過性、耐摩耗
性、自己潤滑性、表面の平滑性及び堅牢性などに優れる
ことから、その特性を生かして電池用電極、電解用電
極、半導体製造用坩堝のほか、多様な分野で各種工業材
料に有用されている。また、近年では組織から微少なパ
ーティクルが離脱することがない非汚染性の材質性状に
着目して、半導体製造装置のプラズマエッチング用電極
やイオン注入装置用部材など汚染を嫌う半導体分野での
実用化が図られている。
2. Description of the Related Art In general, a vitreous carbon material is a heterogeneous carbon material having a vitreous dense structure, and has chemical stability, gas impermeability, abrasion resistance, and self-lubrication compared to ordinary carbon materials. Because of its excellent properties, surface smoothness, and robustness, it is used for various industrial materials in various fields in addition to electrodes for batteries, electrodes for electrolysis, crucibles for semiconductor production, and the like, utilizing its properties. In recent years, attention has been paid to non-contaminating material properties that do not allow minute particles to detach from the tissue, and practical use in the semiconductor field where contamination is averse, such as electrodes for plasma etching of semiconductor manufacturing equipment and members for ion implantation equipment. Is planned.

【0003】一般に、ガラス状カーボン材はフェノール
系またはフラン系などの炭化残炭率の高い熱硬化性樹脂
のモノマー、プレポリマー又は低重合体を成形、硬化し
た前駆体を焼成炭化する方法によって製造される。この
プロセスによる焼成炭化の機構は、固相で進行するた
め、前駆体樹脂の熱分解によって多量に発生する揮発分
を固相外に排出し、体積収縮しながら炭化物に転化する
過程をたどる。ところが、前駆体が大型で肉厚形状であ
ると、熱分解ガスや縮合水が成形体内から円滑に排出さ
れずに組織内部に残留し、これが原因でポアやボイドの
発生、ひいては材質の膨れ、割れ等の材質欠陥を招くこ
とになる。このため、大型や肉厚形状のガラス状カーボ
ン材を工業的に製造することは炭素業界の大きな課題と
されており、その研究も盛んに行われている。
In general, a glassy carbon material is produced by molding a monomer, prepolymer or low polymer of a thermosetting resin having a high carbonization residue such as a phenol-based or furan-based carbon, and calcining and curing the cured precursor. Is done. Since the mechanism of calcined carbonization by this process proceeds in the solid phase, a large amount of volatile components generated by the thermal decomposition of the precursor resin is discharged out of the solid phase, and is converted into carbide while contracting the volume. However, if the precursor is large and thick, the pyrolysis gas or condensed water remains in the tissue without being discharged smoothly from the molded body, which causes pores and voids, which in turn causes the material to swell. Material defects such as cracks will be caused. For this reason, industrially producing large and thick glassy carbonaceous materials is regarded as a major issue in the carbon industry, and researches are being actively conducted.

【0004】従来、大型または肉厚形状のガラス状カー
ボン材を製造するための技術としては、大別して原料と
なる熱硬化性樹脂の種類や性状を選択する方法と、熱硬
化性樹脂に他の添加成分を複合化して原料系とする方法
が挙げられる。このうち前者の方法には、例えば分子量
100以上、粘度1〜100ポイズ、ゲル化時間5〜6
0分のフェノール樹脂を特定の条件により加熱処理し、
ついで成形硬化したのち焼成炭化して肉厚板状ガラス状
カーボン材を製造する方法(特開平4-362062号公報)
等が提案されているが、4mmを超える肉厚品を得るに
は、製造条件の厳密な制御が必要で、長い製造期間を要
する。
Conventionally, techniques for producing a large or thick glassy carbon material include a method of roughly selecting the type and properties of a thermosetting resin to be a raw material, and a technique of adding another type of thermosetting resin to a thermosetting resin. There is a method of compounding the additive components to form a raw material system. Among them, the former method includes, for example, a molecular weight of 100 or more, a viscosity of 1 to 100 poise, and a gelation time of 5 to 6
0 minute phenolic resin is heat-treated under specific conditions,
A method of producing a thick plate-like glassy carbon material by forming and hardening and then calcining and carbonizing (Japanese Unexamined Patent Publication No. 4-362062).
However, in order to obtain a thick product exceeding 4 mm, strict control of manufacturing conditions is required, and a long manufacturing period is required.

【0005】後者の方法としては、カーボン粉末を添加
する方法が炭化残炭率を向上させる効果が大きく、肉厚
製品を得るため有利となることから数多くの提案がなさ
れている。例えば熱硬化性樹脂液とカーボン粉末を混練
して押し出し及び圧延成形したのち焼成炭化する方法
(特公平1-27967号公報)、カーボン粉末としてカーボ
ンブラックを用いる方法(特開昭64-24071号公報)、
(A)熱硬化性樹脂、(B)(A)の硬化粉末及び
(C)カーボンブラックを混合し、成形後炭化または黒
鉛化する方法(特公昭45-11004号公報)等がある。
[0005] As the latter method, many proposals have been made because the method of adding carbon powder has a large effect of improving the carbonization residual carbon ratio and is advantageous for obtaining a thick product. For example, a method in which a thermosetting resin liquid and a carbon powder are kneaded, extruded and roll-formed, then calcined and carbonized (Japanese Patent Publication No. 1-27967), and a method using carbon black as the carbon powder (Japanese Patent Application Laid-Open No. 64-24071) ),
There is a method of mixing (A) a thermosetting resin, (B) a cured powder of (A) and (C) carbon black, molding and carbonizing or graphitizing (Japanese Patent Publication No. 45-11004).

【0006】しかしながら、ガラス状カーボン材の製造
方法として、上記のようなカーボン粉末等複合原料系を
用いた場合には、成形性の向上による製品の肉厚化・大
型化が可能となる利点がある一方で、気体不透過性が低
下する他、ガラス状カーボン固有の均一組織でなくなる
等の問題がある。
However, when a composite raw material system such as carbon powder as described above is used as a method for producing a glassy carbon material, there is an advantage that the thickness and size of the product can be increased by improving the moldability. On the other hand, there are problems such as a decrease in gas impermeability and a lack of a uniform structure inherent to glassy carbon.

【0007】また、カーボンブラック等の炭素微粉末
に、熱硬化性樹脂液を均一分散し、これに機械的エネル
ギーを加えてメカノケミカル現象を誘発させて均一混練
し、不融化処理後焼成する方法(特開昭58-145608号公
報)が提案されている。
Further, a method of uniformly dispersing a thermosetting resin liquid in carbon fine powder such as carbon black, applying mechanical energy thereto to induce a mechanochemical phenomenon, uniformly kneading the mixture, and firing after infusibilizing treatment. (JP-A-58-145608) has been proposed.

【0008】しかしながら、この方法では原料混合物を
均一分散させた後、厳密な混練工程及び粉末圧縮成型工
程を必要とする等工程が複雑で長く、このためその製造
コストは極めて高額となるという問題点がある。
However, this method requires a strict kneading step and a powder compression molding step after uniformly dispersing the raw material mixture, and the steps are complicated and long, so that the production cost is extremely high. There is.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、厚さ6mmを超える肉厚形状を有する均質緻密性状で
気体不透過性のガラス状カーボン材を簡易な方法を用い
て製品歩留まり良く製造できる方法を提供するものであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a highly dense, gas-impermeable, glass-like carbon material having a wall thickness exceeding 6 mm by using a simple method with a good product yield. It provides a method that can be manufactured.

【0010】[0010]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、熱硬化性樹脂液に平均
基本粒子径及び機械法によるジブチルフタレートの吸油
量が特定の範囲にあるカーボンブラックを混合し、成形
硬化後焼成炭化処理すれば、厚さ6mmを超え9mm程度の
肉厚形状のものでも均一緻密性状で気体不透過性に優れ
るガラス状カーボンが製造歩留まり良く製造できること
を見い出し、本発明を完成するに至った。すなわち、本
発明は、炭素化によりガラス状カーボンに転化する熱硬
化性樹脂のモノマー、プレポリマー及び低重合体の1種
又は2種以上に、平均基本粒子径20nm以下、機械法に
よるジブチルフタレート吸油量100ml/100g以下
の性状を有するカーボンブラックを0.1〜50重量%
混合し、該混合物を成形硬化したのち、不活性ガス雰囲
気中、焼成し炭化処理することを特徴とするガラス状カ
ーボン材の製造方法を提供するものである。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have found that the average basic particle diameter and the amount of dibutyl phthalate oil absorption by a mechanical method within a specified range are added to the thermosetting resin liquid. It is found that if black is mixed and subjected to firing and carbonization after molding and hardening, glassy carbon having a thickness of more than 6 mm and a thickness of about 9 mm can be produced with good production yield with uniform denseness and excellent gas impermeability, with a high production yield. The present invention has been completed. That is, the present invention relates to one or more of a monomer, a prepolymer and a low polymer of a thermosetting resin which is converted into glassy carbon by carbonization, an average basic particle diameter of 20 nm or less, and dibutyl phthalate oil absorption by a mechanical method. 0.1 to 50% by weight of carbon black having an amount of 100 ml / 100 g or less
It is intended to provide a method for producing a glassy carbon material, which comprises mixing, molding and curing the mixture, and then firing and carbonizing in an inert gas atmosphere.

【0011】[0011]

【発明の実施の形態】本発明で用いる熱硬化性樹脂のモ
ノマー、プレポリマー及び低重合体(以下、熱硬化性樹
脂液という)としては、炭素化によりガラス状カーボン
に転化する樹脂材料であれば特に制限されないが、フェ
ノール樹脂初期縮合体、フラン樹脂初期縮合体、フルフ
リルアルコール、フルフラール、ジフェニルオキサイ
ド、不飽和ポリエステル樹脂等が挙げられ、このうち、
フラン樹脂初期縮合体、フェノール樹脂初期縮合体が成
形加工性、焼成時の形状安定性及び炭素化反応速度等の
面から好ましい。該熱硬化性樹脂のモノマー、プレポリ
マー及び低重合体は、1種又は2種以上を組み合わせて
用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As the thermosetting resin monomer, prepolymer and low polymer (hereinafter referred to as thermosetting resin liquid) used in the present invention, any resin material which is converted into glassy carbon by carbonization can be used. If not particularly limited, phenol resin precondensate, furan resin precondensate, furfuryl alcohol, furfural, diphenyl oxide, unsaturated polyester resin and the like, among them,
Furan resin precondensates and phenol resin precondensates are preferred from the viewpoints of moldability, shape stability during firing, carbonization reaction rate, and the like. The monomer, prepolymer and low polymer of the thermosetting resin can be used alone or in combination of two or more.

【0012】本発明で用いる複合原料系の添加成分とな
るカーボンブラックは、平均基本粒子径20nm以下、機
械法によるジブチルフタレート吸油量(以下、DBP吸
油量という)100ml/100g以下の性状を有するも
のである。平均基本粒子径とは、ASTM D3849
−89に準拠して測定されたものであり、微粉末の一次
粒子の算術平均粒子径を言う。また、機械法によるDB
P吸油量は、JIS K6221吸油量A法に準拠し求
められるものである。平均基本粒子径が20nm、DBP
吸油量が100ml/100gを超えると、組織が不均質
となり易く、気体不透過性が低下する。DBP吸油量の
より好ましい範囲は、50〜100ml/100gであ
る。
The carbon black as an additive component of the composite material system used in the present invention has an average basic particle diameter of 20 nm or less and a dibutyl phthalate oil absorption (hereinafter referred to as DBP oil absorption) by a mechanical method of 100 ml / 100 g or less. It is. The average basic particle size is defined in ASTM D3849.
It is measured according to -89 and refers to the arithmetic average particle diameter of primary particles of fine powder. DB by mechanical method
The P oil absorption is determined in accordance with JIS K6221 oil absorption A method. Average basic particle size is 20nm, DBP
If the oil absorption exceeds 100 ml / 100 g, the tissue tends to be heterogeneous and the gas impermeability is reduced. A more preferable range of the DBP oil absorption is 50 to 100 ml / 100 g.

【0013】本発明において、熱硬化性樹脂液と上記カ
ーボンブラックとの混合方法は、特に制限されず、カー
ボンブラックを熱硬化性樹脂液にそのまま添加したのち
機械的に混合する方法、予めカーボンブラックを有機溶
媒に均一に分散させた状態で混合し、これを熱硬化性樹
脂液に添加したのち機械的に混合する方法等が挙げられ
る。予めカーボンブラックを有機溶媒に分散させる場
合、カーボンブラックの配合量は、有機溶媒中、10〜
15重量%程度が適当である。15重量%を超えると均
一分散せず、10重量%未満では有機溶媒が十分に揮散
せず不具合の原因となる。また、該有機溶媒としては、
例えばメタノール、エタノール等の比較的低温で揮散す
るアルコール類が挙げられる。また、カーボンブラック
の配合量は、用いる熱硬化性樹脂の種類や成形肉厚等を
考慮して適宜設定されるが、熱硬化性樹脂液に対し0.
1〜50重量%の範囲とするのが好ましい。配合量が
0.1重量%未満では添加効果が得られず、50重量%
を超えると均一混合ができなくなる。
In the present invention, the method of mixing the thermosetting resin liquid with the above-mentioned carbon black is not particularly limited, and a method in which carbon black is added to the thermosetting resin liquid as it is and then mixed mechanically, Are mixed in a state of being uniformly dispersed in an organic solvent, added to the thermosetting resin liquid, and then mechanically mixed. When carbon black is dispersed in an organic solvent in advance, the compounding amount of the carbon black is 10 to 10 in the organic solvent.
About 15% by weight is appropriate. If it exceeds 15% by weight, it will not be uniformly dispersed, and if it is less than 10% by weight, the organic solvent will not be sufficiently volatilized, causing a problem. Further, as the organic solvent,
For example, alcohols that evaporate at a relatively low temperature, such as methanol and ethanol, may be mentioned. The amount of the carbon black is appropriately set in consideration of the type of the thermosetting resin to be used, the molding thickness, and the like.
It is preferred to be in the range of 1 to 50% by weight. If the amount is less than 0.1% by weight, the effect of addition cannot be obtained, and 50% by weight.
If it exceeds 300, uniform mixing cannot be performed.

【0014】熱硬化性樹脂液とカーボンブラックを機械
的に混合する方法としては、特に制限されないが、2本
又は3本ロールミル、ボールミル、バンバリーミル及び
コロイドミルで均一に分散、混合する方法が挙げられ
る。この際、必要に応じて加熱操作を加えたり、熱硬化
性樹脂等の硬化剤を配合してもよい。上記の操作によっ
て得られた混合物は液状物質、半流動性物質等の状態で
得られるが、必要に応じて脱気操作、脱泡操作を加えて
もよい。
The method of mechanically mixing the thermosetting resin liquid and the carbon black is not particularly limited, but examples include a method of uniformly dispersing and mixing with a two or three roll mill, a ball mill, a Banbury mill and a colloid mill. Can be At this time, a heating operation may be added as necessary, or a curing agent such as a thermosetting resin may be blended. The mixture obtained by the above operation is obtained in a state of a liquid substance, a semi-fluid substance, or the like, but a deaeration operation or a deaeration operation may be added as necessary.

【0015】次に、該混合物は、目的とするガラス状カ
ーボン材の肉厚が6mm以上及び所望の形状となるように
成形操作をすればよい。成形法としては、注型成形、多
重成形(重ね塗り)、押出成形、射出成形、ミーティン
グロール成形等の方法が挙げられる。注型成形方法の場
合には、真空系内、十分に減圧脱泡処理を施すことが好
ましい。
Next, the mixture may be shaped so that the desired glassy carbon material has a desired thickness and a thickness of 6 mm or more. Examples of the molding method include methods such as cast molding, multiple molding (overcoating), extrusion molding, injection molding, and meeting roll molding. In the case of the casting molding method, it is preferable to sufficiently perform a vacuum degassing treatment in a vacuum system.

【0016】成形後は、硬化処理を行うことが好まし
く、150℃以上、好ましくは150℃〜300℃の加
熱オーブン中で行うのがよい。
After molding, it is preferable to carry out a curing treatment, preferably in a heating oven at 150 ° C. or higher, preferably 150 ° C. to 300 ° C.

【0017】その後、硬化処理された前駆体は、アルゴ
ン、窒素等の不活性ガス雰囲気の加熱炉で焼成し炭素化
処理される。焼成条件としては、特に制限されないが、
800℃以上、好ましくは1000〜2800℃の温度
範囲で加熱して炭素化すればよく、その後、冷却して目
的とする肉厚ガラス状カーボン材を得る。
Thereafter, the cured precursor is baked in a heating furnace in an atmosphere of an inert gas such as argon or nitrogen to be carbonized. The firing conditions are not particularly limited,
The carbonization may be performed by heating at a temperature of 800 ° C. or higher, preferably 1000 to 2800 ° C., and then cooling to obtain the desired thick glassy carbon material.

【0018】肉厚形状を有するガラス状カーボン材の製
造が困難な理由は、原料となる熱硬化性樹脂液を成形す
る段階で組織内部に内在するポア残留率が高くなること
に主因がある。すなわち、熱硬化性樹脂の硬化反応は分
解縮合反応による前駆体ガスあるいは縮合水は外部に拡
散し難くなり、内部にポアとなって残留する。残留する
ポアが多いと焼成炭化工程においてポアに吸蔵されてい
る気体が熱膨張を起こしたり、炭化収縮でポア自体に物
理的応力が集中する結果、組織の密度低下、材質の膨
れ、亀裂または破損を招く。したがって、このような現
象を避けるためには、前駆体ガスや縮合水の発生源とな
る原料成分を可及的に少なくし、焼成時の炭素収率を高
める必要がある。この意味で熱硬化性樹脂液にカーボン
粉末を添加混合する複合原料系は有利となる。一方、こ
の種の固体原料の粒径が大きいと、樹脂液中に均一に分
散させることは困難となるうえ、混合分散させる際に空
気の巻き込みを避けることが出来ずにポアの発生原因と
なるといった欠点となる。また、複合原料系により製造
したガラス状カーボンは、異質なカーボン組織が介在す
ることにより、組織性状が不均一となり、この不均一さ
がパーティクル発生の要因となる。本発明では、熱硬化
性樹脂液に特定の性状を有するカーボンブラックを添加
することにより、ガラス状カーボンの有する構造を阻害
することなく、原料系の炭化収率を効果的に増大させる
ことができる。
The reason why it is difficult to produce a glassy carbon material having a thick shape is mainly due to an increase in the residual ratio of pores existing inside the tissue at the stage of molding a thermosetting resin liquid as a raw material. That is, in the curing reaction of the thermosetting resin, the precursor gas or the condensed water by the decomposition condensation reaction becomes difficult to diffuse to the outside, and remains as pores inside. If there are many remaining pores, the gas occluded in the pores undergoes thermal expansion in the firing carbonization process, and physical stress concentrates on the pores themselves due to carbonization shrinkage, resulting in a decrease in tissue density, swelling, cracking or breakage of the material Invite. Therefore, in order to avoid such a phenomenon, it is necessary to reduce the raw material components as sources of precursor gas and condensed water as much as possible and to increase the carbon yield during firing. In this sense, a composite raw material system in which carbon powder is added to and mixed with a thermosetting resin liquid is advantageous. On the other hand, when the particle size of this kind of solid raw material is large, it is difficult to uniformly disperse the resin material in the resin liquid, and when mixing and dispersing, entrainment of air cannot be avoided, which causes pores. This is a disadvantage. The glassy carbon produced by the composite raw material system has a non-uniform texture due to the presence of a heterogeneous carbon structure, and this non-uniformity causes particles. In the present invention, by adding carbon black having a specific property to the thermosetting resin liquid, the carbonization yield of the raw material system can be effectively increased without inhibiting the structure of the glassy carbon. .

【0019】[0019]

【発明の効果】本発明によれば、均質緻密な組織構造で
気体不透過性を有する肉厚形状のガラス状カーボン材の
効果的な製造が可能となる。具体的には嵩密度1.5g
/CC以上の特性を備える厚さ6mm以上の肉厚形状で、気
体透過度が10-9cm2 /sec (窒素ガス)のガラス状カ
ーボン材を得ることができる。
According to the present invention, it is possible to effectively produce a thick glass-like carbon material having a gas-impermeable structure with a homogeneous and dense structure. Specifically, the bulk density is 1.5 g
A glassy carbon material having a thickness of not less than 6 mm and a gas permeability of 10 −9 cm 2 / sec (nitrogen gas) having a characteristic of not less than / CC can be obtained.

【0020】[0020]

【実施例】次に、本発明を実施例を挙げて具体的に説明
するが、これは単に例示であって、本発明を何ら制限す
るものではない。
Next, the present invention will be described in detail with reference to examples, but this is merely an example and does not limit the present invention at all.

【0021】実施例1〜4、比較例1〜5 減圧蒸留法により精製したフェノール及びホルマリンを
常法に従って付加縮合反応させ、フェノール樹脂初期縮
合物(液状樹脂)を調製した。ついで、該フェノール樹
脂初期縮合物に平均基本粒子径を15及び19nmで機械
法によるDBP吸油量70、80及び90ml/100g
の性状を有するカーボンブラックを0.5、1、25及
び49wt%添加し、三本ロールミルを用いて機械的に混
合した。この混合物をポリプロピレン製のバットに流し
込んで真空デシケータに入れ、10torr以下の減圧下で
脱気処理を行ったのち、所定酸素濃度に調節された清浄
系内の加熱オーブンに移して100℃の温度により硬化
処理した。成形された前駆体は、縦170mm、横110
mm、厚さがそれぞれ9、8、7mmの板状体であった。つ
いで、前駆体の両面を不純物5ppm 未満の高純度黒鉛板
で挟み付け、同じく高純度黒鉛ヒーターを設置したパッ
キングレスの加熱炉にセットし、炉内雰囲気を不純物1
0ppm 未満の高純度アルゴンガスで保持しながら200
0℃まで加熱して焼成炭化処理を施し、縦140mm、横
90mm、厚さがそれぞれ8、7、6mmのガラス状カーボ
ン材を得た。このようにして得られたガラス状カーボン
材の肉厚、組織及び気体透過度を表1に示した。なお、
比較のため、平均基本粒子径19nmで機械法によるDB
P吸油量90ml/100gの性状を有するカーボンブラ
ックを0.05及び53wt%添加したもの(比較例1、
2)、平均基本粒子径25nmで機械法によるDBP吸油
量110ml/100gの性状を有するカーボンブラック
を1wt%添加したもの(比較例3)、平均基本粒子径1
9nmで機械法によるジブチルフタレート吸油量130ml
/100gの性状を有するカーボンブラックを1wt%添
加したもの(比較例4)及びカーボンブラックを添加し
ないもの(比較例5)について、その他の条件は実施例
と同様にして製造したガラス状カーボン材の結果を表1
に併載した。
Examples 1-4, Comparative Examples 1-5 Phenol and formalin purified by vacuum distillation were subjected to an addition condensation reaction according to a conventional method to prepare a phenol resin precondensate (liquid resin). Next, the phenolic resin precondensate has an average basic particle diameter of 15 and 19 nm and DBP oil absorption of 70, 80 and 90 ml / 100 g by a mechanical method.
0.5, 1, 25 and 49% by weight of carbon black having the following properties were added and mechanically mixed using a three-roll mill. The mixture was poured into a polypropylene vat, placed in a vacuum desiccator, degassed under a reduced pressure of 10 torr or less, then transferred to a heating oven in a cleaning system adjusted to a predetermined oxygen concentration, and heated to a temperature of 100 ° C. Hardened. The molded precursor is 170 mm long and 110 mm wide.
mm, and a plate-like body having a thickness of 9, 8, 7 mm, respectively. Then, both surfaces of the precursor were sandwiched between high-purity graphite plates having impurities of less than 5 ppm, and the precursor was set in a packingless heating furnace also equipped with a high-purity graphite heater.
While maintaining with high purity argon gas of less than 0 ppm, 200
It was heated to 0 ° C. and calcined to give a glassy carbon material having a length of 140 mm, a width of 90 mm and a thickness of 8, 7, and 6 mm, respectively. Table 1 shows the thickness, structure and gas permeability of the glassy carbon material thus obtained. In addition,
For comparison, DB by mechanical method with an average basic particle diameter of 19 nm
Carbon black having properties of P oil absorption of 90 ml / 100 g was added at 0.05 and 53 wt% (Comparative Example 1,
2) 1% by weight of carbon black having an average basic particle diameter of 25 nm and having a DBP oil absorption of 110 ml / 100 g by a mechanical method (Comparative Example 3);
Dibutyl phthalate oil absorption by mechanical method at 9nm 130ml
/ 100 g of carbon glass having a property of 1 wt% (Comparative Example 4) and those without carbon black (Comparative Example 5) were prepared in the same manner as in Examples except for the other conditions. Table 1 shows the results
It was also attached to.

【0022】[0022]

【表1】 [Table 1]

【0023】表中、製品厚さの「○」は炭化又は黒鉛化
で割れ発生なしを示し、「×」は炭化又は黒鉛化で割れ
発生を示す。また、組織は、5000倍率の電子顕微鏡
(SEM)観察によるもので、「均質」はガラス質で粒
子の存在を確認できないことを示し、「不均質」は局所
的なカーボン粒子の凝集を確認したものをいう。また、
気体透過度は1kg/cm2 加圧下での窒素ガスの透過量を
いう。
In the table, “○” in the thickness of the product indicates no cracking due to carbonization or graphitization, and “X” indicates cracking due to carbonization or graphitization. In addition, the structure was observed by an electron microscope (SEM) at a magnification of 5000. “Homogeneous” indicates that the particles were vitreous and the presence of particles could not be confirmed, and “heterogeneous” confirmed local aggregation of carbon particles. A thing. Also,
The gas permeability refers to the amount of nitrogen gas permeated under a pressure of 1 kg / cm 2 .

【0024】表1から、実施例1〜4ではいずれも厚さ
6mm以上の肉厚形状でありながら実質的にポアや組織欠
陥のない均質緻密で気体不透過性のガラス状カーボン材
が製品歩留まり良く製造されている。これに対し、比較
例1〜5では材質特性及び製品歩留まりともに大幅に低
下し、均質緻密性も減退することが認められた。
From Table 1, it can be seen that in Examples 1-4, a homogeneous, dense, gas-impermeable, glassy carbon material having a thickness of at least 6 mm and substantially no pores or structural defects was produced. Well manufactured. On the other hand, in Comparative Examples 1 to 5, it was recognized that both the material properties and the product yield were significantly reduced, and the homogeneity was also reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素化によりガラス状カーボンに転化す
る熱硬化性樹脂のモノマー、プレポリマー及び低重合体
の1種又は2種以上に、平均基本粒子径20nm以下、機
械法によるジブチルフタレート吸油量100ml/100
g以下の性状を有するカーボンブラックを0.1〜50
重量%混合し、該混合物を成形硬化したのち、不活性ガ
ス雰囲気中、焼成し炭化処理することを特徴とするガラ
ス状カーボン材の製造方法。
1. An oil having an average basic particle diameter of 20 nm or less, a dibutyl phthalate oil absorption by a mechanical method, in one or more of a monomer, a prepolymer, and a low polymer of a thermosetting resin which is converted into glassy carbon by carbonization. 100ml / 100
g of carbon black having a property of 0.1 to 50 g or less.
A method for producing a glassy carbon material, comprising: mixing by weight, molding and hardening the mixture, and then firing and carbonizing in an inert gas atmosphere.
JP8340538A 1996-12-05 1996-12-05 Production of vitreous carbon material Pending JPH10167826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8340538A JPH10167826A (en) 1996-12-05 1996-12-05 Production of vitreous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8340538A JPH10167826A (en) 1996-12-05 1996-12-05 Production of vitreous carbon material

Publications (1)

Publication Number Publication Date
JPH10167826A true JPH10167826A (en) 1998-06-23

Family

ID=18337949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8340538A Pending JPH10167826A (en) 1996-12-05 1996-12-05 Production of vitreous carbon material

Country Status (1)

Country Link
JP (1) JPH10167826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
JP2003027270A (en) * 2001-07-13 2003-01-29 Tokai Carbon Co Ltd Carbon electrode for electrolytic cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
JP2003027270A (en) * 2001-07-13 2003-01-29 Tokai Carbon Co Ltd Carbon electrode for electrolytic cell

Similar Documents

Publication Publication Date Title
KR100824220B1 (en) Ceramic composite
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
JPH1017382A (en) Production of silicon carbide formed body
JPH10167826A (en) Production of vitreous carbon material
JPH10172738A (en) Glass like carbon heating element
JP2007320787A (en) Silicon carbide sintered compact and its manufacturing method
JP2005298231A (en) Manufacturing method of isotropic graphite material
JP2010514650A (en) Glassy carbon material and method for producing the same
JP3543980B2 (en) Method for producing glassy carbon material
JPH08222357A (en) Manufacture of carbon heating element
JP2001130963A (en) Method for producing isotropic high-density carbon material
JP2000103686A (en) Production of carbon fiber reinforced carbon composite material
JP3342515B2 (en) Method for producing thick glassy carbon material
KR20190064549A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JP3434538B2 (en) Method for producing glassy carbon material
KR102192302B1 (en) Carbon-Carbon Composites and Method for Producing the Same
JP2006232565A (en) Method of manufacturing carbon material and method of purifying the same
JP5130099B2 (en) Method for producing sintered silicon carbide
JP2000026177A (en) Production of silicon-silicon carbide ceramics
KR940006428B1 (en) Process for the preparation of firebrick
JPH10251061A (en) Boron-containing vitreous carbon material and its production
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JPS60112609A (en) Preparation of rigid molded article of carbon
JP3198120B2 (en) Method for producing glassy carbon plate
JPS6259508A (en) Production of carbonaceous, thin plate