JP2006232565A - Method of manufacturing carbon material and method of purifying the same - Google Patents

Method of manufacturing carbon material and method of purifying the same Download PDF

Info

Publication number
JP2006232565A
JP2006232565A JP2005045318A JP2005045318A JP2006232565A JP 2006232565 A JP2006232565 A JP 2006232565A JP 2005045318 A JP2005045318 A JP 2005045318A JP 2005045318 A JP2005045318 A JP 2005045318A JP 2006232565 A JP2006232565 A JP 2006232565A
Authority
JP
Japan
Prior art keywords
carbon material
organic solvent
halogen
carbon
body obtained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005045318A
Other languages
Japanese (ja)
Inventor
Kazu Shinryu
隆員 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005045318A priority Critical patent/JP2006232565A/en
Publication of JP2006232565A publication Critical patent/JP2006232565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a carbon material having the same purity in the center part as that in the vicinity of the surface even when the carbon material has ≥30 mm thickness in any optional three dimensional direction, and to provide a method of purifying the same. <P>SOLUTION: The manufacturing method comprises: a forming step for forming a kneaded material of carbon raw material powder and a binder; a firing step; a step for impregnating the fired body with a solution in which an organic material containing halogen is dissolved in a heated organic solvent at a temperature equal to or below the boiling point of the organic solvent; a drying step and a graphitizing step, or the carbon material is obtained by the purifying method comprising: passing the fired or fired/graphitized carbon material through the impregnating step, a drying step and a heating step under a gas atmosphere containing halogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭素材、特に、黒鉛化処理が施される炭素材の製造方法および焼成または焼成・黒鉛化された炭素材の純化方法に関する。   The present invention relates to a method for producing a carbon material, in particular, a carbon material that is subjected to graphitization, and a method for purifying a carbon material that has been calcined or calcined / graphitized.

炭素材は、高温下での機械的強度、耐熱性、耐久性、電気伝導性、耐食性、電気伝導性、熱伝導性等の多くの優れた特性を有していることから、半導体製造、ガラス製造、原子炉、冶金、電極等の様々な用途において利用されている。
これらのうち、特に、半導体製造、高純度ガラス製造、原子炉等の用途においては、上記特性に加えて、高純度であることも要求される。
Carbon materials have many excellent properties such as mechanical strength at high temperatures, heat resistance, durability, electrical conductivity, corrosion resistance, electrical conductivity, and thermal conductivity. It is used in various applications such as manufacturing, nuclear reactor, metallurgy, and electrodes.
Among these, in particular, in applications such as semiconductor production, high-purity glass production, and nuclear reactors, in addition to the above characteristics, high purity is also required.

従来の炭素材の純化処理は、ハロゲンガス雰囲気下で加熱し、ハロゲンガスを炭素材内部に浸透させて、該炭素材中の不純物と反応して生成した化合物を高温処理により揮散させることにより行われていた。
このような純化処理は、約2000℃以上の高温処理により行われるため、エネルギー消費量が多く、コスト、効率等の観点から、様々な工夫、改良がなされている。
Conventional carbon material purification treatment is performed by heating in a halogen gas atmosphere, infiltrating the halogen gas into the carbon material, and volatilizing the compound formed by reaction with impurities in the carbon material by high-temperature treatment. It was broken.
Since such a purification process is performed at a high temperature of about 2000 ° C. or higher, the energy consumption is large, and various devices and improvements have been made from the viewpoint of cost, efficiency, and the like.

例えば、特許文献1には、純化処理用ガスの洩れを防止し、また、純化効率を向上させるため、処理室の周囲に特定空間を設けるとともに、純化処理用ガスの圧力変動を繰り返す方法が開示されている。
また、特許文献2には、CF4ガスを用いることにより、炭素材のかさ密度に依存することなく、かつ、従来よりも短時間で、より高純度化を図ることができることが開示されている。
特公平7−29762号公報 特開2000−7313号公報
For example, Patent Document 1 discloses a method of providing a specific space around a processing chamber and repeating pressure fluctuations of the purification gas in order to prevent the purification gas from leaking and improve the purification efficiency. Has been.
Further, Patent Document 2 discloses that by using CF 4 gas, higher purity can be achieved without depending on the bulk density of the carbon material and in a shorter time than conventional. .
Japanese Patent Publication No. 7-29762 JP 2000-7313 A

しかしながら、上述したような従来のガスを用いた純化方法においては、任意の三次元方向のいずれにおいても30mm以上の厚さを有する炭素材の場合、該炭素材の表面近傍よりも中心部での純化レベルが低くなる傾向にあり、特に、炭素材の密度が高いほど、この傾向が強くなる。
また、炭素材製品は、使用により汚染され、不純物濃度が高くなると、純化処理を施した後、再利用されるのが一般的であるが、この場合も、上記と同様の純化レベルのばらつきが課題となっていた。
これは、炭素材が大きいほど、表面近傍に比べて内部への純化ガスが導入され難くなり、不純物と純化ガスとの反応頻度が減少することに起因すると考えられる。
However, in the purification method using the conventional gas as described above, in the case of a carbon material having a thickness of 30 mm or more in any arbitrary three-dimensional direction, the central portion is closer to the center than the vicinity of the surface of the carbon material. The purification level tends to be low, and this tendency becomes stronger as the density of the carbon material is higher.
In addition, when carbon material products are contaminated by use and the impurity concentration becomes high, the carbon material products are generally reused after being subjected to a purification treatment. In this case as well, there is a variation in the purification level similar to the above. It was an issue.
This is probably because the larger the carbon material, the more difficult it is to introduce the purifying gas into the interior compared to the vicinity of the surface, and the reaction frequency between the impurities and the purifying gas decreases.

本発明は、上記技術的課題を解決するためになされたものであり、任意の三次元方向のいずれにおいても30mm以上の厚さを有する炭素材であっても、その中心部における純度が表面近傍と同等レベルである炭素材を製造する方法およびその純化方法を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and even in a carbon material having a thickness of 30 mm or more in any three-dimensional direction, the purity in the central portion is near the surface. It is an object of the present invention to provide a method for producing a carbon material at a level equivalent to the above and a purification method thereof.

本発明に係る炭素材の製造方法は、炭素原料粉末およびバインダの混練物を成形する工程と、前記成形工程により得られた成形体を焼成する工程と、前記焼成工程により得られた焼成体に、ハロゲンを含む有機物を加熱した有機溶媒に溶解させた溶液を、該有機溶媒の沸点以下の温度で含浸させる工程と、前記含浸工程により得られた含浸体を乾燥させ、前記有機溶媒を除去する工程と、前記乾燥工程により得られた含浸体を黒鉛化処理する工程とを備えていることを特徴とする。
このように、黒鉛化処理前の焼成体にハロゲンを含む溶液を含浸させておくことにより、高温下での黒鉛化処理工程において前記ハロゲン成分が熱分解され、含浸体に含まれる不純物と反応して塩を生成し、含浸体の中心部まで純化することができる。
The method for producing a carbon material according to the present invention includes a step of molding a kneaded product of carbon raw material powder and a binder, a step of firing a molded body obtained by the molding step, and a fired body obtained by the firing step. A step of impregnating a solution in which a halogen-containing organic substance is dissolved in a heated organic solvent at a temperature not higher than the boiling point of the organic solvent, and drying the impregnated body obtained by the impregnation step to remove the organic solvent. And a step of graphitizing the impregnated body obtained by the drying step.
Thus, by impregnating the fired body before graphitization treatment with a solution containing halogen, the halogen component is thermally decomposed in the graphitization treatment step at a high temperature, and reacts with impurities contained in the impregnation body. Thus, salt can be generated and purified to the center of the impregnated body.

上記製造方法においては、ハロゲンを含む有機物として、炭素、水素およびハロゲンのみを組成元素とするモノマーまたはポリマーを用いることが好ましい。
炭素材の酸化および不純物の混入を防止する観点から、酸素および上記以外の元素を含まない有機物であることが好ましい。
In the above production method, it is preferable to use a monomer or polymer having only carbon, hydrogen and halogen as composition elements as the organic substance containing halogen.
From the viewpoint of preventing oxidation of the carbon material and mixing of impurities, an organic substance that does not contain oxygen and other elements than the above is preferable.

また、本発明に係る炭素材の純化方法は、焼成または焼成・黒鉛化した炭素材に、ハロゲンを含む有機物を加熱した有機溶媒に溶解させた溶液を、該有機溶媒の沸点以下の温度で含浸させる工程と、前記含浸工程により得られた含浸体を乾燥させ、前記有機溶媒を除去する工程と、前記乾燥工程により得られた含浸体を、ハロゲンを含むガス雰囲気下で熱処理する工程とを備えていることを特徴とする。
このような純化方法によれば、通常の方法により焼成または焼成・黒鉛化して得られた炭素材を後から純化処理する場合においても、ハロゲンを含む溶液を含浸させて熱処理する方法と、従来のハロゲンを含むガスを用いて熱処理する方法とを併用して、上記本発明に係る製造方法と同様の優れた純化効果を得ることができる。
In addition, the carbon material purification method according to the present invention includes impregnating a solution obtained by dissolving a halogen-containing organic substance in a heated organic solvent into a baked or baked / graphitized carbon material at a temperature equal to or lower than the boiling point of the organic solvent. A step of drying the impregnated body obtained by the impregnation step, removing the organic solvent, and a step of heat-treating the impregnated body obtained by the drying step in a gas atmosphere containing halogen. It is characterized by.
According to such a purification method, even when a carbon material obtained by firing or firing / graphitization by a normal method is subsequently purified, a method of impregnating a halogen-containing solution and performing a heat treatment, In combination with the method of heat treatment using a gas containing halogen, the same excellent purification effect as that of the production method according to the present invention can be obtained.

本発明に係る炭素材の製造方法によれば、任意の三次元方向のいずれにおいても30mm以上の厚さを有する炭素材であっても、含浸体の中心部まで効率的に純化することができ、その中心部における純度が表面近傍と同等レベルである炭素材を得ることができる。
また、本発明に係る炭素材の純化方法によれば、通常の方法により焼成または焼成・黒鉛化して得られた炭素材を、後工程において純化処理する場合においても、上記製造方法と同様に、炭素材の純化効果の向上を図ることができる。
According to the carbon material manufacturing method of the present invention, even a carbon material having a thickness of 30 mm or more in any three-dimensional direction can be efficiently purified to the center of the impregnated body. And the carbon material whose purity in the center part is a level equivalent to the surface vicinity can be obtained.
Further, according to the carbon material purification method of the present invention, even when the carbon material obtained by firing or firing / graphitization by a normal method is purified in a subsequent step, as in the above production method, It is possible to improve the purification effect of the carbon material.

以下、本発明をより詳細に説明する。
本発明に係る炭素材の製造方法においては、炭素原料粉末およびバインダの混練物の成形工程、焼成工程、ハロゲンを含む有機物の溶液の含浸工程、乾燥工程、黒鉛化処理工程とを経る。
すなわち、本発明は、ハロゲンガスを用いて、黒鉛化と同時に純化処理を行っていた従来法とは異なり、黒鉛化処理前の焼成体にハロゲンを含む溶液を含浸させておくことを特徴とするものである。
Hereinafter, the present invention will be described in more detail.
In the method for producing a carbon material according to the present invention, a carbon raw material powder and binder kneaded forming step, a firing step, an impregnation step with an organic solution containing halogen, a drying step, and a graphitization treatment step are performed.
That is, the present invention is characterized in that a halogen-containing solution is impregnated in a fired body before graphitization treatment, unlike a conventional method in which purification treatment is performed simultaneously with graphitization using a halogen gas. Is.

このような製造方法によれば、焼成体に含浸させたハロゲン成分が、黒鉛化処理工程において熱分解され、含浸体に含まれる不純物と反応して塩を生成し、高温処理によって、含浸体の中心部まで純化することができる。
したがって、任意の三次元方向のいずれにおいても30mm以上の厚さを有する炭素材であっても、その中心部の純度を、表面からの深さ10mm程度までの表面近傍と同等レベルにすることができる。
According to such a manufacturing method, the halogen component impregnated in the fired body is thermally decomposed in the graphitization treatment step, reacts with impurities contained in the impregnated body to generate a salt, It can be purified to the center.
Therefore, even if it is a carbon material having a thickness of 30 mm or more in any three-dimensional direction, the purity of the central portion can be made to be the same level as the vicinity of the surface up to a depth of about 10 mm from the surface. it can.

以下、本発明に係る炭素材の製造方法を工程順に説明する。
まず、成形工程においては、炭素原料粉末およびバインダを混合した混練物を所定の形状に成形する。
前記炭素原料としては、均質な炭素材を得る観点から、コークス、カーボンブラック、メソフェーズのような一元系材料を用いることが好ましい。
また、前記バインダは、ピッチ、タール、熱可塑性樹脂等の一般に用いられるものでよい。
Hereinafter, the manufacturing method of the carbon material which concerns on this invention is demonstrated in process order.
First, in the forming step, a kneaded material in which carbon raw material powder and a binder are mixed is formed into a predetermined shape.
As the carbon material, it is preferable to use a one-component material such as coke, carbon black, or mesophase from the viewpoint of obtaining a homogeneous carbon material.
The binder may be a commonly used one such as pitch, tar, and thermoplastic resin.

前記混練物の成形方法としては、押出プレス、一軸プレス、あるいはまた、それらによる成形体を再粉砕後、冷間静水圧プレス(CIP)する方法等が用いられる。   As the molding method of the kneaded product, an extrusion press, a uniaxial press, or a method of cold isostatic pressing (CIP) after re-grinding a molded body using them is used.

次に、上記のようにして得られた成形体を焼成する。
この焼成は、真空中または不活性ガス雰囲気下、800〜1200℃で熱処理することにより行われる。
焼成温度が800℃未満の場合、バインダ成分の炭素化が不十分となるため、高温で熱処理することが好ましいが、後の工程において、2500℃以上で黒鉛化処理が施されることを考慮すると、1200℃以下での熱処理で十分である。
前記焼成温度は、800〜1100℃であることがより好ましい。
Next, the molded body obtained as described above is fired.
This firing is performed by heat treatment at 800 to 1200 ° C. in a vacuum or in an inert gas atmosphere.
When the firing temperature is less than 800 ° C., carbonization of the binder component becomes insufficient, and thus it is preferable to perform heat treatment at a high temperature, but considering that graphitization is performed at 2500 ° C. or higher in a later step. A heat treatment at 1200 ° C. or lower is sufficient.
The firing temperature is more preferably 800 to 1100 ° C.

次に、前記焼成工程により得られた焼成体に、ハロゲンを含む有機物を加熱した有機溶媒に溶解させた溶液を、該有機溶媒の沸点以下の温度で含浸させる。
前記ハロゲンを含む有機物としては、炭素、水素およびハロゲンのみを組成元素とするモノマーまたはポリマーを用いることが好ましい。酸素を含むものは、炭素材の酸化を招くため好ましくなく、また、その他の元素等も、炭素材の不純物となり得ることから、含有されていないものが好ましい。
例えば、ポリ塩化ビニル、ポリ塩化ビニリデン等の塩素系樹脂、ポリ四フッ化エチレン、ポリ六フッ化プロピレン、四フッ化プロピレン−六フッ化プロピレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル等のフッ素系樹脂等を用いることができる。
Next, the fired body obtained by the firing step is impregnated with a solution in which an organic substance containing halogen is dissolved in a heated organic solvent at a temperature equal to or lower than the boiling point of the organic solvent.
As the organic substance containing halogen, it is preferable to use a monomer or polymer having only carbon, hydrogen and halogen as composition elements. Those containing oxygen are not preferred because they cause oxidation of the carbon material, and other elements and the like can also be impurities of the carbon material, and therefore those containing no oxygen are preferred.
For example, chlorinated resins such as polyvinyl chloride and polyvinylidene chloride, fluorine such as polytetrafluoroethylene, polyhexafluoropropylene, propylene tetrafluoride-hexafluoropropylene copolymer, polyvinylidene fluoride, and polyvinyl fluoride A resin or the like can be used.

また、前記ハロゲンを含む有機物を溶解するための有機溶媒としては、溶質である前記有機物を溶解することができるものであればいずれでもよいが、前記有機物の溶解度が高いものほど効率であり好ましい。
例えば、イソプロピルアルコール、シクロヘキサン、テトラヒドロフラン(THF)、ジメチルエーテル(DME)、エーテル等が好適に用いることができる。
The organic solvent for dissolving the halogen-containing organic substance may be any solvent that can dissolve the organic substance as a solute, but a higher solubility of the organic substance is more efficient and preferable.
For example, isopropyl alcohol, cyclohexane, tetrahydrofuran (THF), dimethyl ether (DME), ether and the like can be suitably used.

上記のようにして、ハロゲンを含む有機物を加熱した有機溶媒に溶解させた溶液中の溶質(ハロゲンを含む有機物)の濃度は、40〜90wt%であることが好ましく、より好ましくは50〜80wt%である。
溶液中の溶質の濃度が40wt%未満である場合、焼成体内部に含浸される溶質が少なすぎて、中心部における十分な純化を行うことが困難である。
一方、前記濃度が90wt%を超える場合、溶液の粘性が高くなる等により、焼成体に含浸しにくくなり、中心部にまで浸透しないおそれがある。また、焼成体の強度や形状等にもよるが、熱分解した際に発生するガスにより焼成体内部の圧力が上昇し、破損するおそれがある。
As described above, the concentration of the solute (organic substance containing halogen) in the solution in which the organic substance containing halogen is dissolved in the heated organic solvent is preferably 40 to 90 wt%, more preferably 50 to 80 wt%. It is.
When the concentration of the solute in the solution is less than 40 wt%, there is too little solute impregnated in the fired body, and it is difficult to sufficiently purify the center portion.
On the other hand, when the concentration exceeds 90 wt%, the sintered body is difficult to be impregnated due to an increase in the viscosity of the solution and the like, and there is a possibility that it does not penetrate into the center. Further, although depending on the strength, shape, etc. of the fired body, the pressure generated inside the fired body may increase due to the gas generated upon thermal decomposition, which may cause damage.

前記溶液の焼成体への含浸は、効率化のため、加熱しながらバッチ式の加圧方法により行うことが好ましい。この場合の加熱温度は、有機溶媒の揮発を抑制するため、該有機溶媒の沸点以下とする。
本発明においては、減圧法は、有機溶媒が揮発するため好ましくない。
The impregnation of the solution into the fired body is preferably performed by a batch-type pressurizing method while heating for efficiency. In this case, the heating temperature is set to be equal to or lower than the boiling point of the organic solvent in order to suppress volatilization of the organic solvent.
In the present invention, the decompression method is not preferable because the organic solvent volatilizes.

前記含浸工程により得られた含浸体は、バッチ式の真空炉等を用いて乾燥させ、含浸体に含まれる有機溶媒を除去した後、黒鉛化処理を施す。
前記黒鉛化処理は、通常の方法を用いることができ、例えば、アチソン炉による直接通電炉等を用いて、2500〜3200℃の高温で熱処理することにより行われる。
前記熱処理温度が、2500℃未満である場合、十分に黒鉛化することができず、特性不良となる。
一方、前記熱処理温度が3200℃を超える場合、局所的な異常加熱により、炭素材自体が劣化するおそれがある。
黒鉛化処理における熱処理温度は、2800〜3100℃であることがより好ましい。
The impregnated body obtained by the impregnation step is dried using a batch-type vacuum furnace or the like, and after removing the organic solvent contained in the impregnated body, graphitization is performed.
The graphitization treatment can be performed by a normal method, for example, by performing a heat treatment at a high temperature of 2500 to 3200 ° C. using a direct current furnace using an Atchison furnace.
When the heat treatment temperature is less than 2500 ° C., it cannot be graphitized sufficiently, resulting in poor characteristics.
On the other hand, when the said heat processing temperature exceeds 3200 degreeC, there exists a possibility that carbon material itself may deteriorate by local abnormal heating.
The heat treatment temperature in the graphitization treatment is more preferably 2800 to 3100 ° C.

上記のような高温熱処理である黒鉛化処理工程において、前記含浸体に含まれるハロゲン成分が熱分解され、含浸体に含まれる不純物と反応して塩を生成することにより、含浸体の中心部での純化を促進することができる。
なお、熱分解時に発生する水素(H)は、硫黄(S)等の非金属元素の捕捉効果を有しており、また、含浸させた溶液中の炭素(C)は、炭化して炭素材中に残留するが、炭素材の粒子結合力の強化や緻密化を図る役割を果たす。
また、得られた炭素材中に遊離炭素として残留するCは、パーティクルとなり得るが、微量であり、影響はほとんどない。炭素材の使用時におけるパーティクルの影響が懸念される場合は、真空脱ガス処理、熱分解炭素や炭化ケイ素(SiC)等によるコーティング等の後処理を施してもよい。
In the graphitization treatment step, which is a high-temperature heat treatment as described above, the halogen component contained in the impregnated body is thermally decomposed and reacts with the impurities contained in the impregnated body to produce a salt, thereby forming a central portion of the impregnated body. Can be purified.
In addition, hydrogen (H) generated at the time of thermal decomposition has an effect of capturing nonmetallic elements such as sulfur (S), and carbon (C) in the impregnated solution is carbonized to be a carbon material. It remains inside, but plays a role in strengthening and densifying the particle binding force of the carbon material.
Further, C remaining as free carbon in the obtained carbon material can be a particle, but it is a trace amount and has almost no influence. If there is a concern about the influence of particles during the use of the carbon material, post-treatment such as vacuum degassing, coating with pyrolytic carbon, silicon carbide (SiC), or the like may be performed.

また、本発明に係る炭素材の純化方法は、焼成または焼成・黒鉛化した炭素材について、上記本発明に係る製造方法と同様に、含浸工程と、乾燥工程とを経た後、ハロゲンを含むガス雰囲気下で熱処理するものである。
このように、通常の方法により焼成または焼成・黒鉛化して得られた炭素材を、後から純化処理する場合においては、ハロゲンを含む溶液を含浸させて熱処理する方法と、従来のハロゲンを含むガスを用いて熱処理する方法とを併用することにより、より効率的に、上記本発明に係る製造方法と同様に、炭素材の純化効果の向上を図ることができる。
In addition, the carbon material purification method according to the present invention is a gas containing halogen after being subjected to an impregnation step and a drying step, as in the above-described production method according to the present invention, for a baked or fired / graphitized carbon material. Heat treatment is performed in an atmosphere.
Thus, in the case of purifying the carbon material obtained by firing or firing / graphitization by a conventional method, a method of heat treatment by impregnating a solution containing halogen, and a conventional gas containing halogen By using together with the method of heat-treating using carbon, it is possible to improve the purification effect of the carbon material more efficiently as in the manufacturing method according to the present invention.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により制限されるものではない。
[実施例1]
コークスを粉砕した粒径50μm以下の炭素原料粉末およびピッチの混練物を、CIPプレスにより成形し、得られた成形体を1000℃で焼成し、縦300mm、横300mm、厚さ100mmの板状の焼成体を得た。
一方、ポリ塩化ビニルを75℃のシクロヘキンに溶解させて、ポリ塩化ビニル濃度60wt%の溶液を調製した。
この溶液を前記焼成体に2気圧で含浸させ、徐々に加圧しながら、室温まで自然冷却させて、含浸体を得た。
この含浸体を減圧乾燥させた後、2500℃で熱処理して黒鉛化させ、かさ密度1.78g/cm3の炭素材を得た。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
Coke pulverized carbon raw material powder with a particle size of 50 μm or less and a pitch kneaded product are molded by a CIP press, and the obtained molded body is fired at 1000 ° C. A fired body was obtained.
On the other hand, polyvinyl chloride was dissolved in cyclohexine at 75 ° C. to prepare a solution having a polyvinyl chloride concentration of 60 wt%.
This solution was impregnated into the fired body at 2 atm, and naturally cooled to room temperature while being gradually pressurized to obtain an impregnated body.
The impregnated body was dried under reduced pressure and then heat treated at 2500 ° C. to graphitize to obtain a carbon material having a bulk density of 1.78 g / cm 3 .

[比較例1]
実施例1において得られた焼成体を、塩素ガス雰囲気下、2500℃で熱処理して、黒鉛化させた炭素材を得た。
[Comparative Example 1]
The fired body obtained in Example 1 was heat-treated at 2500 ° C. in a chlorine gas atmosphere to obtain a graphitized carbon material.

[実施例2]
CIPプレスの圧力を1.5倍とし、それ以外については、実施例1と同様にして、含浸体を得た。
この含浸体を減圧乾燥させた後、2500℃で熱処理して黒鉛化させ、かさ密度1.88g/cm3の炭素材を得た。
[Example 2]
An impregnated body was obtained in the same manner as in Example 1 except that the pressure of the CIP press was 1.5 times.
The impregnated body was dried under reduced pressure and then heat treated at 2500 ° C. to graphitize to obtain a carbon material having a bulk density of 1.88 g / cm 3 .

[比較例2]
実施例2において得られた焼成体を、塩素ガス雰囲気下、2500℃で熱処理して、黒鉛化させた炭素材を得た。
[Comparative Example 2]
The fired body obtained in Example 2 was heat-treated at 2500 ° C. in a chlorine gas atmosphere to obtain a graphitized carbon material.

[比較例3]
実施例1において得られた焼成体を、2500℃で熱処理し、黒鉛化させた炭素材を得た。
[Comparative Example 3]
The fired body obtained in Example 1 was heat-treated at 2500 ° C. to obtain a graphitized carbon material.

[実施例3]
比較例3において得られた炭素材について、実施例1と同様にして、ポリ塩化ビニル溶液を含浸および乾燥させた。
得られた含浸体を、塩素ガス雰囲気下、2450℃で熱処理することにより純化し、かさ密度1.89g/cm3の炭素材を得た。
[Example 3]
The carbon material obtained in Comparative Example 3 was impregnated with a polyvinyl chloride solution and dried in the same manner as in Example 1.
The obtained impregnated body was purified by heat treatment at 2450 ° C. in a chlorine gas atmosphere to obtain a carbon material having a bulk density of 1.89 g / cm 3 .

上記実施例および比較例において得られた各炭素材について、純度評価のため、原子吸光分析により、表面近傍(表面から深さ10mm)および中心部(表面から深さ50mm)における灰分量の測定を行った。
これらの結果を表1に示す。
For each carbon material obtained in the above examples and comparative examples, the amount of ash in the vicinity of the surface (10 mm depth from the surface) and the central portion (50 mm depth from the surface) is measured by atomic absorption analysis for purity evaluation. went.
These results are shown in Table 1.

Figure 2006232565
Figure 2006232565

表1に示したように、従来の黒鉛化・純化方法による炭化材(比較例1〜3)は、炭素材の中心部における灰分が、表面近傍の約2倍以上と多く、中心部における純度が低いもであった。
これに対して、本発明に係る炭素材の製造方法(実施例1,2)または純化方法(実施例3)によれば、厚さ100mmの炭素材であっても、表面近傍における灰分は、従来法によるもの(比較例1〜3)と同等であり、しかも、炭素材の中心部における灰分を表面近傍と同等レベルに低減させることができ、中心部においても高純度である炭素材が得られることが認められた。
As shown in Table 1, the carbonized materials obtained by the conventional graphitization / purification method (Comparative Examples 1 to 3) have as much ash in the central portion of the carbon material as more than about twice the vicinity of the surface, and the purity in the central portion. Was low.
On the other hand, according to the production method (Examples 1 and 2) or the purification method (Example 3) of the carbon material according to the present invention, the ash content in the vicinity of the surface, even if the carbon material is 100 mm thick, It is equivalent to the conventional method (Comparative Examples 1 to 3), and the ash content in the central part of the carbon material can be reduced to the same level as in the vicinity of the surface, and a carbon material having high purity in the central part is obtained. It was recognized that

Claims (3)

炭素原料粉末およびバインダの混練物を成形する工程と、
前記成形工程により得られた成形体を焼成する工程と、
前記焼成工程により得られた焼成体に、ハロゲンを含む有機物を加熱した有機溶媒に溶解させた溶液を、該有機溶媒の沸点以下の温度で含浸させる工程と、
前記含浸工程により得られた含浸体を乾燥させ、前記有機溶媒を除去する工程と、
前記乾燥工程により得られた含浸体を黒鉛化処理する工程とを備えていることを特徴とする炭素材の製造方法。
Forming a kneaded product of carbon raw material powder and binder;
Firing the molded body obtained by the molding step;
Impregnating a fired body obtained by the firing step with a solution obtained by dissolving an organic substance containing a halogen in a heated organic solvent at a temperature equal to or lower than the boiling point of the organic solvent;
Drying the impregnated body obtained by the impregnation step and removing the organic solvent;
And a step of graphitizing the impregnated body obtained by the drying step.
前記ハロゲンを含む有機物として、炭素、水素およびハロゲンのみを組成元素とするモノマーまたはポリマーを用いることを特徴とする請求項1記載の炭素材の製造方法。   2. The method for producing a carbon material according to claim 1, wherein a monomer or a polymer having only carbon, hydrogen and halogen as composition elements is used as the organic substance containing halogen. 焼成または焼成・黒鉛化した炭素材に、ハロゲンを含む有機物を加熱した有機溶媒に溶解させた溶液を、該有機溶媒の沸点以下の温度で含浸させる工程と、
前記含浸工程により得られた含浸体を乾燥させ、前記有機溶媒を除去する工程と、
前記乾燥工程により得られた含浸体を、ハロゲンを含むガス雰囲気下で熱処理する工程とを備えていることを特徴とする炭素材の純化方法。
Impregnating a baked or baked / graphitized carbon material with a solution in which an organic substance containing a halogen is dissolved in a heated organic solvent at a temperature equal to or lower than the boiling point of the organic solvent;
Drying the impregnated body obtained by the impregnation step and removing the organic solvent;
And a step of heat-treating the impregnated body obtained by the drying step in a gas atmosphere containing a halogen.
JP2005045318A 2005-02-22 2005-02-22 Method of manufacturing carbon material and method of purifying the same Pending JP2006232565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045318A JP2006232565A (en) 2005-02-22 2005-02-22 Method of manufacturing carbon material and method of purifying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045318A JP2006232565A (en) 2005-02-22 2005-02-22 Method of manufacturing carbon material and method of purifying the same

Publications (1)

Publication Number Publication Date
JP2006232565A true JP2006232565A (en) 2006-09-07

Family

ID=37040632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045318A Pending JP2006232565A (en) 2005-02-22 2005-02-22 Method of manufacturing carbon material and method of purifying the same

Country Status (1)

Country Link
JP (1) JP2006232565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865818B2 (en) 2014-04-09 2018-01-09 Industry-Academic Cooperation Foundation, Yonsei University Method for synthesizing a halogen-functionalized carbon material and method for fabricating an electronic device employing the same
CN116013822A (en) * 2023-01-09 2023-04-25 南通三责精密陶瓷有限公司 Purification method of high-purity silicon carbide wafer boat, high-purity silicon dioxide coated silicon carbide wafer boat and production process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865818B2 (en) 2014-04-09 2018-01-09 Industry-Academic Cooperation Foundation, Yonsei University Method for synthesizing a halogen-functionalized carbon material and method for fabricating an electronic device employing the same
CN116013822A (en) * 2023-01-09 2023-04-25 南通三责精密陶瓷有限公司 Purification method of high-purity silicon carbide wafer boat, high-purity silicon dioxide coated silicon carbide wafer boat and production process thereof
CN116013822B (en) * 2023-01-09 2023-11-03 南通三责精密陶瓷有限公司 Purification method of high-purity silicon carbide wafer boat, high-purity silicon dioxide coated silicon carbide wafer boat and production process thereof

Similar Documents

Publication Publication Date Title
JP5154448B2 (en) Graphite material and manufacturing method thereof
KR101079665B1 (en) Producing method of low-dimensional carbon-contained composits and Carbon block
KR101154808B1 (en) Silicon carbide and method for manufacturing the same
KR101586435B1 (en) Graphite form with high strength and thermal conductivity and manufacturing method thereof
KR101473432B1 (en) Method for fabricating graphite
JP2006232565A (en) Method of manufacturing carbon material and method of purifying the same
JP5015500B2 (en) High thermal conductivity carbon material and method for producing the same
KR101031689B1 (en) High-purity carbon fiber-reinforced carbon composite for semiconductor manufacturing apparatus and method for producing the same
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
KR20160090608A (en) Graphite sheet and method for preparing same
JP2019172886A (en) Modified pitch and method for producing same
KR102073155B1 (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JP7167814B2 (en) Method for producing modified pitch
JP2001130963A (en) Method for producing isotropic high-density carbon material
JP2006240909A (en) Silicon carbide powder composition, method for producing silicon carbide sintered compact using the same, and silicon carbide sintered compact
TWI537208B (en) A method for producing a glass-like carbon
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
KR20190030069A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JPS62138361A (en) Manufacture of high density formed body from carbon material
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JP7167815B2 (en) Raw coke production method
JP2005119925A (en) High-resistivity silicon carbide sintered compact
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH05279119A (en) Carbon material having oxidation resistance and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711