JPH0461724A - Manufacture of niobium carbide field emitter - Google Patents

Manufacture of niobium carbide field emitter

Info

Publication number
JPH0461724A
JPH0461724A JP2168066A JP16806690A JPH0461724A JP H0461724 A JPH0461724 A JP H0461724A JP 2168066 A JP2168066 A JP 2168066A JP 16806690 A JP16806690 A JP 16806690A JP H0461724 A JPH0461724 A JP H0461724A
Authority
JP
Japan
Prior art keywords
torr
emitter
current
field emitter
niobium carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2168066A
Other languages
Japanese (ja)
Other versions
JPH0628130B2 (en
Inventor
Yoshio Ishizawa
石沢 芳夫
Takashi Aizawa
俊 相澤
Shigeki Otani
茂樹 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP16806690A priority Critical patent/JPH0628130B2/en
Publication of JPH0461724A publication Critical patent/JPH0461724A/en
Publication of JPH0628130B2 publication Critical patent/JPH0628130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To have stable emission of current of approx. 50muA under 1X10Torr by subjecting an emitter of Nb carbide mono-crystals to a specific treatment. CONSTITUTION:In ethylene or other hydrocarbon gas (at 1X10<6>Torr), an emitter of Nb carbide mono-crystals are heated to 1400-1800'C for 5000 sec or longer. i.e., over 5000 L, where one L is equivalent to 1X10<-6>Torr.sec. Thereby a graphite film is formed on the surface. This is followed by evacuation to an extra-high vacuum (for ex., 1x10<-10> Torr), and a strong electric field over 10<3>V/cm is impressed. This causes change of the emission pattern, and gives stabilization of the emission current. Thereby stable operation is obtained such that short duration noise is below + or -0.2% and the drift is below + or -0.1%/hr even under the condition with a degree of vacuum of 1X10<-10>Torr and an emission current of 50muA.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高安定電流特性を示す炭化ニオブフィールドエ
ミッターの作製方法に関する。このフィールドエミッタ
ーは、高輝度、可干渉性点光源として使用可能であり、
例えば、低加速走査電子顕微鏡、分析電子顕微鏡等の電
子源として重要である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a niobium carbide field emitter exhibiting highly stable current characteristics. This field emitter can be used as a high-brightness, coherent point light source,
For example, it is important as an electron source for low-acceleration scanning electron microscopes, analytical electron microscopes, and the like.

(従来の技術及び解決しようとする課題)従来、フィー
ルドエミッターとして、タングステン(W)金属単結晶
が実用化されているが、とのWフィールドエミッターは
時間と共に大幅に電流が減衰すると共にl/fノイズも
大きいので広い応用を阻害している。
(Prior art and problems to be solved) Conventionally, tungsten (W) metal single crystal has been put into practical use as a field emitter, but the current of the W field emitter decreases significantly over time and l/f The noise is also large, which hinders its wide application.

そこで、本発明者らは、この問題点を解消すべく研究を
重ねた結果、電子放射特性のよい炭窒化ニオブフィール
ドエミッターを開発した(特願昭62−113334号
、特願昭63−035794号)。
As a result of repeated research to solve this problem, the inventors of the present invention developed a niobium carbonitride field emitter with good electron emission characteristics (Japanese Patent Application No. 113334/1982, No. 035794/1983). ).

しかし、このフィールドエミッターの高輝度性を利用す
るためには、I X 10−”Torrの圧力のもとて
約20μA以上の電流を安定に放射することが難しいと
いう問題があった。
However, in order to take advantage of the high brightness of this field emitter, there is a problem in that it is difficult to stably emit a current of about 20 μA or more under a pressure of I x 10-'' Torr.

本発明は、上記炭窒化ニオブフィールドエミッターの問
題点を解消すべくなされたものであって、1x10″″
10Torrにおいて、約20μA以上の電流を安定に
放射し得る新規なフィールドエミッターの作製方法を提
供することを目的とするものである。
The present invention has been made to solve the problems of the above-mentioned niobium carbonitride field emitter.
The object of the present invention is to provide a method for producing a novel field emitter that can stably emit a current of about 20 μA or more at 10 Torr.

(課題を解決するための手段) 本発明者らは、前記目的を達成すべく、更に研究を続け
た結果、炭窒化ニオブに代えて、炭化ニオブ単結晶エミ
ッターを用いるに際し、これに特定の処理を施すことに
より、エミッションパターンが変化し、I X I 0
−10Torrにおいて約50μAの電流を安定に放射
することを見い出し、この知見に基づき本発明を完成し
たものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventors continued their research and found that when using a niobium carbide single crystal emitter instead of niobium carbonitride, a specific treatment is applied to it. By applying , the emission pattern changes and I
It was discovered that a current of approximately 50 μA can be stably emitted at -10 Torr, and the present invention was completed based on this knowledge.

すなわち、本発明は、炭化ニオブ単結晶エミッターを、
1400〜1800℃のもとで、エチレンその他の炭化
水素系ガスに5000L以上露出し、その表面にグラフ
ァイト膜を形成させた後、超高真空下で10@v/cl
1以上の強電界を印加することを特徴とする高安定電子
放射特性を示す炭化ニオブフィールドエミッターの作製
方法を要旨とするものである。
That is, the present invention uses a niobium carbide single crystal emitter,
After being exposed to 5000L or more of ethylene or other hydrocarbon gas at 1400-1800℃ to form a graphite film on the surface, it was exposed to 10@v/cl under ultra-high vacuum.
The gist of the present invention is a method for producing a niobium carbide field emitter exhibiting highly stable electron emission characteristics, which is characterized by applying one or more strong electric fields.

以下に本発明を更に詳述する。The present invention will be explained in further detail below.

(作用) 本発明において使用する炭化ニオブ単結晶エミッター(
以下、rNbCエミッター」と記載する)は、例えば、
 0.2av+X0.2mmX3+nm(7)直方体単
結晶の先端を電解研磨法により約0.1.unの先端径
とし、これを超高真空中で1500〜1900℃でフラ
ッシュ加熱することで得られる。この加熱により清浄表
面にすると共にチップ先端を(100)、(111)面
で覆われた多面体形状にできる。例えば、エミッター軸
を<110>方位とするエミッターの場合は、そのチッ
プ形状は第1[1に示すような多面体形状になる。この
エミッターからのエミッションパターンは第2図に示す
とおりである。斜線部分は電子ビームのあたった部分を
示している。
(Function) Niobium carbide single crystal emitter used in the present invention (
Hereinafter referred to as "rNbC emitter"), for example,
0.2 av+ The diameter of the tip of un is obtained by flash heating at 1500 to 1900°C in an ultra-high vacuum. This heating makes the surface clean and allows the tip end of the chip to have a polyhedral shape covered with (100) and (111) planes. For example, in the case of an emitter whose emitter axis is in the <110> direction, the chip shape is a polyhedral shape as shown in the first [1]. The emission pattern from this emitter is as shown in FIG. The shaded area indicates the area hit by the electron beam.

得られたNbC<110>エミッターのチップを、まず
、エチレン又はその他の炭化水素ガス(圧力I X 1
0−@Torr)中で、1400〜1800℃の範囲の
温度で5000秒以上、すなわち、5000L以上加熱
(露出)する。ここで、LL=I X I Q −” 
Torr・秒である。これにより、表面にグラファイト
膜が形成される。
The obtained NbC<110> emitter chip was first heated with ethylene or other hydrocarbon gas (pressure I
0-@Torr) at a temperature in the range of 1400 to 1800° C. for 5000 seconds or more, that is, 5000 L or more. Here, LL=I X I Q −”
It is Torr·sec. This forms a graphite film on the surface.

次に超高真空C例、I X 10−10Torr)に排
気し、10”V/cm以上の強電界、を印加する。この
操作により、エミッションパターンは第2図から第3図
のように変化すると共に放射電流の安定化が起こる。
Next, evacuate to an ultra-high vacuum (I x 10-10 Torr) and apply a strong electric field of 10"V/cm or more. Through this operation, the emission pattern changes as shown in Figures 2 and 3. At the same time, stabilization of the radiation current occurs.

これらの条件を限定した理由は以下のとおりである。The reason for limiting these conditions is as follows.

まず、前記のガス中での加熱温度は、1400〜180
0℃の範囲であることが必要である。加熱温度が140
0’C未満ではチップ先端の(111)面にのみグラフ
ァイトが生成し、放射電流の安定性に欠ける。一方、加
熱温度が1800”C以上ではグラファイトが昇華し、
チップ先端の表面にはグラファイトが生成せず、放射電
流の安定化が起こらない、加熱温度が1400〜180
0”Cの範囲の場合において、チップ先端の(111)
、(100)面上にグラファイトが生成し、放射電流が
極めて安定になる。この範囲の温度であると、短時間ノ
イズが±0.2%以下、ドリフトは±0゜1%/hr以
下と電流安定性が極めてよく、因みに1 X 10−1
oTorrのもとでは、50.[JAの放射電流が第4
図に示すように安定に得られ、フィールドエミッターの
高輝度性を有効に利用することが可能となる。
First, the heating temperature in the gas is 1400 to 180.
It is necessary that the temperature is in the range of 0°C. Heating temperature is 140
If the temperature is less than 0'C, graphite is generated only on the (111) plane at the tip of the chip, resulting in a lack of stability in the radiation current. On the other hand, when the heating temperature is 1800"C or higher, graphite sublimes,
Graphite is not generated on the surface of the tip of the tip, and the radiation current does not stabilize when the heating temperature is 1400 to 180℃.
In the case of 0”C range, (111) of the tip tip
, graphite is generated on the (100) plane, and the radiation current becomes extremely stable. When the temperature is in this range, the short-time noise is less than ±0.2%, the drift is less than ±0°1%/hr, and the current stability is extremely good.
Under oTorr, 50. [The radiation current of JA is the fourth
As shown in the figure, it can be stably obtained and the high brightness of the field emitter can be effectively utilized.

エチレン又はその他の炭化水素ガス(圧力1×10−’
 Torr)中での加熱時間は5000秒以上であるこ
とが必要である。これは、5000秒以下ではチップ先
端の(111)面にのみグラファイトが生成し、加熱温
度が1400”C未満の場合と同様に、放射電流の安定
性はよくないためである。
Ethylene or other hydrocarbon gas (pressure 1 x 10-'
It is necessary that the heating time in (Torr) is 5000 seconds or more. This is because graphite is generated only on the (111) plane at the tip of the chip for less than 5000 seconds, and the stability of the radiation current is not good as in the case where the heating temperature is less than 1400''C.

炭化水素ガスとしては、エチレンの他、メタン等の炭化
水素が挙げられる。
Examples of the hydrocarbon gas include hydrocarbons such as methane in addition to ethylene.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 先端径0.1 μm(7)NbC<110> 1ミツタ
ーを超高真空下(I X 10″″1oTorr)の下
で、1800℃でフラッシュ加熱して清浄表面とした。
(Example) A NbC<110> 1 meter with a tip diameter of 0.1 μm was flash-heated at 1800° C. under an ultra-high vacuum (I x 10″″1oTorr) to give a clean surface.

次いで、この系にエチレンガスを導入し、1×10−”
 Torrの圧力下においてチップを1500℃で2 
X 10’秒加熱して、チップ表面にグラファイトを生
成させた。この後、超高真空に排気してエミッターに1
0@V/cm以上の電界を印加してエミッションパター
ンを第2図から第3図に変化させた。
Next, ethylene gas was introduced into the system to produce 1×10-”
The chips were heated at 1500°C under a pressure of Torr for 2
The chip was heated for 10' seconds to generate graphite on the chip surface. After this, evacuate to ultra-high vacuum and put 1
The emission pattern was changed from FIG. 2 to FIG. 3 by applying an electric field of 0@V/cm or more.

得られたフィールドエミッターの電流特性は、I×10
″″10Torrの真空度、50μAの放射電流のもと
で、第4図に示すように、短時間ノイズが±0.2%以
下、ドリフトは±0.1%/hr以下と極めて安定であ
った。また、より小さい放射電流では、より長時間安定
に放射できた。
The current characteristics of the obtained field emitter are I×10
As shown in Figure 4, under a vacuum of 10 Torr and a radiation current of 50 μA, the short-time noise is less than ±0.2% and the drift is less than ±0.1%/hr, making it extremely stable. Ta. Furthermore, with a smaller radiation current, stable radiation could be achieved for a longer period of time.

(発明の効果) 以上説明したように、本発明の方法によれば、I X 
10−10Torrの真空度、50μAの放射電流でも
短時間ノイズは±0.2%以下、ドリフトは±0.1%
/hr以下と極めて安定であり、しかもこれを再現性よ
く得られる炭化ニオブフィールドエミッターを提供でき
る。
(Effect of the invention) As explained above, according to the method of the present invention, I
Even with a vacuum level of 10-10 Torr and a radiation current of 50 μA, short-time noise is less than ±0.2% and drift is ±0.1%.
It is possible to provide a niobium carbide field emitter that is extremely stable at less than /hr and can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNbC<110>フィールドエミッターを18
00℃でフラッシュ加熱後のチップ先端形状を示す図、 第2図は1800℃でフラッシュ加熱後のエミッターか
らのエミッションパターンを示す図、第3図は本発明の
方法で得られるフィールドエミッターのエミッションパ
ターンを示す図、第4図は本発明の実施例で得られたフ
ィールドエミッターの全放射電流経時変化(真空度は1
×10−10Torr)を示す図である。 特許出願人 科学技術庁無機材質研、究所長瀬高信雄 第1図 第 図 第2図 第3図 時間(分)
Figure 1 shows 18 NbC<110> field emitters.
Figure 2 shows the shape of the tip of the chip after flash heating at 00°C, Figure 2 shows the emission pattern from the emitter after flash heating at 1800°C, and Figure 3 shows the emission pattern of the field emitter obtained by the method of the present invention. Figure 4 shows the change over time of the total radiation current of the field emitter obtained in the example of the present invention (the degree of vacuum is 1).
10-10 Torr). Patent applicant Nobuo Nagase, Institute of Inorganic Materials, Science and Technology Agency Figure 1 Figure 2 Figure 3 Time (minutes)

Claims (1)

【特許請求の範囲】[Claims] 炭化ニオブ単結晶エミッターを、1400〜1800℃
のもとで、エチレンその他の炭化水素系ガスに5000
L(1L=1×10^−^6Torr・秒)以上露出し
、その表面にグラファイト膜を形成させた後、超高真空
下で10^8V/cm以上の強電界を印加することを特
徴とする高安定電子放射特性を示す炭化ニオブフィール
ドエミッターの作製方法。
Niobium carbide single crystal emitter at 1400-1800℃
5,000 to ethylene and other hydrocarbon gases under
L (1L = 1 x 10^-^6 Torr/second) or more, and after forming a graphite film on the surface, a strong electric field of 10^8 V/cm or more is applied under ultra-high vacuum. A method for fabricating a niobium carbide field emitter that exhibits highly stable electron emission characteristics.
JP16806690A 1990-06-26 1990-06-26 Method for producing niobium carbide field emitter Expired - Lifetime JPH0628130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16806690A JPH0628130B2 (en) 1990-06-26 1990-06-26 Method for producing niobium carbide field emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16806690A JPH0628130B2 (en) 1990-06-26 1990-06-26 Method for producing niobium carbide field emitter

Publications (2)

Publication Number Publication Date
JPH0461724A true JPH0461724A (en) 1992-02-27
JPH0628130B2 JPH0628130B2 (en) 1994-04-13

Family

ID=15861203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16806690A Expired - Lifetime JPH0628130B2 (en) 1990-06-26 1990-06-26 Method for producing niobium carbide field emitter

Country Status (1)

Country Link
JP (1) JPH0628130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129547A (en) * 2007-11-20 2009-06-11 Hitachi High-Technologies Corp Field emission type electron source and electron beam application device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129547A (en) * 2007-11-20 2009-06-11 Hitachi High-Technologies Corp Field emission type electron source and electron beam application device using it

Also Published As

Publication number Publication date
JPH0628130B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
Gohel et al. Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes
KR100245910B1 (en) Method of forming diamond like carbon film(dlc), dlc film formed thereby, use of the same, field emitter array and emitter cathodes
US6329745B2 (en) Electron gun and cathode ray tube having multilayer carbon-based field emission cathode
JP3269065B2 (en) Electronic device
DE3335132A1 (en) METHOD FOR FORMING A DIAMOND-LIKE CARBON FILM ON A SUBSTRATE
US20040099208A1 (en) Method for forming carbon nanotubes
US6441550B1 (en) Carbon-based field emission electron device for high current density applications
US20040250753A1 (en) Method for forming carbon nanotubes with post-treatment step
JPH0461724A (en) Manufacture of niobium carbide field emitter
US6447851B1 (en) Field emission from bias-grown diamond thin films in a microwave plasma
JPS62222633A (en) Manufacture of semiconductor element
Goldstein et al. Preferential evaporation of In from Ga x In1− x As
JPH01209634A (en) Manufacture of niobium carbide-nitride field emitter
JPH0222538B2 (en)
US6593683B1 (en) Cold cathode and methods for producing the same
JPS6280938A (en) Manufacture of titanium compound field emitter
JPS6054735B2 (en) field emission cathode
Milne et al. Investigating carbon materials for use as the electron emission source in a parallel electron-beam lithography system
JPS6280936A (en) Manufacture of field emitter
JPS6280937A (en) Manufacture of high performance field emitter
Robertson Field emission from carbon systems
CN111048382B (en) Method for manufacturing electron source
Givargizov et al. Diamond cold cathodes for electron guns
JPH0434253B2 (en)
JPS63279535A (en) Manufactute of carbon-nitride niobium field emitter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term