JPH01209634A - Manufacture of niobium carbide-nitride field emitter - Google Patents

Manufacture of niobium carbide-nitride field emitter

Info

Publication number
JPH01209634A
JPH01209634A JP63035794A JP3579488A JPH01209634A JP H01209634 A JPH01209634 A JP H01209634A JP 63035794 A JP63035794 A JP 63035794A JP 3579488 A JP3579488 A JP 3579488A JP H01209634 A JPH01209634 A JP H01209634A
Authority
JP
Japan
Prior art keywords
emitter
vacuum
current
torr
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63035794A
Other languages
Japanese (ja)
Other versions
JPH0577135B2 (en
Inventor
Yoshio Ishizawa
石澤 芳夫
Chuhei Oshima
忠平 大島
Shigeki Otani
茂樹 大谷
Mitsuru Koizumi
充 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP63035794A priority Critical patent/JPH01209634A/en
Publication of JPH01209634A publication Critical patent/JPH01209634A/en
Publication of JPH0577135B2 publication Critical patent/JPH0577135B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To make it possible to obtain an extremely stable current character by heating a niobium carbide-nitride single crystalline emitter in ethylene or another hydrocarbon gas at 900-1000 deg.C, and then, after heating it in oxygen gas, by applying a strong electric field in a vacuum. CONSTITUTION:A chip of NbCN <110> emitter is heated for more than 1000 sec. in ethylene or another hydrocarbon under 1X10<-6>Torr, for example, at the temperature between 900 and 1000 deg.C. Then, after the vacuum evacuation, oxygen gas is introduced, it is heated for more than 1 sec., preferably 20 sec., at the same temperature under 10<-6> Torr. After such a heat treatment is over, the gas is evacuated to a vacuum, and an electric field at 10<8>V/cm or more is applied. Consequently, even under the vacuum of 2X10<-10>Torr, a field emitter with the current noise less than + or -0.2%, the drift less than + or -0.1%/hr, and able to emit all the current 10muA for more than 1hr stably, can be obtained.

Description

【発明の詳細な説明】 本発明は高安定電流特性を示す炭窒化ニオブフィールド
エミッターの作製方法に関する。フィールドエミッター
は高輝度、可干渉性点光源として使用可能であり、例え
ば低加速走査電子顕微鏡、分析電子顕微鏡等の電子源と
して重要である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a niobium carbonitride field emitter exhibiting highly stable current characteristics. Field emitters can be used as high-brightness, coherent point light sources, and are important as electron sources for, for example, low-acceleration scanning electron microscopes and analytical electron microscopes.

従来技術 従来、フィールドエミッターとしてはW金属が実用化さ
れているが、このWフィールドエミッターは電流の安定
性に問題があり、時間と共に大幅に電流が減衰すると共
に1/fノイズも大きいので広い応用を疎外している。
Conventional technology Conventionally, W metal has been put into practical use as a field emitter, but this W field emitter has a problem with current stability, the current significantly attenuates over time, and the 1/f noise is large, so it is not widely applicable. are alienating.

また、炭化チタン単結晶からなるフィールドエミッター
も知られているが、電流安定性に問題がある。
Field emitters made of single crystal titanium carbide are also known, but they have problems with current stability.

の単結晶エミッターを1000〜1200”Cの下で、
酸素ガス、炭化水素ガス及び硫化水素の単独もしくはの これを組み合わせによる熱処理を施した後、超高真空下
で108 V/cm以上の強電界を印加することにより
、電流安定性がよく、電子放射特性のよい炭窒化ニオブ
フィールドエミッターを得ることを開発した。(特願昭
62−113334号)しかし、高輝度にするため放射
電流を10μ^以上に大きくすると、電流安定時間が短
くなり、また、安定にするためには1 xto−” T
orrの真空度であることが望ましいとする問題があっ
た。
single crystal emitter under 1000-1200"C,
After heat treatment using oxygen gas, hydrocarbon gas, and hydrogen sulfide alone or in combination, a strong electric field of 108 V/cm or more is applied under ultra-high vacuum, resulting in good current stability and electron emission. A niobium carbonitride field emitter with good properties was developed. (Japanese Patent Application No. 113334/1982) However, if the radiation current is increased to 10 μ^ or more in order to achieve high brightness, the current stabilization time becomes short, and in order to achieve stability, it is necessary to
There has been a problem in that it is desirable that the degree of vacuum be at orr.

発明が解決しようとする課題 本発明はこの炭窒化ニオブフィールドエミッターの問題
を解消すべくなされたもので、放射電流を10μA以上
に大きくしても長時間に亘って安定で、かつ2 Xl0
−” Torrにおいても極めて安定な電流特性を示す
炭窒化ニオブフィールドエミッターを得る方法を提供す
ることを目的とする。
Problems to be Solved by the Invention The present invention was made to solve the problems of the niobium carbonitride field emitter, and it is stable for a long time even when the emission current is increased to 10 μA or more, and is 2Xl0
It is an object of the present invention to provide a method for obtaining a niobium carbonitride field emitter that exhibits extremely stable current characteristics even at -'' Torr.

課題を解決するための手段 本発明者らは前記目的を達成すべく、更に研究を続けた
結果、炭窒化ニオブ単結晶エミッターを900〜100
0°Cの下で、CzHaまたはその他の炭化水素ガス中
において1000秒以上加熱し、ついで更に酸素ガス中
で加熱した後、真空に排気し、108V/cm以上の強
電界を印加すると、エミッションパと大きくしても長時
間安定であることを究明し得た。この知見に基づいて本
発明を完成した。
Means for Solving the Problems In order to achieve the above object, the present inventors continued their research and found that a niobium carbonitride single crystal emitter with 900 to 100
When heated at 0°C in CzHa or other hydrocarbon gas for 1000 seconds or more, then further heated in oxygen gas, evacuated, and applied with a strong electric field of 108 V/cm or more, the emission peak We have found that it is stable for a long time even if it is made larger. The present invention was completed based on this knowledge.

本発明の要旨は炭窒化ニオブ単結、晶エミッターを90
0〜1000°Cの下で、エチレンまたはその他の炭化
水素ガス中において1000秒以上加熱し、ついで更に
酸素ガス中で加熱した後、真空に排気し、108 V/
cm以上の強電界を印加することを特徴とする炭窒化ニ
オブフィールドエミッターの作製方法、にある。
The gist of the present invention is to use a niobium carbonitride single crystal emitter with a crystal emitter of 90%
Heating at 0 to 1000°C in ethylene or other hydrocarbon gas for 1000 seconds or more, then further heating in oxygen gas, evacuation to vacuum, and heating at 108 V/
A method for manufacturing a niobium carbonitride field emitter, characterized by applying a strong electric field of cm or more.

本発明において使用する炭窒化ニオブ単結晶エミッター
(以下NbCNエミッターと記載する)は、例えば、そ
の単結晶棒から切り出した0、2 Xo、2X3+r+
+++3の直方体の先端を電解研磨法により約約0.1
 amの先端径とし、これを超高真空中で1700〜1
900°Cでフラッシュ加熱する。
The niobium carbonitride single crystal emitter (hereinafter referred to as NbCN emitter) used in the present invention is, for example, 0, 2 Xo, 2X3+r+ cut from the single crystal rod.
The tip of the +++3 rectangular parallelepiped was polished to about 0.1 by electrolytic polishing.
The tip diameter of am is 1700~1 in ultra-high vacuum.
Flash heat to 900°C.

この加熱により清浄表面にすると共にチップ先端を(1
00) 、 (111)面で覆われた多面体形状にする
。例えばエミッター軸を<110>方位とするエミッタ
ーの場合はそのチップ形状は第1図に示すような多面体
形状になる。この清浄表面からのエミッションパターン
は第2図の通りである。斜線部分は電子ビームのあった
部分を示す。
This heating makes the surface clean and the tip of the tip (1
00) and (111) to form a polyhedron covered with planes. For example, in the case of an emitter whose emitter axis is in the <110> direction, the chip shape is a polyhedron as shown in FIG. The emission pattern from this clean surface is shown in FIG. The shaded area indicates the area where the electron beam was located.

得られたNbCN<110>エミッターのチップをエチ
レンまたはその他の炭化水素中で例えば1×1.0−’
TorrO下で、900〜1000°Cの範囲の温度で
1000秒以上加熱する0次に真空排気後、酸素ガスを
導入して、10−’TorrO下で前記の同じ温度で1
秒以上好ましくは20秒加熱する。このような加熱処理
後、真空に排気し、108 V/(11以上の電界を印
加する。これによりエミッションパターンは第2図から
第3図のように変化すると共に放射電流の安定化がおこ
る。
The resulting NbCN<110> emitter chips are heated in ethylene or other hydrocarbons, e.g.
Heating for 1000 seconds or more at a temperature in the range of 900 to 1000 °C under TorrO. After evacuation, oxygen gas was introduced and the temperature was heated for 10 - 10 seconds at the same temperature as above under TorrO.
Heat for at least 2 seconds, preferably 20 seconds. After such heat treatment, the device is evacuated and an electric field of 108 V/(11 or higher) is applied. As a result, the emission pattern changes as shown in FIG. 2 to FIG. 3, and the radiation current is stabilized.

前記のガス中での加熱温度は900〜1000″Cの範
 囲であることが必要で、900℃未満ではスパイクノ
イズおよびステップノイズがおこり、また1000°C
を超えると前記ノイズに加えドリフトがおこる。
The heating temperature in the gas mentioned above must be in the range of 900 to 1000"C; below 900°C, spike noise and step noise will occur, and below 1000°C
If it exceeds this, drift will occur in addition to the above-mentioned noise.

この範囲の温度では短時間ノイズが±0.2%以下、ド
リフトは±0.1%/hr以下と極めて電流安定性がよ
いものとなる。
In this temperature range, short-time noise is less than ±0.2%, drift is less than ±0.1%/hr, and current stability is extremely good.

炭化水素ガス中での加熱時間は1000秒以上であるこ
とが必要である。加熱時間と安定電流の放射時間の関係
図(エチレンガスP = I Xl0−hTorr。
The heating time in hydrocarbon gas needs to be 1000 seconds or more. Relationship diagram between heating time and stable current emission time (ethylene gas P = I Xl0 - hTorr.

放射電流10μA)を示すと第4図の通りである。The radiation current (10 μA) is shown in FIG.

図が示すように、1000秒未満では安定電流の放射時
間が短い。また、炭化水素ガス中での加熱のみでは、安
定電流の大きさが小さくかつ放射時間が短い(1xlQ
−10Torr、放射電流6μ^で、約20分)が、更
に酸素ガスによる熱処理を施すと10μAの貧定電流が
1時間以上得られる。
As shown in the figure, when the time is less than 1000 seconds, the stable current emission time is short. In addition, heating only in hydrocarbon gas results in a small stable current and a short radiation time (1xlQ
-10 Torr and a radiation current of 6 .mu.^ for about 20 minutes), but if heat treatment is further performed with oxygen gas, a poor constant current of 10 .mu.A can be obtained for more than 1 hour.

炭化水素ガスとしてはエチレンのほかメタン等の炭化水
素が挙げられる。
Hydrocarbon gases include hydrocarbons such as methane in addition to ethylene.

実施例 先端径0.1 pmのNbCo、qsNo、o+<11
0>エミッターを超高真空下(2×1Q−10Torr
)の下で、1800“Cでフラッシュ加熱して清浄表面
とした。この系にエチレンガスを導入し、I X 10
−”Torrの圧力下で980℃で25000秒加熱し
た。次に真空排気後、酸素ガスを導入し、I X 10
− hTorrの圧力下、980°Cで20秒加熱した
後、超高真空に排気してエミッターに10@V/cm以
上の電界を印加してエミッションパターンを第2図から
第3図に変化させた。
Example NbCo with tip diameter 0.1 pm, qsNo, o+<11
0> Place the emitter under ultra-high vacuum (2×1Q-10 Torr
) to provide a clean surface by flash heating at 1800"C. Ethylene gas was introduced into the system and I
- Heated at 980°C for 25,000 seconds under a pressure of 1.5 Torr. Next, after vacuum evacuation, oxygen gas was introduced and
- After heating at 980°C for 20 seconds under a pressure of hTorr, the emitter was evacuated to an ultra-high vacuum and an electric field of 10@V/cm or more was applied to the emitter to change the emission pattern from Fig. 2 to Fig. 3. Ta.

得られたフィールドエミッターの電流雑音は、2 Xl
0−10Torrの真空度で±0.2%以下、ドリフト
は±0.1%/hr以下で、放射電流10μ八を1時間
以上安定に放射できた。
The current noise of the field emitter obtained is 2 Xl
At a vacuum level of 0-10 Torr, a radiation current of 10 μ8 was stably radiated for more than one hour with a drift of less than ±0.2% and a drift of less than ±0.1%/hr.

発明の効果 本発明の方法によると、2 ×IQ−111Torrの
真空下でも電流雑音±0.2%以下、ドリフト±0.1
%/hr以下であり、かつ全電流10μ^を1時間以上
安定に放射できるフィールドエミッターが得られ、しか
もこれを再現性よく得られる優れた効果を有する。
Effects of the Invention According to the method of the present invention, current noise is ±0.2% or less and drift is ±0.1 even under a vacuum of 2 × IQ-111 Torr.
%/hr or less and can stably emit a total current of 10 μ^ for more than 1 hour, and has an excellent effect of being able to achieve this with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNbCo、 *sNo、。+<110>フィー
ルドエミッターの1800°Cでフラッシュ加熱後のチ
ップ先端形状、第2図は1800°Cフラッシュ加熱後
のエミッターからのエミッションパターン、第3図は本
発明の方法で得られたフィールドエミッターのエミッシ
ョンパターン、第4図はエチレンガス中の加熱時間と安
定電流の放射時間との関係図。 第  1  図
Figure 1 shows NbCo, *sNo. +<110> Chip tip shape after flash heating at 1800°C of field emitter, Figure 2 shows the emission pattern from the emitter after flash heating at 1800°C, and Figure 3 shows the field emitter obtained by the method of the present invention. Figure 4 is a diagram showing the relationship between heating time in ethylene gas and stable current emission time. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 炭窒化ニオブ単結晶エミッターを900〜1000℃の
下で、エチレンまたはその他の炭化水素ガス中において
1000秒以上加熱し、ついで更に酸素ガス中で加熱し
た後、真空に排気し、10^8V/cm以上の強電界を
印加することを特徴とする炭窒化ニオブフィールドエミ
ッターの作製方法。
A niobium carbonitride single crystal emitter is heated at 900 to 1000°C in ethylene or other hydrocarbon gas for 1000 seconds or more, then further heated in oxygen gas, and then evacuated to 10^8V/cm. A method for producing a niobium carbonitride field emitter characterized by applying a strong electric field of the above strength.
JP63035794A 1988-02-18 1988-02-18 Manufacture of niobium carbide-nitride field emitter Granted JPH01209634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035794A JPH01209634A (en) 1988-02-18 1988-02-18 Manufacture of niobium carbide-nitride field emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035794A JPH01209634A (en) 1988-02-18 1988-02-18 Manufacture of niobium carbide-nitride field emitter

Publications (2)

Publication Number Publication Date
JPH01209634A true JPH01209634A (en) 1989-08-23
JPH0577135B2 JPH0577135B2 (en) 1993-10-26

Family

ID=12451830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035794A Granted JPH01209634A (en) 1988-02-18 1988-02-18 Manufacture of niobium carbide-nitride field emitter

Country Status (1)

Country Link
JP (1) JPH01209634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121440A2 (en) * 2007-03-30 2008-10-09 General Electric Company Thermo-optically functional compositions, systems and methods of making
US8278823B2 (en) 2007-03-30 2012-10-02 General Electric Company Thermo-optically functional compositions, systems and methods of making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121440A2 (en) * 2007-03-30 2008-10-09 General Electric Company Thermo-optically functional compositions, systems and methods of making
WO2008121440A3 (en) * 2007-03-30 2008-12-04 Gen Electric Thermo-optically functional compositions, systems and methods of making
US8278823B2 (en) 2007-03-30 2012-10-02 General Electric Company Thermo-optically functional compositions, systems and methods of making

Also Published As

Publication number Publication date
JPH0577135B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US6798126B2 (en) High angular intensity Schottky electron point source
KR20120060198A (en) Electron emitting body and x-ray emitting device
JPS585496B2 (en) A method for reproducibly manufacturing stable thermal field emission cathodes
JPH01209634A (en) Manufacture of niobium carbide-nitride field emitter
US3290543A (en) Grain oriented dispenser thermionic emitter for electron discharge device
Orloff et al. Angular intensity of a gas‐phase field ionization source
US7902734B2 (en) Electron emission element and electron emission element fabrication method
US6447851B1 (en) Field emission from bias-grown diamond thin films in a microwave plasma
JPH0461724A (en) Manufacture of niobium carbide field emitter
JPH0311054B2 (en)
JPS63279535A (en) Manufactute of carbon-nitride niobium field emitter
JPS616198A (en) Production of diamond thin film
JPS62222633A (en) Manufacture of semiconductor element
JPS6280938A (en) Manufacture of titanium compound field emitter
US6593683B1 (en) Cold cathode and methods for producing the same
JPS6280937A (en) Manufacture of high performance field emitter
Mackie et al. Preparation and characterization of zirconium carbide field emitters
JPH03274642A (en) High luminance la b6 cathode
JPH0434253B2 (en)
Vanselow Field electron emission from an aluminum oxide covered tungsten {112} plane at temperatures up to 1700° K
JPH0421295B2 (en)
JPS6280936A (en) Manufacture of field emitter
JPS5659422A (en) Field emissive cathode
JPS634454B2 (en)
JPS6229032A (en) Manufacture of highly stabilized field emitter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term