JPS616198A - Production of diamond thin film - Google Patents

Production of diamond thin film

Info

Publication number
JPS616198A
JPS616198A JP12439284A JP12439284A JPS616198A JP S616198 A JPS616198 A JP S616198A JP 12439284 A JP12439284 A JP 12439284A JP 12439284 A JP12439284 A JP 12439284A JP S616198 A JPS616198 A JP S616198A
Authority
JP
Japan
Prior art keywords
film
substrate
sputtering
diamond
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12439284A
Other languages
Japanese (ja)
Other versions
JPH0421638B2 (en
Inventor
Akio Hiraki
昭夫 平木
Tatsuro Miyasato
達郎 宮里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP12439284A priority Critical patent/JPS616198A/en
Priority to CA000468432A priority patent/CA1235087A/en
Priority to DE8484308159T priority patent/DE3478475D1/en
Priority to EP84308159A priority patent/EP0156069B1/en
Publication of JPS616198A publication Critical patent/JPS616198A/en
Priority to US07/020,226 priority patent/US4767517A/en
Publication of JPH0421638B2 publication Critical patent/JPH0421638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4

Abstract

PURPOSE:To obtain a thin diamond film having C-C bond in the primary structure protected with H2 on a substrate by executing sputtering by impressing DC voltage in an H2 atmosphere adjusted to a specified low H2 pressure in a sputtering device provided with a graphite target. CONSTITUTION:A graphite disc target 2 is disposed in a vacuum chamber 1 of a sputtering device with a specified distance to a counter electrode. Further, a substrate 3 prepd. from Si, glass, Al, TiO2, etc. is attached to the counter electrode. After evacuating the vacuum chamber 1 to 1X10<-7>Torr previously, H2 having 99.999% purity is introduced 4 into the vacuum chamber and the vacuum is held at 10<-3>-10<-4>Torr. Then, DC voltage of 1kV at the anode is impressed by an electric power source 6, and sputtering is executed while controlling the substrate temp. to <=100 deg.C. Thus, a transparent film having wide breadth and light transmittivity with a wavelength at the absorption end of 225nm is obtd. on the substrate. The transparent film is found by the investigation with an infrared absorption spectrum to be a carbon film contg. <=3C alkyl group, and that the film is a thin film having a diamond structure by the X-ray diffraction analysis and electron beam diffraction analysis.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ダイヤモンドPIFおよびその製造法に関し
、さらに詳しくは水素でパシベート(作成)され主構造
がC−C結合を有する微粒子の集合体ダイヤモンド薄膜
とその製造法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a diamond PIF and a method for manufacturing the same, and more specifically, a diamond thin film which is an aggregate of fine particles passivated (created) with hydrogen and whose main structure has a C-C bond. and its manufacturing method.

〔従来技術〕[Prior art]

ダイヤモンドは地球上に存在する固体物質の中で最高の
硬度を有し、電気的には絶縁体であり30〜650℃で
熱伝導率が最も高く(例えば銅の約5倍)、また光学的
には赤外領域の一部を除いて紫外、可視、赤外線領域に
戸る広い範囲で光透ボ率が優れている。
Diamond has the highest hardness of any solid material on earth, is an electrical insulator, has the highest thermal conductivity between 30 and 650°C (about 5 times that of copper, for example), and has the highest optical It has excellent light transmittance over a wide range of ultraviolet, visible, and infrared regions, excluding a portion of the infrared region.

また特定の不純物をドープすると半導体特性を示すこと
も知られている。
It is also known that when doped with specific impurities, it exhibits semiconductor properties.

このように広い分野において優れた特性を有するため、
例えば硬度を利用してダイヤモンドペースト、カッター
などに使用されているが、その合成法がもっばら高圧法
に依存しているため平板状のものは得られず、実用−ヒ
の観漬から電子デバイス技術分野江おいての利用がなさ
れないでいる、しかし、ダイヤモンドは、バンドギャッ
プが広いため適当な不純物ドーピングによりp型、n型
のダイヤモンド薄膜ができ、p−n接合ができれば動作
温度に制約を受けるS i 、GaAs等を主体として
いる現在の半導体デバイスに代って熱的に安定な材料と
して使用できるし、太陽電池の窓材にも使用できる。さ
らにまた、現在強く希求、されているGaAsのパシベ
ーション膜にもつとも有望と期待される。
Because it has excellent characteristics in a wide range of fields,
For example, it is used in diamond pastes, cutters, etc. due to its hardness, but because the synthesis method relies heavily on high-pressure methods, it is impossible to obtain a flat plate. However, due to diamond's wide bandgap, p-type and n-type diamond thin films can be made by doping with appropriate impurities, and if a p-n junction is created, it would be possible to limit the operating temperature. It can be used as a thermally stable material in place of current semiconductor devices mainly made of Si, GaAs, etc., and can also be used as a window material for solar cells. Furthermore, it is also expected to be promising for use in GaAs passivation films, which are currently highly sought after.

最近では、上述の要RVC応じることのできる材料を提
供するため圧気相からの合成法が研究されているが、こ
れらは総てCVD法(ChemicalVapor D
eposition method)を使い原料ガスと
してCH4’、 C2H,などのハイドロカーボンとH
2の混合ガスをプラズマ放電分解させ、あるいはおよそ
2000℃以上に加熱したタングステンフィラメント上
で熱分解させることKより薄膜ができるとされている。
Recently, synthetic methods from the pressure gas phase have been studied in order to provide materials that can meet the above-mentioned RVC requirements, but all of these methods are based on the CVD method (Chemical Vapor D).
Hydrocarbons such as CH4', C2H, etc. and H
It is said that a thinner film can be formed by subjecting the mixed gas of 2 to plasma discharge decomposition or thermal decomposition on a tungsten filament heated to approximately 2000° C. or higher.

しかし、これらの方法は、その条件あるいはその効率な
どの面において非常に困難な要素を含んでおり研究室的
規模はともかく工業化することは難かしい。
However, these methods involve very difficult elements in terms of conditions or efficiency, and are difficult to industrialize, even on a laboratory scale.

このような情況の中で本発明者らは先に高周波電力を印
加してスパッタを行うこと罠よりダイヤモンド薄膜を得
る方法を提供(特願昭58−222218号)したが、
この方法は未だ次のような改良されなければならない点
を有していた。
Under these circumstances, the present inventors previously proposed a method for obtaining a diamond thin film by sputtering by applying high-frequency power (Japanese Patent Application No. 58-222218).
This method still has the following points that need to be improved.

1、 高周波電力を印加するためコンデンサおよびリア
クタンスでマツチングをとらねば−jCらず、効率的に
電力が供給されない、。
1. In order to apply high-frequency power, matching must be done with a capacitor and reactance, and power cannot be efficiently supplied.

2 実際にターゲットにどの程度の常、力が投入されて
いるか正確にわからない。   ′6 任童の電力にコ
ントロールすることがむすかI−い。
2 It is not known exactly how much force is actually being applied to the target. '6 It is impossible to control Rendo's power.

4 基板にバイアス重圧をかける場合、高周波スパッタ
ではプラズマが大きく広がってしまうためバイアス効契
−が明確でない。
4. When applying a heavy bias pressure to the substrate, the effect of the bias is not clear because the plasma spreads widely in high-frequency sputtering.

5、 缶周e v、源が必要となり設備が太きyrもの
となろ2. 6、  ?現性が、P、い。
5. Can circumference e v, source is required, equipment is thick yr2. 6.? The reality is P.

Z 専門ケ、ガスの水素は、戸「の数k Q−ap K
比較しP10Ω−鎖と非常に放電インピーダンスが低い
ため、RF放電ではマツチングがとりにくい。
Z Specialty, the number of gas hydrogen is ``k'' Q-ap K
Compared to the P10Ω-chain, the discharge impedance is very low, so it is difficult to match in RF discharge.

〔発明の目的〕[Purpose of the invention]

本発明は、ト述の状況に鑑み種々検討の結果、スパッタ
リングの際に直流雷汗を印加するという手法をとり入れ
ることによりダイヤモンド薄膜を製造し得ることを見出
し完成したものである、〔発明の概要〕 具体的には、例えば0.01Torrの水素雰囲気に維
持されているプレーナ型マグネトロンスパッタ装置でI
 K V 、陽極電流0.2Aの直流電力により水素プ
ラズマを作り励起されたト1イオンやラジカルによって
グラファイトターゲット(75門φ)をたたくこと罠よ
り基板上にダイヤモンド微粒子が堆積1.その表面KC
8以下のアルキル基が結合したダイヤモンド!膜を形成
することが認められた、このダイヤモンドの形成過程は
、例えば励起されたI4イオンがグラファイトをたたい
たときCとトIが半結合したプラズマ種を作りこれが基
板、ヒに堆積して前述の如き特異な構造を有するダイヤ
モンドを作るものと推論された。
As a result of various studies in view of the above-mentioned circumstances, the present invention has been completed by discovering that a diamond thin film can be manufactured by applying a direct current thunderstorm during sputtering. ] Specifically, for example, I
1. Diamond particles are deposited on the substrate by trapping a graphite target (75 gates φ) by creating a hydrogen plasma with K V and DC power with an anode current of 0.2 A and hitting a graphite target (75 gates φ) with excited ions and radicals. Its surface KC
A diamond with 8 or less alkyl groups bonded together! The formation process of diamond, which has been recognized to form a film, is such that, for example, when excited I4 ions strike graphite, they create a plasma species in which C and I are semi-combined, and this is deposited on the substrate, H. It was inferred that this would produce diamonds with the unique structure described above.

本発明によって得た薄膜の赤外吸収ン(ぺ)r l、ル
からこの膜にはアルキル基を有しているが有機高分子膜
ではなく、またこのアルキル基のC数は6以下であるこ
とが判明した。この膜は、有機溶媒や無機酸に対しても
おかされることはなかった。
The infrared absorption characteristics of the thin film obtained according to the present invention indicate that although this film has an alkyl group, it is not an organic polymer film, and the number of carbon atoms in this alkyl group is 6 or less. It has been found. This membrane was not affected by organic solvents or inorganic acids.

また800℃、1時間でアニーリング処理を行ったのち
も表面にある結合の弱い一部の1(は離脱するが、本質
的t「ダイヤモンド構造の変化は認められず、一方、元
素分析の結果からこの膜は、C1H及び微−敬のNしか
含んでいないことがS認された。
After annealing at 800°C for 1 hour, some of the weak bonds on the surface (1) were separated, but no change in the essential diamond structure was observed. It was found that this film contained only C1H and a small amount of N.

光透過性も225−、に吸収帯をもち、400=、=付
近と赤外領域に吸収をもつ+27’l) 47.、優れ
た光透過性を示した。また透過電子顕微鏡による観察で
は、数ηmの微粒子の存在を確認し、′竺子線回折パタ
ーンはダイヤモンド多結晶のリングパターンを示17た
。さらj(この%l樺表面は、走査電子苅微鉾轡ゼ(分
解能10.、、)により何等の構造を認め得ないほど驚
異的な平滑度を示した。
The light transmittance also has an absorption band at 225-, +27'l) with absorption near 400=, = and in the infrared region.47. , showed excellent light transmittance. Further, observation using a transmission electron microscope confirmed the presence of fine particles of several ηm, and the 17-line diffraction pattern showed a ring pattern of polycrystalline diamond. (This birch surface showed an amazing degree of smoothness to the extent that no structure could be recognized by scanning electron microscopy (resolution: 10.).

なお、この薄膜は、Nを含むことと紫外線によるフォト
ルミネッセンスにより■b型半導体ダイヤモンドと判断
できろ。またNの混入のないものは無色透明であり絶縁
体とみられる。
Furthermore, this thin film can be determined to be a type b semiconductor diamond based on the fact that it contains N and the photoluminescence caused by ultraviolet rays. Also, those without N contamination are colorless and transparent and are considered to be insulators.

以上説明したように本発明によって得たダイヤモンド薄
膜は、その暦法の簡便さ、作製温度の低さ、戸のモルフ
オロジー(平滑度)などにおいて従来用いられていたC
VD法忙よるものに比較して極めてユニー、りでありか
りr゛−ピングも簡単に行え電子デバイスへの応用に大
いに貢献し、得るものである。
As explained above, the diamond thin film obtained by the present invention has advantages such as the simplicity of the calendar method, the low manufacturing temperature, and the morphology (smoothness) of the diamond film that was previously used.
Compared to the VD method, it is extremely unique and easy to rip, which greatly contributes to the application to electronic devices.

〔発明の実施例〕[Embodiments of the invention]

以下実施例によって更に本発明の構成を具体的に説明す
る。
EXAMPLES The structure of the present invention will be explained in more detail below with reference to Examples.

実施例1 第1図にその概念的断面図を示したスパッタ装置の真空
室1内に75闘φのグラファイトティスフターゲット2
を用い対向電極との距峠を約45yzKとった。基板材
質3としてSI、ガラス、A/。
Example 1 A graphite tissue target 2 with a diameter of 75 mm was placed in a vacuum chamber 1 of a sputtering apparatus whose conceptual cross-sectional view is shown in FIG.
The distance between the electrode and the counter electrode was set at approximately 45 yzK. Substrate material 3 is SI, glass, and A/.

TIQ2を用(・これを対向電極上につりつけた4、p
−9宇をあらかじめI X 1Q−’ Torrまで■
空にしたのち純度99.999%のト1□を雰1用気ガ
ス導)、W4より導入し0.01Torr<@つた。陽
極電圧1に■の直流電圧を電源6から供給し2時間スパ
ッタを行ったがこの時の電流は0.2Aであった、スパ
ッタ期間中、基板温度は100℃を超えないように制御
した、 処理を終了した時、基板。ヒに透明膜が得られた。
TIQ2 was used (4, p with this suspended on the counter electrode)
-9U in advance to IX 1Q-' Torr■
After emptying, 99.999% purity T1□ was introduced through W4 and the atmosphere was 0.01 Torr<@. Sputtering was performed for 2 hours by supplying anode voltage 1 and a DC voltage of ■ from power supply 6, and the current at this time was 0.2 A. During the sputtering period, the substrate temperature was controlled so as not to exceed 100°C. When the process is finished, the substrate. A transparent film was obtained.

この膜は、幅広い光透過性を有し、吸収端は約225?
L?FLであった。赤外吸収スペクトルからこの膜は炭
素数6以下のアルキル基を含むカーボン膜テチリ、X線
回折及び電子線回折からダイヤモンド構造を含む膜であ
ることが確認された。
This film has a wide range of light transmittance, with an absorption edge of approximately 225?
L? It was FL. It was confirmed from the infrared absorption spectrum that this film was a carbon film containing an alkyl group having 6 or less carbon atoms, and it was confirmed from X-ray diffraction and electron beam diffraction that it was a film containing a diamond structure.

実施例2 真空室に142を導入したのち真空度を0.1Torr
に保ち、スパッタリング付の電圧を1K V 、 0.
3Aとしたほかは実施例10手順を繰返した、基板上に
は、透明膜が得られた。このものの各物性挙動は実施例
1と同じ挙動を示した。雰囲気ガスの圧力が低い程、微
結晶カーボンまたはアモルファスカーボンに結合してい
るHの量が少なくなり、また人力電力が少ない程Hの量
が少なくなる傾向が認められた。
Example 2 After introducing 142 into the vacuum chamber, the degree of vacuum was set to 0.1 Torr.
The sputtering voltage was maintained at 1K V, 0.
The procedure of Example 10 was repeated except that 3A was used, and a transparent film was obtained on the substrate. Each physical property behavior of this product showed the same behavior as in Example 1. It was observed that the lower the pressure of the atmospheric gas, the lower the amount of H bonded to microcrystalline carbon or amorphous carbon, and the lower the human power, the lower the amount of H.

実施例ろ 第1(2)Kモデル的に示した装置のターゲット2と基
板3との間にステンレス金網を おき直流200■のバ
イアス電圧を印加した状態で実施例2を繰返17た。
Example 1 (2) Example 2 was repeated 17 times with a stainless wire mesh placed between the target 2 and the substrate 3 of the apparatus shown in the K model and a bias voltage of 200 μm DC applied.

このようKして得た膜の表面状態は、iZ4アス電圧を
印加しない時に比較して未殉アルキル基の量が少なく、
ダイヤモンド構造をとり易い傾向が認められた。
The surface state of the film obtained by K in this way has a smaller amount of unmartyred alkyl groups than when no iZ4 ass voltage is applied.
A tendency to easily form a diamond structure was observed.

〔発明の効果〕 以上の如き構成からなる本発明のl゛イヤモンド薄膜製
造法は、従来行われていた(” V D法などKよるも
のと比較し7て勝るとも劣らず、具体的には次のような
効果を有するも恥である。
[Effects of the Invention] The diamond thin film manufacturing method of the present invention having the above-described structure is far superior to conventional methods (such as the VD method). It is a shame that it has the following effects.

1、 再現性が良い。1. Good reproducibility.

2、  rlI流電圧電圧用するため電源が安価であり
かつ制御が容易である。
2. Since it uses rlI current voltage, the power supply is inexpensive and control is easy.

6、 基板にバイアス電圧をかける場合直流であるため
制御が容易でかつスパッタ部2・芋板部を独守して制御
することがでとる。
6. When applying a bias voltage to the substrate, it is easy to control since it is a direct current, and the sputtering section 2 and the potato plate section can be controlled independently.

4、 様々な膜質の薄膜を得ることができろ。4. Be able to obtain thin films of various film qualities.

5、 プラズマの広がりを抑制することができ、より均
質な膜となる。
5. Plasma spread can be suppressed, resulting in a more homogeneous film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプレー−ト型マグネトロンスパック装置の断面
図であろ(1 1・・・真空室 2・・グラファイトターゲット5・・
基板 代理人 弁理士 木 村 ヨ 朗 第1図 手続補正書
Figure 1 is a cross-sectional view of a plate-type magnetron spacing device (1 1... vacuum chamber 2... graphite target 5...
Substrate agent Patent attorney Yo Akira Kimura Diagram 1 procedural amendment

Claims (1)

【特許請求の範囲】[Claims] グラファイトターゲットをもつスパッタリング装置中で
水素圧力が10^−^3〜10^−^1Torrの条件
下で直流電圧を印加してスパッタすることにより基板上
に表面をアルキル基(炭素数3以下)がとりまき内部が
4配位炭素によるダイヤモンド構造をもつ微粒子ダイヤ
モンド薄膜を形成させることからなるダイヤモンド薄膜
の製造法。
Alkyl groups (3 or less carbon atoms) are formed on the surface of the substrate by sputtering in a sputtering device with a graphite target and applying a DC voltage under hydrogen pressure of 10^-^3 to 10^-^1 Torr. A method for producing a diamond thin film, which comprises forming a fine-grain diamond thin film having a diamond structure surrounded by four-coordinated carbon.
JP12439284A 1983-11-28 1984-06-19 Production of diamond thin film Granted JPS616198A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12439284A JPS616198A (en) 1984-06-19 1984-06-19 Production of diamond thin film
CA000468432A CA1235087A (en) 1983-11-28 1984-11-22 Diamond-like thin film and method for making the same
DE8484308159T DE3478475D1 (en) 1983-11-28 1984-11-23 Diamond-like thin film and method for making the same
EP84308159A EP0156069B1 (en) 1983-11-28 1984-11-23 Diamond-like thin film and method for making the same
US07/020,226 US4767517A (en) 1983-11-28 1987-03-02 Process of depositing diamond-like thin film by cathode sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12439284A JPS616198A (en) 1984-06-19 1984-06-19 Production of diamond thin film

Publications (2)

Publication Number Publication Date
JPS616198A true JPS616198A (en) 1986-01-11
JPH0421638B2 JPH0421638B2 (en) 1992-04-13

Family

ID=14884285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12439284A Granted JPS616198A (en) 1983-11-28 1984-06-19 Production of diamond thin film

Country Status (1)

Country Link
JP (1) JPS616198A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213656A (en) * 1987-02-28 1988-09-06 Meidensha Electric Mfg Co Ltd Device for forming thin carbon film
JPH01192794A (en) * 1988-01-26 1989-08-02 Nachi Fujikoshi Corp Vapor-phase production of diamond
JPH02399U (en) * 1988-06-08 1990-01-05
US4972250A (en) * 1987-03-02 1990-11-20 Microwave Technology, Inc. Protective coating useful as passivation layer for semiconductor devices
US5087959A (en) * 1987-03-02 1992-02-11 Microwave Technology, Inc. Protective coating useful as a passivation layer for semiconductor devices
JPH05129241A (en) * 1991-10-21 1993-05-25 Hitachi Chem Co Ltd Electrode plate for use in plasma etching
JP2002534763A (en) * 1998-12-23 2002-10-15 ジェンセン エレクトロニック アーベー Discharge tube
WO2005008762A1 (en) * 2003-07-17 2005-01-27 Rorze Corporation Low-permittivity film, and production method therefor, and electronic component using it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213656A (en) * 1987-02-28 1988-09-06 Meidensha Electric Mfg Co Ltd Device for forming thin carbon film
US4972250A (en) * 1987-03-02 1990-11-20 Microwave Technology, Inc. Protective coating useful as passivation layer for semiconductor devices
US5087959A (en) * 1987-03-02 1992-02-11 Microwave Technology, Inc. Protective coating useful as a passivation layer for semiconductor devices
JPH01192794A (en) * 1988-01-26 1989-08-02 Nachi Fujikoshi Corp Vapor-phase production of diamond
JPH0474315B2 (en) * 1988-01-26 1992-11-25
JPH02399U (en) * 1988-06-08 1990-01-05
JPH05129241A (en) * 1991-10-21 1993-05-25 Hitachi Chem Co Ltd Electrode plate for use in plasma etching
JP2002534763A (en) * 1998-12-23 2002-10-15 ジェンセン エレクトロニック アーベー Discharge tube
WO2005008762A1 (en) * 2003-07-17 2005-01-27 Rorze Corporation Low-permittivity film, and production method therefor, and electronic component using it
US7749920B2 (en) 2003-07-17 2010-07-06 Rorze Corporation Low dielectric constant films and manufacturing method thereof, as well as electronic parts using the same
US8158536B2 (en) 2003-07-17 2012-04-17 Rorze Corporation Low dielectric constant films and manufacturing method thereof, as well as electronic parts using the same

Also Published As

Publication number Publication date
JPH0421638B2 (en) 1992-04-13

Similar Documents

Publication Publication Date Title
US4767517A (en) Process of depositing diamond-like thin film by cathode sputtering
KR20100107403A (en) Method of production of graphene
Silva et al. Optical properties of amorphous C/diamond thin films
US5944573A (en) Method for manufacture of field emission array
JPS616198A (en) Production of diamond thin film
JPH06100396A (en) Production of polycrystal semiconductor thin film
JPS6270295A (en) Production of n-type semiconductive diamond film
JPH02263789A (en) Silicon substrate having diamond single crystalline film and its production
JPS62180073A (en) Amorphous carbon film and its production
Lue et al. Field emission studies of diamond-like films grown by RFCVD
JP2914992B2 (en) Deposition film formation method
JPH05283361A (en) Diamond semiconductor device and its manufacture
JP2508015B2 (en) Method of manufacturing light emitting material
JPH0518794B2 (en)
JP3637926B2 (en) Method for producing diamond single crystal film
JPS60171299A (en) Thin diamond film and its production
JP7429971B2 (en) Graphene film manufacturing method
JPH0587171B2 (en)
JPH0341435B2 (en)
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
DE19844538C2 (en) Process for diamond coating of surfaces
KR100382752B1 (en) Method for manufacturing diamond photoconductive device
JPS6330397A (en) Method for synthesizing diamond
JPH06334171A (en) Diamond thin film element and manufacture thereof
CN116288244A (en) Method for preparing patterned diamond, product with patterned diamond and application of product