JPS61153478A - Heat insulator - Google Patents

Heat insulator

Info

Publication number
JPS61153478A
JPS61153478A JP59277610A JP27761084A JPS61153478A JP S61153478 A JPS61153478 A JP S61153478A JP 59277610 A JP59277610 A JP 59277610A JP 27761084 A JP27761084 A JP 27761084A JP S61153478 A JPS61153478 A JP S61153478A
Authority
JP
Japan
Prior art keywords
urethane foam
heat insulator
pressure
cell
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59277610A
Other languages
Japanese (ja)
Other versions
JPH023115B2 (en
Inventor
一登 上門
一雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Takeda Chemical Industries Ltd filed Critical Matsushita Refrigeration Co
Priority to JP59277610A priority Critical patent/JPS61153478A/en
Publication of JPS61153478A publication Critical patent/JPS61153478A/en
Publication of JPH023115B2 publication Critical patent/JPH023115B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍ブレノ・プ等に利用する断熱体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat insulator for use in refrigerators, freezers, etc.

従来の技術 第3図は、従来の断熱体を示している。以下に従来例の
構成について第3図を参考に説明する。
BACKGROUND OF THE INVENTION FIG. 3 shows a conventional heat insulator. The configuration of the conventional example will be explained below with reference to FIG.

近年、断熱箱体の断熱性能を向上させるため内部を減圧
した断熱体を用いることが注目されている。この断熱体
の心材としては、パーライト等の粉末、ハニカム、及び
発泡体等が用いられる。例えば、特開昭57−1338
70号に示されるように連続気泡を有する硬質ウレタン
フオームを心材とする提案がなされている。この特開昭
57−133870号を第3図で説明すると10図にお
いて、1は断熱性構造体であり、連続気泡を有する硬質
ウレタンフオーム2を気密性薄膜から成る容器3で被い
、内部を0.001B Hgまで減圧し、密閉している
。硬質ウレタンフオーム2は、独立気泡率が約80〜9
0チ程度の市販の材料を高温高湿下で真空脱気して気泡
膜を破り、連続気泡を得ることが特徴となっている。
In recent years, attention has been paid to the use of a heat insulating body with a reduced internal pressure in order to improve the heat insulation performance of the heat insulating box. As the core material of this heat insulating body, powder such as perlite, honeycomb, foam, etc. are used. For example, JP-A-57-1338
As shown in No. 70, a proposal has been made to use a hard urethane foam having open cells as the core material. This Japanese Patent Application Laid-Open No. 57-133870 is explained with reference to Fig. 3. In Fig. 10, 1 is a heat insulating structure in which a hard urethane foam 2 having open cells is covered with a container 3 made of an airtight thin film. The pressure is reduced to 0.001B Hg and the chamber is sealed. The hard urethane foam 2 has a closed cell ratio of approximately 80 to 9.
It is characterized by the fact that a commercially available material with a size of about 0.0 cm is vacuum degassed under high temperature and high humidity to break the cell membrane and obtain open cells.

発明が解決しようとする問題点 しかし、このような断熱性構造体においては、硬質ウレ
タンフオーム2の気泡膜は、高温高湿下の状態でも樹脂
強度が強いため、破泡しない場合があり、そのため連続
気泡率は、100%に到達しえないことが考えられる。
Problems to be Solved by the Invention However, in such a heat insulating structure, the bubble membrane of the hard urethane foam 2 has strong resin strength even under high temperature and high humidity conditions, so the bubbles may not burst. It is conceivable that the open cell ratio cannot reach 100%.

このため初期の熱伝導率が優れたものでも、経時的に断
熱性構造体1の内部圧力は、独立気泡部から徐々に拡散
する空気・水蒸気・フロンガス等の気体によシ上昇し、
熱伝導率が大きくなってくるのである。例えば、3oc
III×3ocI11×2α(容積1800cfIl)
の大きさで、平均気泡径300μm程度の硬質ウレタン
フオーム2の心材を有する断熱性構造体1において、9
8チの連続気泡率のとき、0.001 、 Hqまで減
圧したとしても、理論上2チの独立気泡部に含まれる約
3e7の気体(1800iX O,02)は、気泡膜の
拡散抵抗を受けながら徐々に減圧されている連続気泡部
に拡散する。また実験によると圧力平衡に完全に達する
のに常温で約30日間、硬質ウレタンフオーム2の耐熱
温度に近い80〜100°Cの雰囲気でも1〜3日間の
経時が必要であった。そして、前記2%の独立気泡部の
約36−の気体が究極的に内部圧力を0.001. H
gから15 trrrr H9まで上昇させて熱伝導率
を0.0207/mh℃以上に劣化させることが考えら
れる。
Therefore, even if the initial thermal conductivity is excellent, the internal pressure of the heat insulating structure 1 will rise over time due to gases such as air, water vapor, and fluorocarbon gas gradually diffusing from the closed cell portions.
Thermal conductivity increases. For example, 3oc
III×3ocI11×2α (volume 1800cfIl)
In the heat insulating structure 1 having a core material of hard urethane foam 2 with a size of 9 and an average cell diameter of about 300 μm,
When the open cell ratio is 8 inches, even if the pressure is reduced to 0.001 Hq, theoretically about 3e7 gas (1800i However, it diffuses into the open cell part where the pressure is gradually reduced. Further, according to experiments, it took about 30 days at room temperature to completely reach pressure equilibrium, and 1 to 3 days even in an atmosphere of 80 to 100°C, which is close to the heat resistance temperature of the rigid urethane foam 2. The approximately 36-degree gas in the 2% closed cell portion ultimately raises the internal pressure to 0.001. H
It is conceivable to increase the thermal conductivity from g to 15 trrrr H9 to deteriorate the thermal conductivity to 0.0207/mh°C or more.

これを防ぐには、少なくとも80〜100’Cに断熱性
構造体1を維持し1日以上真空ポンプで排気し続けるこ
とが必要であろう。すなわち、この操作により独立気泡
部に残存する気体は、気泡膜を介して排気され、たとえ
、独立気泡部がありたとしても所定の圧力まで減圧する
ことができる。
To prevent this, it will be necessary to maintain the heat insulating structure 1 at a temperature of at least 80-100'C and continue to evacuate it with a vacuum pump for one day or more. That is, by this operation, the gas remaining in the closed cell portion is exhausted through the cell membrane, and even if there is a closed cell portion, the pressure can be reduced to a predetermined pressure.

しかしながら、この操作は、量産においては、排気設備
1台に対し、1日1体しか製造できず、量産化は非常に
困難である。又、高温高湿処理も大規模な設備が必要と
なり、同様に量産化に対し間。
However, in mass production, this operation can only produce one exhaust system per day, making mass production very difficult. Additionally, high-temperature, high-humidity processing requires large-scale equipment, which also takes time for mass production.

題がある。There is a problem.

本発明は、上記問題点に鑑み短時間の排気で所定の圧力
まで減圧できることによって生産性を大幅に向上させる
と共に、断熱体の断熱性能を長期にわたって維持し、品
質信頼性を確保することを目的とする。
In view of the above-mentioned problems, the present invention aims to significantly improve productivity by reducing the pressure to a predetermined pressure in a short time, maintain the insulation performance of the heat insulator over a long period of time, and ensure quality reliability. shall be.

問題点を解決するための手段 本発明は、上記目的を達成するために、有機ポリイソシ
アネート、ポリオール、触媒、発泡剤及び気泡連通化剤
として熱可塑性樹脂粉末を原料とする硬質ウレタンフオ
ームを断熱体の心材とするもので、発泡過程で気泡膜が
破れ、連続気泡率が100%となる前記硬質ウレタン7
オームを金属−プラスチックスラミネートフィルムから
成る容器で被うものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a heat insulating material using a hard urethane foam made from thermoplastic resin powder as a raw material of an organic polyisocyanate, a polyol, a catalyst, a blowing agent, and a cell communication agent. The above-mentioned hard urethane 7 has a core material of which the cell membrane is torn during the foaming process and the open cell ratio is 100%.
The ohm is covered with a container made of metal-plastic laminate film.

作   用 本発明は上記構成のように内部を減圧するため、短時間
の排気で、断熱体の内部圧力を均一に所定圧力まで減圧
できると共に独立気泡部がないため長期間にわたって内
部圧力の上昇がなく、初期の断熱性能を維持するもので
ある。        ぜ実施例 以下、本発明の一実施例を第1図、第2図を参考に説明
する。
Function Since the present invention reduces the internal pressure as described above, it is possible to uniformly reduce the internal pressure of the heat insulating body to a predetermined pressure by evacuation for a short time, and since there is no closed cell portion, the internal pressure does not increase over a long period of time. It maintains its initial insulation performance. EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.

図において4は下表に示す原料を用いてR−RIM高圧
発泡機で発泡し、硬化させた硬質ウレタンフオームで、
常温で工ふジンクしだ後、所定の大きさに切断したもの
である。
In the figure, 4 is a hard urethane foam foamed and cured using the R-RIM high-pressure foaming machine using the raw materials shown in the table below.
After processing at room temperature, it is cut to the specified size.

表において、ポリオールAは芳香族ジアミンを開始剤と
し、プロピレンオキサイド(以下、P。
In the table, polyol A uses aromatic diamine as an initiator and propylene oxide (hereinafter referred to as P).

と呼ぶ)を付加重合させて得た水酸基価442#KOH
/gのポリエーテルポリオールである。また、ポリオー
ルBは、蔗糖、エチレンジアミン。
Hydroxyl value 442#KOH obtained by addition polymerization of
/g of polyether polyol. Moreover, polyol B is sucrose and ethylenediamine.

ジエチレングリコールを開始剤として、Poを付加重合
させて得た水酸基価400 jWKOH/、9のポリエ
ーテルポリオールである。整泡剤は、信越化学(株)製
シリコーン界面活性剤F−3o6、発泡剤は、昭和電工
(株)製フロンR−11、触媒は、化工石鹸(株)製テ
トラメチルヘキ丈ジアミン、気泡連通化剤は、ポリエチ
レンの粉末である製鉄化学(株)製フロ七ンUF−20
である。有機ポリイソシアネートAは、式日薬品工業(
株)製タケネート■81−12P (7ミン当量16o
)、有機ポリイソシアネー)Bは、日本ポリウレタン(
株)製粗製ジフェニールメタンジイリシアネート(アミ
ン当量136)である。これらの原料を種々組合せて発
泡を行ない、この一部を実施例としてム1〜6.比較例
として&A、&Bを表に表わした。
This is a polyether polyol with a hydroxyl value of 400 jWKOH/, 9 obtained by addition polymerization of Po using diethylene glycol as an initiator. The foam stabilizer is silicone surfactant F-3o6 manufactured by Shin-Etsu Chemical Co., Ltd., the foaming agent is Freon R-11 manufactured by Showa Denko Co., Ltd., and the catalyst is tetramethylhexyl diamine manufactured by Kako Soap Co., Ltd., air bubbles. The communication agent is Fron7in UF-20, a polyethylene powder manufactured by Seitetsu Kagaku Co., Ltd.
It is. Organic polyisocyanate A is manufactured by Shikinichi Yakuhin Kogyo (
Takenate ■81-12P (7min equivalent weight 16o
), organic polyisocyanate) B is Japanese polyurethane (
This is crude diphenylmethane diiricyanate (amine equivalent weight: 136) manufactured by Co., Ltd. Foaming was carried out using various combinations of these raw materials, and some of these materials were used as examples in Examples 1 to 6. &A and &B are shown in the table as comparative examples.

得られた硬質ウレタンフオーム4の密度、連続気″泡率
も表に示す。この後得られた硬質ウレタンフオーム4を
100°Cで約 時間、加熱し吸着水分を蒸発させてア
ルミ蒸着ポリエステルフィルムとポリエチレンフィルム
のラミネート構成による金属−プラスチックスラミネー
トフィルムから成る袋状の容器6で被い、内部を0−O
5nm Hgまで減圧し、密閉して断熱体6を得た。こ
のときの排気時間は、3分間であった。得られた断熱体
6の密閉直後の初期値の熱伝導率と、30日後の熱伝導
率も表に示した。熱伝導率は真空理工(株)製に−Ma
 t i cで平均温度24°Cにて測定した。
The density and open-cell ratio of the obtained rigid urethane foam 4 are also shown in the table.The obtained rigid urethane foam 4 was then heated at 100°C for about an hour to evaporate the adsorbed moisture and form an aluminum-deposited polyester film. It is covered with a bag-shaped container 6 made of a metal-plastic laminate film with a polyethylene film laminate structure, and the inside is 0-O
The pressure was reduced to 5 nm Hg, and the heat insulator 6 was obtained. The evacuation time at this time was 3 minutes. The initial thermal conductivity of the obtained heat insulator 6 immediately after sealing and the thermal conductivity after 30 days are also shown in the table. Thermal conductivity is made by Shinku Riko Co., Ltd. -Ma
Measurements were made tic at an average temperature of 24°C.

表から明らかなようにポリオール、有機イソシアネート
、触媒、整泡剤9発泡剤の各種配合原料に対し、気泡連
通化剤としてポリエチレンから成る熱可塑性樹脂粉末を
ポリオール10o重量部に対し5〜50重量部を使用し
て発泡した硬質ウレタンフオーム4は、連続気泡率が1
00%となり、かつ断熱体6としたときフオーム強度が
大気圧縮に耐えることが判った。又気泡連通化剤が5重
量部未満では連続気泡率が100%に足らず、逆に、5
0部より多量に配合すると反応原料の粘度が上昇し、発
泡時の原料混合が充分に行なわれないため発泡不良のフ
オームが生成し実施困難である。
As is clear from the table, 5 to 50 parts by weight of thermoplastic resin powder consisting of polyethylene was added as a cell communication agent to 10 parts by weight of polyol to various blended raw materials of polyol, organic isocyanate, catalyst, foam stabilizer, and 9 blowing agents. The hard urethane foam 4 foamed using
00% and the foam strength was found to be able to withstand atmospheric compression when the heat insulator was 6. Furthermore, if the cell communication agent is less than 5 parts by weight, the open cell ratio will be less than 100%;
If the amount is more than 0 parts, the viscosity of the reaction raw materials will increase, and the raw materials will not be mixed sufficiently during foaming, resulting in a foam with poor foaming, which is difficult to implement.

連続気泡化については、発泡過程において硬質ウレタン
フオーム4の気泡膜中に分散した熱可塑性樹脂であるポ
リエチレン粉末が、120〜140°Cに達スる硬質ウ
レタンフオーム4の生成反応熱によって溶融し、ポリエ
チレン粉末が位置していた気泡膜の一部分が空洞化し、
見かけ上破泡した状態となり、連続気泡化すると考えら
れるが、本プロセスの詳細は解明に至っていない。そし
て、この連続気泡率が、100%で独立気泡部のない硬
質ウレタンフオーム4を断熱体6の心材として用いるこ
とにより、排気を行なうと、短時間で断熱体dの内部圧
力を連続気泡を通して均一に所定圧力まで減圧でき、量
産効率の優れたものとなる。
Regarding the formation of open cells, during the foaming process, the polyethylene powder, which is a thermoplastic resin, dispersed in the cell membrane of the hard urethane foam 4 is melted by the heat of the formation reaction of the hard urethane foam 4, which reaches 120 to 140 ° C. A part of the bubble membrane where the polyethylene powder was located became hollow,
It is thought that the bubbles appear to be broken and the cells become open, but the details of this process have not yet been elucidated. By using the hard urethane foam 4, which has an open cell ratio of 100% and has no closed cell portions, as the core material of the heat insulator 6, when exhaust is performed, the internal pressure of the heat insulator d is uniformized through the open cells in a short time. The pressure can be reduced to a predetermined pressure, resulting in excellent mass production efficiency.

又、気体を含有する独立気泡部がないため断熱体6を長
期にわたって放置しても独立気泡部からのガス拡散はな
く圧力上昇を起こすことはない。よって、断熱体6の断
熱性能は長期にわたって劣化することがなく品質確保に
寄与するものである。
Furthermore, since there is no closed cell portion containing gas, even if the heat insulator 6 is left for a long period of time, gas will not diffuse from the closed cell portion and no pressure will increase. Therefore, the heat insulating performance of the heat insulator 6 does not deteriorate over a long period of time, contributing to quality assurance.

発明の効果 本発明は、上記の説明から明らかなように以下に示すよ
うな効果が得られるのである。
Effects of the Invention As is clear from the above description, the present invention provides the following effects.

(−)  有機ポリインシアネート、ポリオール、触媒
、整泡剤2発泡剤、及び気泡連通化剤としてポリオール
100重量部に対し、5〜50重量部の熱可塑性樹脂粉
末を混合、発泡して得られる硬質ウレタンフオームは連
続気泡率が1o。
(-) A hard material obtained by mixing and foaming 5 to 50 parts by weight of thermoplastic resin powder to 100 parts by weight of polyol as an organic polyincyanate, a polyol, a catalyst, a foam stabilizer, a foaming agent, and a cell communication agent. Urethane foam has an open cell ratio of 1o.

チで独立気泡部のない気泡構造となるため、これを金属
−プラスチックスラミネートフィルムから成る容器で被
い内部を減圧すると、内部圧力は均一に所定圧力まで短
時間に到達することができ、量産時の生産性を確保する
ことが可能となる。
Since the cell has a cell structure with no closed cell parts, by covering it with a container made of metal-plastic laminate film and reducing the internal pressure, the internal pressure can uniformly reach the specified pressure in a short time, making it possible for mass production. This makes it possible to ensure productivity over time.

(b)  気体を含有する独立気泡部がないため断熱体
を長期にわたって放置しても独立気泡部からのガス拡散
はなく圧力上昇を起こすことはない0よって断熱体の断
熱性能は劣化することなく品質の安定性を確保するもの
である。
(b) Since there is no closed cell part containing gas, even if the heat insulator is left for a long time, there will be no gas diffusion from the closed cell part and no pressure increase will occur. Therefore, the heat insulation performance of the heat insulator will not deteriorate. This ensures quality stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における硬質ウレタンフオー
ムの外観斜視図、第2図は同断熱体の断面図、第3図は
従来例の断熱性構造体の断面図である。 4・・・・・・硬質ウレタンフオーム、6・・・・・・
容器、6・・・・・・断熱体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 二==コ 第3図 シ 4・・・4更)「つL9zケ−4 5・・・客 若 6・・・覇11傳
FIG. 1 is an external perspective view of a rigid urethane foam according to an embodiment of the present invention, FIG. 2 is a sectional view of the same heat insulating body, and FIG. 3 is a sectional view of a conventional heat insulating structure. 4...Hard urethane foam, 6...
Container, 6...Insulator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 = Figure 3 4... 4 more) ``Tsu L9zke-4 5... Customer Waka 6... Ha 11 Den

Claims (1)

【特許請求の範囲】[Claims] 有機ポリイソシアネート、ポリオール、触媒、整泡剤、
発泡剤、及び気泡連通化剤としてポリオール100重量
部に対し、5〜50重量部の熱可塑性樹脂粉末を混合し
、発泡して連続気泡構造の硬質ウレタンフォームを形成
し、この硬質ウレタンフォームを金属−プラスチックス
ラミネートフィルムから成る容器で被い、内部を減圧し
て密閉した断熱体。
Organic polyisocyanates, polyols, catalysts, foam stabilizers,
5 to 50 parts by weight of thermoplastic resin powder is mixed with 100 parts by weight of polyol as a blowing agent and a cell communication agent, and foamed to form a rigid urethane foam with an open cell structure. - A heat insulator covered with a container made of plastic laminate film, the inside of which is sealed under reduced pressure.
JP59277610A 1984-12-27 1984-12-27 Heat insulator Granted JPS61153478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277610A JPS61153478A (en) 1984-12-27 1984-12-27 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277610A JPS61153478A (en) 1984-12-27 1984-12-27 Heat insulator

Publications (2)

Publication Number Publication Date
JPS61153478A true JPS61153478A (en) 1986-07-12
JPH023115B2 JPH023115B2 (en) 1990-01-22

Family

ID=17585819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277610A Granted JPS61153478A (en) 1984-12-27 1984-12-27 Heat insulator

Country Status (1)

Country Link
JP (1) JPS61153478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116082A (en) * 1986-10-31 1988-05-20 松下冷機株式会社 Manufacture of heat insulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133870A (en) * 1981-01-30 1982-08-18 Tokyo Shibaura Electric Co Heat insulating structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133870A (en) * 1981-01-30 1982-08-18 Tokyo Shibaura Electric Co Heat insulating structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116082A (en) * 1986-10-31 1988-05-20 松下冷機株式会社 Manufacture of heat insulator

Also Published As

Publication number Publication date
JPH023115B2 (en) 1990-01-22

Similar Documents

Publication Publication Date Title
JPH111536A (en) Hard polyurethane foam with open cell, its production and production of vacuum insulating panel using the same
US5693685A (en) Thermal insulator and method for producing the same
JPS61153480A (en) Heat insulator
JPH06213561A (en) Insulating material and refrigerator using the same
JP2746069B2 (en) Foam insulation and method of manufacturing the same
JPS61153478A (en) Heat insulator
JPH0753757A (en) Foamed thermal insulator and its production
JP2702746B2 (en) Insulation
JPS62147275A (en) Manufacture of heat insulator
JPS6321475A (en) Heat insulator
JP2548323B2 (en) Insulation
JPH02120598A (en) Insulating body
JPS61153476A (en) Heat insulator
JPS61153482A (en) Heat insulator
JPH02154894A (en) Heat insulator
JPS61153481A (en) Heat insulator
JPS63172878A (en) Heat insulator
JP3115201B2 (en) Foam insulation and method of manufacturing the same
JPS61235671A (en) Heat insulator
JPS63116082A (en) Manufacture of heat insulator
JPH04143586A (en) Adiabatic body
JPS62178866A (en) Manufacture of heat insulator
JPH0272295A (en) Heat insulating structure
JPS62251593A (en) Manufacture of heat insulator
JPH0272294A (en) Heat insulating structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term