JPS63116082A - Manufacture of heat insulator - Google Patents

Manufacture of heat insulator

Info

Publication number
JPS63116082A
JPS63116082A JP26131986A JP26131986A JPS63116082A JP S63116082 A JPS63116082 A JP S63116082A JP 26131986 A JP26131986 A JP 26131986A JP 26131986 A JP26131986 A JP 26131986A JP S63116082 A JPS63116082 A JP S63116082A
Authority
JP
Japan
Prior art keywords
urethane foam
foam
pressure
time
heat insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26131986A
Other languages
Japanese (ja)
Inventor
一登 上門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26131986A priority Critical patent/JPS63116082A/en
Publication of JPS63116082A publication Critical patent/JPS63116082A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5033Polyethers having heteroatoms other than oxygen having nitrogen containing carbocyclic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Refrigerator Housings (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍プレノ・ブ等に利用する断熱体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a heat insulator for use in refrigerators, refrigerators, refrigerators, etc.

従来の技術 第3図は、従来の断熱体を示している。以下に従来例の
構成について第3図を参考に説明する。
BACKGROUND OF THE INVENTION FIG. 3 shows a conventional heat insulator. The configuration of the conventional example will be explained below with reference to FIG.

近年、断熱箱体の断熱性能を向上させるため内部を減圧
した断熱体を用いることが注目されている。この断熱体
の芯材としては、パーライト等の粉末、ハニカム、及び
発泡体等が用いられる。例えば、特開昭57−1338
70号に示されるように連続気泡を有する硬質ウレタン
フオームを芯材とする提案がなされている。この特開昭
67−133870号を第3図で説明すると、図におい
て%1は断熱性構造体であり、連続気泡を有する硬質ウ
レタンフオーム2を気密性薄膜から成る容器3で被い、
内部を0.001m5+Hgまで減圧し密閉している。
In recent years, attention has been paid to the use of a heat insulating body with a reduced internal pressure in order to improve the heat insulation performance of the heat insulating box. As the core material of this heat insulating body, powder such as perlite, honeycomb, foam, etc. are used. For example, JP-A-57-1338
As shown in No. 70, a proposal has been made to use a hard urethane foam having open cells as a core material. To explain this Japanese Patent Application Laid-open No. 67-133870 with reference to FIG. 3, %1 in the figure is a heat insulating structure in which a hard urethane foam 2 having open cells is covered with a container 3 made of an airtight thin film.
The interior is depressurized to 0.001m5+Hg and sealed.

硬質ウレタンフオーム2は気泡骨格径が300〜100
0μm程度の市販の一般材料を高温高湿下で真空脱気し
て気泡膜を破り、連続気泡を得ることが特徴となってい
る。
The hard urethane foam 2 has a cell skeleton diameter of 300 to 100.
The feature is that a commercially available general material with a diameter of about 0 μm is vacuum degassed under high temperature and high humidity to break the cell membrane and obtain open cells.

発明が解決しようとする問題点 このような断熱性構造体1においては、硬質ウレタンフ
オーム2の気泡骨格径が300〜10oOμmであるた
め、 0.001 rrmHq以下の圧力にしないと気
体の熱伝導率は十分に小さくならず、優れた断熱性は得
られないものである。基本的に気体の熱伝導率は、気体
層の壁間距離(本構成においては、気泡骨格径)が気体
の平均自由工程より短かくなると急激に減少するが、壁
間距離が長いほど、同じ気体熱伝導率を得るのにより低
い圧力が必要となる。一般式としては、以下の(1)式
で示される。
Problems to be Solved by the Invention In such a heat insulating structure 1, since the bubble skeleton diameter of the hard urethane foam 2 is 300 to 100μm, the thermal conductivity of the gas must be lowered to a pressure of 0.001 rrmHq or less. is not small enough, and excellent heat insulation properties cannot be obtained. Basically, the thermal conductivity of a gas decreases rapidly when the distance between the walls of the gas layer (in this configuration, the bubble skeleton diameter) becomes shorter than the mean free path of the gas, but the longer the distance between the walls, the more the same Lower pressures are required to obtain gas thermal conductivity. The general formula is represented by the following formula (1).

kg =AρVCr (L f d/(L f +d 
) ) −・−・−・−・−(1)弐kq:気体の熱伝
導率 A:定数 ρ:密度Cky/m” 〕V:平均分
子速度(m/s)  Lf:平均自由工程C,)Cr二
二定化比熱 kc a l ACq″Cod:壁間距離
〔m〕よって、従来例においては、気泡骨格径が、30
0〜1000μm であるため、10  mmHg 以
下という工業的に取扱いにくい圧力が必要となf)、量
産での大規模な設備や排気時間が長くなる等の問題があ
った。さらに、10−3mmHg 以下の圧力域では材
料のガス放出量の影響を受けやすく、低分子量の七ツマ
ー成分を含有しやすい有機体の本構成の場合、特に排気
時間が長くかかる問題があり、量産効率が悪かった。
kg = AρVCr (L f d/(L f +d
) ) −・−・−・−・−(1) 2kq: Thermal conductivity of gas A: Constant ρ: Density Cky/m” ]V: Average molecular velocity (m/s) Lf: Mean free path C, ) Cr2 specific heat kc a l ACq'' Cod: distance between walls [m] Therefore, in the conventional example, the bubble skeleton diameter is 30
Since the thickness is 0 to 1000 μm, a pressure of 10 mmHg or less, which is difficult to handle in an industrial manner, is required f), and there are problems such as requiring large-scale equipment and long evacuation time in mass production. Furthermore, in the pressure range below 10-3 mmHg, it is easily affected by the amount of gas released by the material, and in the case of this composition of organisms that tend to contain low molecular weight heptamer components, there is a problem that the evacuation time is particularly long, and mass production It was inefficient.

本発明は、上記問題点に鑑み、工業的に取扱いやすい低
真空度域で優れた断熱性能を得ることにより、排気時間
を短縮化し、量産を可能とするもの・である。
In view of the above-mentioned problems, the present invention aims to shorten the evacuation time and enable mass production by obtaining excellent heat insulation performance in a low vacuum range that is easy to handle industrially.

問題点を解決するための手段 本発明は、上記問題点を解決するために有機ポリインシ
アネート、ポリオール、触媒、整泡剤。
Means for Solving the Problems The present invention aims to solve the above problems by using an organic polyinsyanate, a polyol, a catalyst, and a foam stabilizer.

発泡剤及び気泡連通化剤を用いて連続気泡構造の硬質ウ
レタンフオームを製造するにあたり、ゲル化時間(原料
混合からフオームのゲル化に至る時間)が2o秒以内の
反応速度で発泡させ、このようにして得られた連続気泡
構造の硬質ウレタンフオームを真空断熱体の芯材とする
ものである。
When manufacturing a rigid urethane foam with an open cell structure using a blowing agent and a cell communication agent, foaming is performed at a reaction rate within 20 seconds for gelation time (time from mixing raw materials to gelation of the foam). The hard urethane foam with open cell structure obtained in this process is used as the core material of the vacuum insulation body.

作   用 本発明は上記構成により芯材は微細な気泡骨格のため、
この芯材を、金属−プラスチノクスラミネートフィルム
から成る容器で被い、内部を減圧すると、o、1〜0.
01mmH(J程度の工業的に取扱いやすい圧力によっ
ても優れた断熱性能が得られたもので、排気時間の短縮
化によって、量産効率が大巾に向上するのである。
Function The present invention has the above-mentioned structure, and since the core material has a fine cell skeleton,
This core material is covered with a container made of metal-plasticinox laminate film, and when the inside is depressurized, the o.
Excellent heat insulation performance was obtained even at an industrially easy-to-handle pressure of about 0.1 mmH (J), and mass production efficiency was greatly improved by shortening the exhaust time.

実施例 以下、本発明の一実施例を第1図、第2図を参考に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.

図において、4は下表に示す原料を用いてウレタン高圧
発泡機で発泡し、硬化させた硬質ウレタンフオームで、
常温でエージングした後、所定の大きさに切断したもの
である。
In the figure, 4 is a hard urethane foam made by foaming and curing in a urethane high-pressure foaming machine using the raw materials shown in the table below.
After aging at room temperature, it is cut into a predetermined size.

表において、ポリオールAは、トリレンジアミンを開始
剤としてプロピレンオキサイド(以下、POと呼ぶ)を
付加重合せしめて得た水酸基価442111gKOH/
7のポリエーテルポリオールである。
In the table, polyol A is obtained by addition polymerizing propylene oxide (hereinafter referred to as PO) using tolylene diamine as an initiator.
7 polyether polyol.

整泡剤は、信越化学(株)製シリコーン界面活性剤F−
318、発泡剤は、昭和電工(株)製フロンR−11、
触媒Aは、酢酸カリ、ラム20%溶液。
The foam stabilizer is silicone surfactant F- manufactured by Shin-Etsu Chemical Co., Ltd.
318, the blowing agent is Freon R-11 manufactured by Showa Denko Co., Ltd.
Catalyst A is a 20% solution of potassium acetate and rum.

触媒Bは、ジブチルチンジラウレート、気泡連通化剤は
、日本油脂(株)製ステアリン酸カルシウムである。有
機ポリイソシアネートAは、トルイレンジイソシアネー
トとトリメチルプロパン及びジエチレングリコールを反
応させて得たアミン当量150のポリイソシアネートで
ある。これらの原料を種々組合せて発泡を行ない、この
一部を実施例として、護1〜3.比較例としてLAを表
わし。
Catalyst B was dibutyltin dilaurate, and the cell communication agent was calcium stearate manufactured by NOF Corporation. Organic polyisocyanate A is a polyisocyanate with an amine equivalent of 150 obtained by reacting toluylene diisocyanate with trimethylpropane and diethylene glycol. Foaming was carried out using various combinations of these raw materials, and some of them were used as examples for protections 1 to 3. LA is shown as a comparative example.

ゲル化時間も表に示す。得られた硬質ウレタンフオーム
4の密度、連続気泡率及び気泡骨格径も表に示す。この
後、得られた硬質ウレタンフオーム4を120°Cで約
2時間加熱し、吸着水分を蒸発させてアルミ蒸着ポリエ
ステルフィルムとポリエチレンフィルムのラミネート構
成、金属−プラスチックラミネートフィルムから成る容
器6で被い、内部を0.001,0,01 、o++ 
1.0.6,1*OmmHgまで減圧し、密閉して断熱
体6を得た。このときの排気時間は、実施例厖1からF
;、3はそれぞれ、30分、6分、2分、1分、30秒
間であり、比較例1hAはそれぞれ26分、6分、2分
、1分。
The gelation time is also shown in the table. The density, open cell ratio, and cell skeleton diameter of the obtained hard urethane foam 4 are also shown in the table. Thereafter, the obtained rigid urethane foam 4 was heated at 120°C for about 2 hours to evaporate the adsorbed moisture, and then covered with a container 6 consisting of a laminate structure of an aluminum-deposited polyester film and a polyethylene film, and a metal-plastic laminate film. , inside 0.001,0,01, o++
The pressure was reduced to 1.0.6,1*OmmHg, and the heat insulator 6 was obtained. The exhaust time at this time is from Example 1 to F.
;, 3 are 30 minutes, 6 minutes, 2 minutes, 1 minute, and 30 seconds, respectively, and Comparative Example 1hA is 26 minutes, 6 minutes, 2 minutes, and 1 minute, respectively.

30秒間であった。得られた断熱体eの密閉直後の熱伝
導率も表に示した。なお熱伝導率は、真空理工(株)製
K −Ma t i cを用い、平均温度24°Cで測
定した。
It was 30 seconds. The thermal conductivity of the obtained heat insulator e immediately after sealing is also shown in the table. The thermal conductivity was measured using K-Matic manufactured by Shinku Riko Co., Ltd. at an average temperature of 24°C.

表から明らかなように本発明の断熱体6は、気泡の微細
化が図れ工業的に取扱いやすい0.1〜0、01 ta
nHq  の圧力でも優れた断熱性能を示すことが判っ
た。これはゲル化時間が20秒以下になると急速な樹脂
硬化による粘度上昇が著しくなり、気泡と気泡の合一が
抑制され気泡の微細化が図れるためである。つまり、こ
の微細な気泡骨格を有する硬質ウレタンフオーム4を断
熱体6の芯材として用いることにより、断熱体e中の気
体熱伝導は、気泡骨格のより大きなものに比べて、高い
圧力でも同等まで低減でき、工業的に取扱いやすい0.
1〜0.01 mmHgで優れた断熱性能を発揮する。
As is clear from the table, the heat insulating body 6 of the present invention has a ta of 0.1 to 0.01 ta, which allows for finer bubbles and is easier to handle industrially.
It was found that it exhibits excellent heat insulation performance even at a pressure of nHq. This is because when the gelation time is 20 seconds or less, the viscosity increases significantly due to rapid resin curing, suppressing the coalescence of bubbles and making it possible to make the bubbles finer. In other words, by using the hard urethane foam 4 having this fine cell skeleton as the core material of the heat insulating body 6, the gas heat conduction in the heat insulating body e can be made to the same degree even at high pressure as compared to one with a larger cell skeleton. 0.0 that can be reduced and is easy to handle industrially.
Demonstrates excellent heat insulation performance at 1 to 0.01 mmHg.

この結果、排気時間が短時間ですむため、量産しやすく
、又、排気装置も簡易なもので圧力が得られる等、生産
性に大きく寄与するものである。
As a result, since the evacuation time is short, mass production is easy, and pressure can be obtained with a simple evacuation device, which greatly contributes to productivity.

なお、気泡骨格を微細化すると、排気抵抗が増加し、所
定の圧力まで減圧するのに要する排気時間は長くなると
考えられるが、 0.01mmHg域では、影響はなく
、さらに分子流領域が支配する0、 001 tyrH
qで影響が現われる。よって、微細化しても断熱性能が
十分発揮される0、1〜0.01mmHgの圧力を用い
ることにより生産性に対しての問題はない。
Furthermore, if the bubble skeleton is made finer, the evacuation resistance increases and the evacuation time required to reduce the pressure to a predetermined pressure is thought to become longer, but in the 0.01 mmHg region, there is no effect and the molecular flow region dominates. 0, 001 tyrH
The influence appears at q. Therefore, there is no problem with productivity by using a pressure of 0.1 to 0.01 mmHg, which provides sufficient heat insulation performance even when miniaturized.

発明の効果 本発明は、上記の説明から明らかなように、以下に示す
ような効果が得られるのである。
Effects of the Invention As is clear from the above description, the present invention provides the following effects.

有機ポリインシアネート、ポリオール、触媒、整泡剤2
発泡剤、及び気泡連通化剤を用いて連続気泡構造の硬質
ウレタンフオームを製造するにあへり、ゲル化時間が2
0秒以内の反応速度で発泡させ、このようにして得られ
た連続気泡構造の硬質ウレタンフオームは極めて微細な
気泡骨格を有するため、これを金属−プラスチックスラ
ミネートフィルムから成る容器で被い、内部を減圧する
と、工業的に取扱いやすい0.01−0.1 mmHg
の圧力でも十分に気体の熱伝導が低下し優れた断熱性が
得られ、短時間かつ容易な排気設備で量産することが可
能となり、大巾な生産性向上に寄与するものである。
Organic polyinsyanate, polyol, catalyst, foam stabilizer 2
A hard urethane foam with an open cell structure is produced using a blowing agent and a cell communication agent, and the gelation time is 2.
Since the rigid urethane foam with the open cell structure obtained in this way has an extremely fine cell skeleton, it is covered with a container made of a metal-plastic laminate film, and the inside is covered with a container made of a metal-plastic laminate film. When the pressure is reduced, it becomes 0.01-0.1 mmHg, which is easy to handle industrially.
The heat conduction of the gas is sufficiently reduced even at a pressure of 100 mL, and excellent heat insulation properties are obtained, making it possible to mass-produce in a short time and with simple exhaust equipment, contributing to a significant improvement in productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における硬質ウレタンフオー
ムの外観斜視図、第2図は同断熱体の断面図で、第3図
は従来例の断熱性構造体の断面図である。 4・・・・・・硬質ウレタンフオーム、6・・・・・・
容器、6・・・・・・断熱体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 r更″實ワレタンフ才一ム
FIG. 1 is an external perspective view of a rigid urethane foam according to an embodiment of the present invention, FIG. 2 is a sectional view of the same heat insulating body, and FIG. 3 is a sectional view of a conventional heat insulating structure. 4...Hard urethane foam, 6...
Container, 6...Insulator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Edit: Really, I'm talented.

Claims (1)

【特許請求の範囲】[Claims] 有機ポリイソシアネート、ポリオール、触媒、整泡剤、
発泡剤及び気泡連通化剤を用いて連続気泡構造の硬質ウ
レタンフォームを製造するにあたり、ゲル化時間(原料
混合からフォームのゲル化に至る時間)が20秒以内の
反応速度で発泡させ、このようにして得られた硬質ウレ
タンフォームを金属−プラスチックスラミネートフィル
ムから成る容器で被い、その内部を減圧にして密閉した
断熱体の製造方法。
Organic polyisocyanates, polyols, catalysts, foam stabilizers,
When producing rigid urethane foam with an open cell structure using a blowing agent and a cell communication agent, foaming is performed at a reaction rate within 20 seconds for gelation time (time from mixing raw materials to gelation of the foam). A method for producing a heat insulator, in which the rigid urethane foam obtained is covered with a container made of a metal-plastic laminate film, and the inside of the container is sealed under reduced pressure.
JP26131986A 1986-10-31 1986-10-31 Manufacture of heat insulator Pending JPS63116082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26131986A JPS63116082A (en) 1986-10-31 1986-10-31 Manufacture of heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26131986A JPS63116082A (en) 1986-10-31 1986-10-31 Manufacture of heat insulator

Publications (1)

Publication Number Publication Date
JPS63116082A true JPS63116082A (en) 1988-05-20

Family

ID=17360153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26131986A Pending JPS63116082A (en) 1986-10-31 1986-10-31 Manufacture of heat insulator

Country Status (1)

Country Link
JP (1) JPS63116082A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153478A (en) * 1984-12-27 1986-07-12 松下冷機株式会社 Heat insulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153478A (en) * 1984-12-27 1986-07-12 松下冷機株式会社 Heat insulator

Similar Documents

Publication Publication Date Title
JP2001001352A (en) Production of vacuum insulating material core
US5693685A (en) Thermal insulator and method for producing the same
JPS63116082A (en) Manufacture of heat insulator
JPS61153480A (en) Heat insulator
JP2746069B2 (en) Foam insulation and method of manufacturing the same
JPS61153482A (en) Heat insulator
JPS61153476A (en) Heat insulator
JPS6262173A (en) Heat insulator
JPS63189771A (en) Manufacture of heat insulator
JP2548323B2 (en) Insulation
JPS63201477A (en) Heat insulator
JPS61235671A (en) Heat insulator
JPS6321475A (en) Heat insulator
JPS61153478A (en) Heat insulator
JPS62178866A (en) Manufacture of heat insulator
JPH02120598A (en) Insulating body
JPS62147275A (en) Manufacture of heat insulator
JPS63260937A (en) Porous molding and its production
JPH0272294A (en) Heat insulating structure
JPS62251593A (en) Manufacture of heat insulator
JP2702746B2 (en) Insulation
JPS6321476A (en) Heat insulator
JPH02154894A (en) Heat insulator
JPH0272295A (en) Heat insulating structure
JPH0789003B2 (en) Insulation