JPS61153265A - Production of high strength al-mg alloy - Google Patents
Production of high strength al-mg alloyInfo
- Publication number
- JPS61153265A JPS61153265A JP27628384A JP27628384A JPS61153265A JP S61153265 A JPS61153265 A JP S61153265A JP 27628384 A JP27628384 A JP 27628384A JP 27628384 A JP27628384 A JP 27628384A JP S61153265 A JPS61153265 A JP S61153265A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- strength
- hot
- corrosion resistance
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Extrusion Of Metal (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
化学プラント、鉄道車両、自動車ホイール等の素材とし
て優れた性能を有する高強度A I −Mg系合金の製
造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a high-strength AI-Mg alloy that has excellent performance as a material for chemical plants, railway vehicles, automobile wheels, etc.
[従来の技術]
A 1−Mg系合金は適度の機械的強度を有しておりし
かも耐食性や溶接性、成形加工性等にも優れているとこ
ろから、JIS規格の5052 、5083 。[Prior Art] A1-Mg alloys have appropriate mechanical strength and are also excellent in corrosion resistance, weldability, moldability, etc., and are therefore rated as JIS Standards 5052 and 5083.
5454 、5154等として上記の様な用途に広く使
用されている。5454, 5154, etc. are widely used for the above-mentioned purposes.
[発明が解決しようとする問題点]
A 1−Mg系合金に共通する一般的特性として、Mg
含有率が高くなるほど強度は向上する反面、押出性や剥
離腐食性が低下してくることが確認されている。即ちA
l−Mg系合金はMgの固溶化による硬化現象を利用し
て高強度化を図ったものであり、Mg量を増すにつれて
Mgの固溶量が増大し強度は向上するが、変形抵抗が大
きくなる為押出、鍛造、及び圧延等の熱間加工性は低下
してくる。しかもMgの析出物であるβ相低下してくる
。この様なところから特に高強度が求められる用途に適
用する場合には5083系の如くMg量の多いA l
−Mg系合金が選択使用され、一方強度を犠牲にしてで
も高レベルの熱間加工性や耐剥離腐食性が求められる場
合は5052系の如くMg量の少ないA I −Mg合
金が選択使用されている。またA I −Mg系合金は
軟質材或は加工硬化調質材として使用されるが、上記の
様なMg量の増大による剥離腐食性低下傾向は、加工硬
化調質材においてより顕著に現われる。従って加工硬化
調質後においても優れた剥離腐食性を示し且つ強度面で
も十分に要求を満たす様なA I −Mg系合金の開発
が切望されている。殊に66℃以上の高温で使用される
場合は常温で使用する場合よりも高レベルの剥離腐食性
が要求されるので、Mg量を無造作に増大する訳にはい
かず、結局のところ高強度が要求される用途では剥離腐
食性を犠牲にしてでも高Mg量とし、高剥離腐食性が重
視される用途においては強度を犠牲にしてでも低Mg量
とせざるを得ない状況にある。従ってこうした状況から
しても強度と剥離腐食性を共に満足せしめ得る様なA
l −Mg系合金の開発が待たれている。本発明はこう
した状況のもとで、強度と剥離腐食性及び押出等の熱間
加工性の各要求特性を同時に満足し得る様なAl−Mg
合金を提供しようとするものである。[Problems to be solved by the invention] A. As a general characteristic common to 1-Mg alloys, Mg
It has been confirmed that the higher the content, the higher the strength, but the lower the extrudability and exfoliation corrosion. That is, A
l-Mg alloys are made to have high strength by utilizing the hardening phenomenon caused by solid solution of Mg, and as the amount of Mg increases, the amount of solid solution of Mg increases and the strength improves, but the deformation resistance increases. As a result, hot workability in extrusion, forging, rolling, etc. decreases. Moreover, the β phase, which is a precipitate of Mg, decreases. For this reason, when applied to applications that require particularly high strength, Al with a high Mg content, such as the 5083 series, is recommended.
-Mg alloys are selected and used, while when a high level of hot workability and exfoliation corrosion resistance is required even at the expense of strength, A I -Mg alloys with a small amount of Mg such as the 5052 series are selected and used. ing. Furthermore, A I -Mg alloys are used as soft materials or work-hardening tempered materials, but the above-mentioned tendency to decrease exfoliation corrosion due to an increase in the amount of Mg appears more markedly in work-hardening tempered materials. Therefore, there is a strong desire to develop an AI-Mg alloy that exhibits excellent exfoliation corrosion resistance even after work hardening and tempering and satisfies requirements in terms of strength. In particular, when used at high temperatures of 66°C or higher, a higher level of exfoliation corrosion resistance is required than when used at room temperature, so the amount of Mg cannot be increased casually, and after all, high strength is required. In applications requiring high Mg content, even at the expense of exfoliation corrosion resistance, in applications where high exfoliation corrosion resistance is important, a low Mg content must be used, even at the cost of strength. Therefore, even under these circumstances, A that can satisfy both strength and peeling corrosion resistance.
The development of l -Mg-based alloys is awaited. Under these circumstances, the present invention has developed an Al-Mg material that can simultaneously satisfy the required properties of strength, exfoliation corrosion resistance, and hot workability such as extrusion.
The aim is to provide alloys.
[問題点を解決する為の手段]
本発明に係る高強度A I −Mg系合金の製造方法は
、Mg:2〜4%、M n : 0.3〜1.0%、Z
r : 0.05〜0.2%及びT i : 0.0
1〜0.1%を必須成分として含み、残部が実質的にA
lからなるAl−Mg系合金鋳塊を505〜550℃で
4〜24時間加熱し、次いで熱間加工を施すところに要
旨が存在する。[Means for Solving the Problems] The method for producing a high-strength AI-Mg alloy according to the present invention includes Mg: 2 to 4%, Mn: 0.3 to 1.0%, Z
r: 0.05-0.2% and Ti: 0.0
Contains 1 to 0.1% as an essential component, with the remainder being substantially A.
The gist is that an Al-Mg alloy ingot consisting of L is heated at 505 to 550°C for 4 to 24 hours, and then hot worked.
[作用]
前述の様に従来のAl−Mg系合金では高強度を得よう
とすると熱間加工性及び剥離腐食性が低下し、また熱間
加工性及び剥離腐食性を高めようとすると強度が低下す
るという関係にあったが、本発明であれば上記の様にA
l−Mg系合金の成分組成を特定すると共に熱処理条件
を厳密に規定することによって、強度と熱間加工性及び
剥離腐食性の全ての面で優れた特性を有するA I −
Mg系合金を提供することができる。[Function] As mentioned above, when trying to obtain high strength in conventional Al-Mg alloys, hot workability and exfoliation corrosion resistance decrease, and when trying to increase hot workability and exfoliation corrosion resistance, strength decreases. However, with the present invention, as mentioned above, A
By specifying the composition of the l-Mg-based alloy and strictly regulating the heat treatment conditions, we have developed an AI-based alloy that has excellent properties in all aspects of strength, hot workability, and exfoliation corrosion resistance.
A Mg-based alloy can be provided.
以下本発明における各必須構成要件の設定理由を明確に
する。まず合金成分及びその含有率範囲を定めた理由は
次の通りである。The reasons for setting each essential component in the present invention will be clarified below. First, the reason why the alloy components and their content ranges were determined is as follows.
Mg:2〜4%
Al−Mg系合金に求められる強度を確保するうえで欠
くことのできない元素であり、2%未満では十分な強度
が得られない。しかしMg量が4%を超えると、後述す
る他の合金元素の種類や含有率或いは熱処理条件を如何
に適正に設定した場合でも、押出等の熱間加工性及び剥
離腐食性をどちらも満足させることはできなくなる。Mg: 2 to 4% Mg is an indispensable element for ensuring the strength required for Al-Mg alloys, and if it is less than 2%, sufficient strength cannot be obtained. However, if the Mg content exceeds 4%, no matter how appropriately the types and contents of other alloying elements or heat treatment conditions described below are set, both hot workability such as extrusion and exfoliation corrosion resistance will be satisfied. You won't be able to do that.
M n : 0.3 A71.0%
強度及び剥離腐食性を高める為に必須の元素であり、0
.3%未満ではその効果が有効に発揮されない。しかし
多過ぎると熱間加工性が低下するばか番1−r&*
/ A 1 − M n 3iE、の+ * t
r4bWnM イに、イト物 がシム出し延性や靭性が
低下するので、1%以下に抑えなければならない。Mn: 0.3 A71.0% An essential element to increase strength and exfoliation corrosion resistance, 0
.. If it is less than 3%, the effect will not be effectively exhibited. However, if there is too much, hot workability will decrease.
/ A 1 − M n 3iE, + * t
r4bWnM On the other hand, since the shim removal ductility and toughness of the metal material decreases, it must be kept at 1% or less.
Z r : 0.05〜0.2%
熱間加工性(特に押出性)にあまり悪影響を及ぼすこと
なく強度を高める作用がありMg量不足による強度不足
を補う為の重要な元素であり、しかも剥離腐食性を劣化
させない。こうした効果を有効に発揮させる為には0.
05%以上含有させなければならず、特に熱間押出加工
用に適用する場合は0.07%以上含有させることが望
まれる。しかし多過ぎるとAl−2丁系の大きな金属間
化合物が晶出し、延性や靭性が低下する他押出加工性も
劣化するので0.2%以下に抑えなければならない。Zr: 0.05-0.2% It has the effect of increasing strength without having too much of a negative effect on hot workability (especially extrudability), and is an important element for compensating for the lack of strength due to insufficient Mg content. Does not deteriorate peeling corrosion properties. In order to effectively demonstrate these effects, 0.
It must be contained in an amount of 0.05% or more, and particularly when applied to hot extrusion processing, it is desired to be contained in an amount of 0.07% or more. However, if it is too large, large intermetallic compounds of the Al-2 type will crystallize, resulting in decreased ductility and toughness as well as deterioration in extrusion processability, so it must be kept at 0.2% or less.
Ti:0.01〜0.1%
鋳塊組織を微細化し鋳造割れを阻止する作用があり、0
.01%未満では鋳塊組織の微細化効果が不十分となっ
て方向性に富んだ羽毛状晶が発生し、加工材の材料特性
にばらつきが生じ易くなるばかりでなく鋳造割れを起こ
し易くなる。しかし0.1%を超えるとTiAl3の晶
出化合物が多量生成し、延性及び靭性が劣化する。Ti: 0.01-0.1% Has the effect of refining the ingot structure and preventing casting cracks,
.. If it is less than 0.01%, the effect of refining the ingot structure is insufficient and feather-like crystals with rich directionality are generated, which not only tends to cause variations in the material properties of the processed material but also tends to cause casting cracks. However, if it exceeds 0.1%, a large amount of TiAl3 crystallized compounds will be produced, resulting in deterioration of ductility and toughness.
本発明で使用するA 1−Mg系合金は上記各元素を必
須成分として含み、残部は実質的にAtからなるもので
あるが、必要によっては更に下記の様な元素を含有させ
ることにより性能を一段と高めることも有効である。The A1-Mg alloy used in the present invention contains each of the above elements as essential components, and the remainder consists essentially of At. However, if necessary, the performance can be improved by further containing the following elements. It is also effective to increase it further.
Cr、V:夫々0.2%以下
Cr及びVは何れも強度及び剥離腐食性を高める作用が
あるが、前記MnやZrに比べるとその効果は小さい。Cr, V: 0.2% or less each Cr and V have the effect of increasing strength and exfoliation corrosion resistance, but their effects are smaller than those of Mn and Zr.
しかしMnやZrに加えて更に少量(好ましくは夫々0
.05%以上)配合するとその効果が現われてくる。但
し多過ぎると熱間加工性が低下する他、Al−CrやA
l−V系の大きな金属間化合物が晶出し延性や靭性が低
下するので0.2%以下に抑えなければならない。However, in addition to Mn and Zr, further small amounts (preferably 0 of each) are added.
.. 05% or more), the effect becomes apparent. However, if the amount is too high, hot workability will decrease, and Al-Cr and A
Since large l-V type intermetallic compounds crystallize and reduce ductility and toughness, the content must be suppressed to 0.2% or less.
B : 0.05%以下
BはTiと併用することによって鋳塊組織を更にか微細
化する働きがあり、その効果は0.0005%以上含有
させることによって有効に発揮される。B: 0.05% or less B has the effect of further refining the ingot structure when used in combination with Ti, and its effect is effectively exhibited by containing it in an amount of 0.0005% or more.
しかし0.05%を超えるとT i B2等の晶出化合
物が生成しTiの効果をかえって減殺するばかりでなく
、該晶出化合物の生成により延性や靭性も悪影響を受け
る様になる。However, if it exceeds 0.05%, crystallized compounds such as T i B2 are produced, which not only reduces the effect of Ti but also adversely affects ductility and toughness due to the production of the crystallized compounds.
本発明では上記成分組成のA I −Mg系合金溶湯を
用いて常法により鋳塊を製造した後均熱処理し、次いで
熱間加工を行なうが、目的にかなう特性を有する合金と
する為には505〜550℃で4〜24時間の均熱処理
条件を採用しなければならない。In the present invention, an ingot is manufactured by a conventional method using a molten A I-Mg alloy having the above-mentioned composition, and then subjected to soaking treatment and then hot working. A soaking treatment condition of 505-550°C for 4-24 hours should be adopted.
しかして均熱温度が505℃未満では、均熱により生成
するZrやMnを含む析出物(ZrA13やMnAlr
+等、場合によっては更にCrやVの析出物を含むこと
もある)の大きさが、組織の再結晶化を著しく阻止する
のに適したサイズとなり、金属組織が繊維状組織となる
。この為強度は向上するものの熱間加工性が劣化し、し
かも耐剥離腐食性も悪くなる。一方均熱温度が550°
Cを超えるとMnやZr等の析出物による再結晶組織化
の阻止効果が殆ど発揮されなくなる為、組織の再結晶化
が良く進んで耐剥離腐食性は向上するものの強度が劣化
する。ところが均熱温度を505〜550°Cの範囲に
設定してやれば、MnやZr等の析出物による再結晶化
阻止効果が適度に発揮され、繊維組織と再結晶組織が適
当な比率で存在する合金となり、優れた強度と熱間加工
性及び剥離腐食性を兼備したものとなる。However, if the soaking temperature is lower than 505°C, precipitates containing Zr and Mn (ZrA13 and MnAlr
+, etc., which may further contain Cr or V precipitates depending on the case) is a size suitable for significantly inhibiting recrystallization of the structure, and the metal structure becomes a fibrous structure. For this reason, although the strength is improved, the hot workability is deteriorated, and furthermore, the exfoliation corrosion resistance is also deteriorated. On the other hand, the soaking temperature is 550°
When C is exceeded, the effect of inhibiting recrystallized structure by precipitates such as Mn and Zr is hardly exhibited, so recrystallization of the structure progresses well and although exfoliation corrosion resistance improves, strength deteriorates. However, if the soaking temperature is set in the range of 505 to 550°C, the effect of inhibiting recrystallization by precipitates such as Mn and Zr will be adequately exerted, and the alloy will have an appropriate ratio of fiber structure and recrystallization structure. Therefore, it has excellent strength, hot workability, and exfoliation corrosion resistance.
また均熱処理時間は均熱温度に応じて適当に選定される
が、4時間未満では均熱温度不足の場合と同様の問題が
生じてくる。そして上記好適温度範囲内での均熱処理で
は24時間で均熱の効果は飽和し、それ以上均熱を続け
ると2次再結晶化が進んで強度及び耐応力腐食割れ性が
乏しくなる。Further, the soaking treatment time is appropriately selected depending on the soaking temperature, but if it is less than 4 hours, the same problem as in the case where the soaking temperature is insufficient will occur. In soaking treatment within the above-mentioned preferred temperature range, the soaking effect is saturated after 24 hours, and if soaking is continued beyond that time, secondary recrystallization will proceed, resulting in poor strength and stress corrosion cracking resistance.
尚耐剥離腐食性が特に強く要求される用途に適用する場
合は、灼熱処理を16時間以内に抑えることが望まれる
。When applied to applications where exfoliation corrosion resistance is particularly strongly required, it is desirable to limit the scorching heat treatment to within 16 hours.
この様にし−て均熱処理を行なった後は、引続いて常法
により熱間押出し等の熱間加工を行なうことにより、優
れた熱間加工性を保持し、しかも強度及び耐剥離腐食性
の優れたA l −Mg合金を得ることができる。After soaking in this manner, the material is then subjected to hot working such as hot extrusion using a conventional method to maintain excellent hot workability and improve strength and exfoliation corrosion resistance. An excellent Al-Mg alloy can be obtained.
[実施例]
実施例1
第1表に示す化学成分のAl−Mg系合金溶湯を用いて
厚さ50mmのスラブを造塊し、第2表に示す条件で均
熱処理を行なった後厚さ6+++mまで熱間圧延した。[Example] Example 1 A slab with a thickness of 50 mm was formed using a molten Al-Mg alloy having the chemical composition shown in Table 1, and after soaking under the conditions shown in Table 2, the slab was made into a slab with a thickness of 6+++ m. Hot rolled to
その後350℃で2時間軟質化焼鈍を行なって軟質材を
得た。次いで代表例としてNo、2.9.11の軟質材
を選択し、加工率15〜50%で冷間圧延を行なった後
、130〜170℃で3時間の安定化処理を行ないH3
タイプの加工硬化調質材を製作した。Thereafter, softening annealing was performed at 350° C. for 2 hours to obtain a soft material. Next, soft material No. 2.9.11 was selected as a representative example, and after cold rolling at a processing rate of 15 to 50%, stabilization treatment was performed at 130 to 170°C for 3 hours to obtain H3.
We manufactured a type of work-hardened tempered material.
軟質材の材料特性は第2表に、また加工硬化調質材の材
料特性は第3表に夫々示す通りであり、本発明の規定要
件を満たす条件のもとに製造した合金は比較合金に比べ
て強度及び耐剥離腐食性の何れにおいても優れたもので
あることが分かる。The material properties of the soft material are shown in Table 2, and the material properties of the work-hardened and tempered material are shown in Table 3.The alloys produced under conditions that meet the specified requirements of the present invention are compared to the comparative alloys. It can be seen that it is superior in both strength and exfoliation corrosion resistance.
第3表
※120℃×7の熱処理後、QQAOO250/19規
格に準じて試験。Table 3 *Tested according to QQAOO250/19 standard after heat treatment at 120℃ x 7.
評価: 0のA>B>C(Jの
実施例2
第4表に示す化学成分のA I −Mg系合金溶湯を用
いて190mmφのビレットを造塊し、第5表に示す条
件で均熱処理を行なった後該鋳塊の変形抵抗を測定した
。次いで該鋳塊を第1図に示す形状に押出して押出性を
調べると共に、押出後の機械的性質を調べ、また剥離腐
食性も求めた。尚変形抵抗は落槌試験法を採用し落槌前
後における試験片の高さの変化により求めた。また押出
性は押出時におけるプレスの終用で評価した。Evaluation: 0 A>B>C (J Example 2 A billet of 190 mmφ was formed using the molten A I-Mg alloy with the chemical composition shown in Table 4, and soaked under the conditions shown in Table 5. After that, the deformation resistance of the ingot was measured.Then, the ingot was extruded into the shape shown in Figure 1 to examine its extrudability, as well as its mechanical properties after extrusion, and its exfoliation corrosion resistance. The deformation resistance was determined by the drop hammer test method and the change in the height of the test piece before and after the drop hammer.The extrudability was evaluated by the final use of the press during extrusion.
結果は第5表に併記する通りであり、本発明の規定要件
を満たす合金は従来合金に比べて押出性が良好で、且つ
強度及び剥離腐食性に優れていることが分かる。The results are shown in Table 5, and it can be seen that the alloys that meet the specified requirements of the present invention have better extrudability and superior strength and exfoliation corrosion resistance than conventional alloys.
実施例3
第4表に示したNo、12.13の本発明合金とNo、
20.21の比較合金を選択し、第2図に示す大型薄肉
型材の押出試験(押出温度500℃)を行ない、押出可
能な最小肉厚(t:m+s)を求めた。Example 3 Invention alloy No. 12.13 shown in Table 4 and No.
Comparative alloy No. 20.21 was selected, and an extrusion test (extrusion temperature: 500° C.) was performed on a large thin-walled material shown in FIG. 2 to determine the minimum extrudable wall thickness (t: m+s).
結果は第6表に示す通りであり、本発明合金は高強度を
有しているにもかかわらす押出性も優れており薄肉押出
が可能である。The results are shown in Table 6. Although the alloy of the present invention has high strength, it also has excellent extrudability and can be extruded into thin walls.
第6表
[発明の効果]
本発明は以上の様に構成されており、化学成分と均熱処
理条件を厳密に設定することによって。Table 6 [Effects of the Invention] The present invention is constructed as described above, by strictly setting the chemical components and soaking treatment conditions.
優れた強度及び熱間加工性(特に押出性)を有するばか
りでなく、軟質材及び加工硬化調質材の如何を問わず優
れた耐剥離腐食性を有するAl−Mg系合金を提供し得
ることになった。It is possible to provide an Al-Mg alloy that not only has excellent strength and hot workability (particularly extrudability), but also has excellent exfoliation corrosion resistance regardless of whether it is a soft material or a work-hardened tempered material. Became.
第1,2図は実験例で採用した押出材の断面形状を示す
説明図である。1 and 2 are explanatory diagrams showing the cross-sectional shape of the extruded material employed in the experimental example.
Claims (3)
.3〜1.0%、Zr:0.05〜0.2%、Ti:0
.01〜0.1%を必須成分として含み、残部が実質的
にAlからなるAl−Mg系合金鋳塊を505〜550
℃で4〜24時間加熱し、次いで熱間加工を施すことを
特徴とする高強度Al−Mg系合金の製造方法(1) Mg: 2-4% (weight%: same below), Mn: 0
.. 3-1.0%, Zr: 0.05-0.2%, Ti: 0
.. 01 to 0.1% as an essential component, and the remainder is substantially Al.
A method for producing a high-strength Al-Mg alloy, which comprises heating at ℃ for 4 to 24 hours and then hot working.
次いで熱間圧延を行なう特許請求の範囲第1項に記載の
製造方法。(2) Heating the ingot at 505-550°C for 4-16 hours,
The manufacturing method according to claim 1, wherein hot rolling is then performed.
系合金鋳塊を加熱した後、熱間押出しを行なう特許請求
の範囲第1項に記載の製造方法。(3) Al-Mg with Zr content of 0.07-0.2%
The manufacturing method according to claim 1, wherein hot extrusion is performed after heating the alloy ingot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27628384A JPS61153265A (en) | 1984-12-27 | 1984-12-27 | Production of high strength al-mg alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27628384A JPS61153265A (en) | 1984-12-27 | 1984-12-27 | Production of high strength al-mg alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61153265A true JPS61153265A (en) | 1986-07-11 |
JPS6224497B2 JPS6224497B2 (en) | 1987-05-28 |
Family
ID=17567283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27628384A Granted JPS61153265A (en) | 1984-12-27 | 1984-12-27 | Production of high strength al-mg alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61153265A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138247A (en) * | 2007-12-10 | 2009-06-25 | Kobe Steel Ltd | EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511110A (en) * | 1978-07-06 | 1980-01-25 | Sumitomo Light Metal Ind Ltd | Manufacture of aluminum alloy hard plate low in deep drawing edge rate |
JPS5625955A (en) * | 1979-08-06 | 1981-03-12 | Sumitomo Light Metal Ind Ltd | Manufacture of structural aluminum alloy having superior strength and formability |
JPS5710165A (en) * | 1980-06-23 | 1982-01-19 | Fuji Xerox Co Ltd | Original conveying device of copying machine |
-
1984
- 1984-12-27 JP JP27628384A patent/JPS61153265A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511110A (en) * | 1978-07-06 | 1980-01-25 | Sumitomo Light Metal Ind Ltd | Manufacture of aluminum alloy hard plate low in deep drawing edge rate |
JPS5625955A (en) * | 1979-08-06 | 1981-03-12 | Sumitomo Light Metal Ind Ltd | Manufacture of structural aluminum alloy having superior strength and formability |
JPS5710165A (en) * | 1980-06-23 | 1982-01-19 | Fuji Xerox Co Ltd | Original conveying device of copying machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138247A (en) * | 2007-12-10 | 2009-06-25 | Kobe Steel Ltd | EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING |
Also Published As
Publication number | Publication date |
---|---|
JPS6224497B2 (en) | 1987-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59159961A (en) | Superplastic al alloy | |
US5460666A (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet | |
JPS61163233A (en) | Non-heat treatment type free-cutting aluminum alloy | |
JP5166702B2 (en) | 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same | |
JPS6237706B2 (en) | ||
JP2595836B2 (en) | Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same | |
JPS6022054B2 (en) | High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same | |
JP2856936B2 (en) | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same | |
JPS61153265A (en) | Production of high strength al-mg alloy | |
JPH05171328A (en) | Thin hollow shape of aluminum alloy excellent in bendability and its production | |
JPS6135262B2 (en) | ||
JPH032343A (en) | Aluminum alloy for heat-exchanger fin | |
JPH04263034A (en) | Aluminum alloy sheet for press forming excellent in baking hardenability and its production | |
JP3686146B2 (en) | Method for producing aluminum alloy sheet for forming | |
JPS6227544A (en) | Heat-treated-type aluminum alloy rolled sheet for forming working and its production | |
JPH04214834A (en) | Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture | |
JP3218099B2 (en) | Method for producing aluminum alloy sheet with low ear ratio and excellent formability | |
JPH01225738A (en) | Heat treatment-type aluminum alloy rolled plate for forming and its manufacture | |
JPH04246148A (en) | Rolled aluminum alloy sheet excellent in formability and its manufacture | |
JPS60145348A (en) | High-strength thin al alloy plate having superior formability and corrosion resistance and its manufacture | |
JP3543362B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
JPS5934782B2 (en) | Manufacturing method of droop-resistant aluminum alloy plate | |
JPH0387329A (en) | Aluminum alloy material for baking finish and its manufacture | |
JPH0660366B2 (en) | Aluminum alloy sheet for zinc phosphate treatment and method for producing the same | |
JPH0860314A (en) | Production of aluminum alloy sheet for forming |