JPS61146703A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPS61146703A
JPS61146703A JP26733384A JP26733384A JPS61146703A JP S61146703 A JPS61146703 A JP S61146703A JP 26733384 A JP26733384 A JP 26733384A JP 26733384 A JP26733384 A JP 26733384A JP S61146703 A JPS61146703 A JP S61146703A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
impurities
aln
crusher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26733384A
Other languages
Japanese (ja)
Inventor
Kazuo Shinozaki
和夫 篠崎
Mitsuo Kasori
加曽利 光男
Takeshi Takano
高野 武士
Kazuo Anzai
安斎 和雄
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26733384A priority Critical patent/JPS61146703A/en
Publication of JPS61146703A publication Critical patent/JPS61146703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Crushing And Grinding (AREA)

Abstract

PURPOSE:To obtain AlN powder contg. a small amount of impurities by crushing coarse AlN powder to fine powder by means of a crusher consisting essentially of an AlN layer coated in the inside thereof. CONSTITUTION:The crusher such as a ball mill or a hammer crusher is lined with an AlN-base layer contg., by weight, <=10wt% oxygen, <=1wt% silicon, <=1wt% iron and <=2wt% in the total of other cationic impurities. The coarse AlN powder to be crushed is put in the lined crusher and crushed to fine pow der by collision with the AlN-base layer and by friction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は不純物の少ない窒化アルミニウム粉末の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing aluminum nitride powder with low impurities.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化アルミニウムは溶融金属にぬれに〈<、また高温強
度がすぐれるなど工業的に有望な機械材料である。また
、窒化アルミニウムは本質的に300W/mek以上の
高−熱伝導率を有することでも知られておシ、その高熱
伝導性を利用して電子工業用材料としても期待されてい
るが、現実に得られる輩化アルミニウム焼結体の熱伝導
率は40W/m、に程度と低い。
Aluminum nitride is an industrially promising mechanical material, as it is wettable to molten metal and has excellent high-temperature strength. Aluminum nitride is also known to inherently have a high thermal conductivity of 300 W/mek or more, and it is expected to be used as a material for the electronic industry by utilizing its high thermal conductivity. The thermal conductivity of the obtained aluminum sintered body is as low as 40 W/m.

この原因は不純物、特に酸素、シリコン、鉄などの不純
物の窒化アルミニウム焼結体中への固溶によるものと考
えられる。すなわち、これらの不純物は焼結時に容易に
窒化アルミニウム中にとり込まれ固溶体を形成した)さ
らに固溶量が増すと窒化アルミニウムの多形を生成する
。このため、フォノンの伝導が阻害され熱伝導率が大巾
に低下する。
This is thought to be caused by the solid solution of impurities, particularly impurities such as oxygen, silicon, and iron, into the aluminum nitride sintered body. In other words, these impurities were easily incorporated into aluminum nitride to form a solid solution during sintering). When the amount of solid solution further increases, polymorphs of aluminum nitride are generated. For this reason, phonon conduction is inhibited and thermal conductivity is significantly reduced.

これらの不純物は窒化アルミニウム粗粒を粉砕したり、
焼結添加物を混合する際に粉砕・混合容器から混合する
場合が多く、例えば市販の酸化アルミニウム製ポットミ
ル(容積3J)に窒化アルミニウム粗粉lIc1iとア
ルコール系分散媒を入れて100時間粉砕すると酸化ア
ルミニウムが2〜3qb混入し、このような原料を用い
た焼結体では通常40W/m、に程度の熱伝導率しか得
られない。
These impurities can crush aluminum nitride coarse particles,
When mixing sintering additives, they are often mixed from a grinding/mixing container. For example, if aluminum nitride coarse powder lIc1i and an alcoholic dispersion medium are placed in a commercially available aluminum oxide pot mill (volume 3 J) and ground for 100 hours, oxidation occurs. A sintered body containing 2 to 3 qb of aluminum and using such a raw material usually has a thermal conductivity of only about 40 W/m.

〔発明の目的〕[Purpose of the invention]

本発明は高熱伝導性を有する窒化アルミニウム焼結体を
得るために、不純物混入量の少ない窒化アルミニウム原
料粉末を提供しようとするものである。
The present invention aims to provide an aluminum nitride raw material powder containing a small amount of impurities in order to obtain an aluminum nitride sintered body having high thermal conductivity.

〔発明の概要〕[Summary of the invention]

本発明は窒化アルミニウム粉末の製造方法において、粉
砕器の少なくとも内表面を構成する窒化アルミニウムを
主体とする層との衝突、摩擦によ)被粉砕窒化アルミニ
ウム粗粉を粉砕、微粉化する工程を具備した事を特徴と
する窒化アルミニウム粉末の製造方法。
The present invention provides a method for producing aluminum nitride powder, which includes a step of crushing and pulverizing coarse aluminum nitride powder to be crushed (by collision and friction with a layer mainly composed of aluminum nitride constituting at least the inner surface of a crusher). A method for producing aluminum nitride powder, characterized by:

この方法は粉砕法による窒化アルミ、ラム粉末の製造全
てに適用可能で、用いる窒化アルミニウムを主体とする
層は焼結体、あるいは(至)法スパスパッター法などに
よって形成される。
This method is applicable to all production of aluminum nitride and ram powder by pulverization, and the layer mainly composed of aluminum nitride is formed by a sintered body or by a sputtering method.

なお1本発明に用いられる粉砕器としてはボールミル、
振動ミル、ジエー・クラッシャー、ジャイレートリー・
クラッシャー、ロールクラッシャー等の圧縮破砕器、ノ
・ンマークラッシャー、ジェットミル、インペラ・ブレ
ーカ−等の衝撃破砕装置等が挙げられる。これらの内形
状が比較的単純なポットミルなどではポット全体やポー
ルを窒化アルミニウム焼結体でつくるとポットの寿命が
長く、接合部などがその不純物混入も少なくできる。
Note that the crusher used in the present invention is a ball mill,
Vibration mill, Gyre crusher, gyratory
Examples include compression crushers such as crushers and roll crushers, impact crushers such as mark crushers, jet mills, and impeller breakers. For pot mills with relatively simple inner shapes, if the entire pot and pole are made of sintered aluminum nitride, the life of the pot will be longer and the contamination of the joints will be reduced.

また振動ミルなどで大盤の場合は窒化アルミニウム焼結
体製のタイルをつ〈シ内面に密に接着することで、同様
の効果が得られる。しかしながら接合部からの不純物混
入には十分注意する必要がある。
In addition, in the case of a large plate using a vibrating mill, etc., the same effect can be obtained by closely adhering tiles made of aluminum nitride sintered body to the inner surface of the plate. However, sufficient care must be taken to prevent impurities from entering the joint.

またジェットミルのように内面の形状が複雑で装置が大
型の場合はGつなどによりて窒化アルミニウムをコーテ
ィングするとともできる。
In addition, if the inner surface is complex in shape and the device is large, such as a jet mill, aluminum nitride can be coated with a G-type or the like.

上記の窒化アルミニウムを主体とする層には不純物を含
まないことが望ましいが、酸素が10重量%以下、シリ
コンが1重量%以下、鉄が1重量−以下、その他の陽イ
オン不純物の総量が2重量−以下であれば実用上適用可
能でおる。ここでの不純物としては窒化アルミニウムを
主体とする層内に意図的に含ませた添加物中の構成元素
は含めない。これは窒化アルミニウムを主体とする層の
形成を容易にする(例えば常圧焼結化する)ために加え
た添加物が被粉砕粉を焼結する際の助剤となりうるよう
な場合にはかなり大量に含まれても問題がないためであ
る。
It is preferable that the layer mainly composed of aluminum nitride does not contain any impurities, but the total amount of other cationic impurities should be 10% by weight or less for oxygen, 1% by weight or less for silicon, 1% by weight or less for iron, and 2% by weight or less for iron. If the weight is less than -, it is practically applicable. The impurities here do not include constituent elements of additives intentionally included in the layer mainly composed of aluminum nitride. This is particularly true when additives added to facilitate the formation of a layer mainly composed of aluminum nitride (for example, by pressureless sintering) can act as an aid when sintering the powder to be ground. This is because there is no problem even if it is contained in large amounts.

不純物量を上記の範囲に限定した理由は上記範囲内であ
れば粉砕量や粉砕条件を選ぶことによって混入不純物量
を実用上影響のない範囲内にすることができるからでめ
る。
The reason why the amount of impurities is limited to the above range is that within the above range, by selecting the amount of pulverization and the pulverization conditions, the amount of impurities can be kept within a range that has no practical effect.

〔発明の効果〕〔Effect of the invention〕

本発明方法を用いるよυ粉砕工程中に窒化¥々ミニウム
粉末中に混入する不純物量を減少することができる。例
えば容量3.871のホットプレス窒化アルミニウムポ
ットに直径20顛のホット窒化アルミニウムボールを3
4充填して市販窒化アルミニウム粉(平均粒径5μm)
1#をアルコール系分散媒とともに100時間粉砕した
場合、同様のアルミナポットと比べて、混入酸素量(窒
化アルミニウム自体の酸化も含む)の増加はアルミナの
1/4でx、Fe、st+ca9mなどの増加は0.0
1%以下f h ッた。
By using the method of the present invention, it is possible to reduce the amount of impurities mixed into the nitride powder during the pulverization process. For example, three hot aluminum nitride balls with a diameter of 20 mm are placed in a hot pressed aluminum nitride pot with a capacity of 3.871 mm.
4 filled with commercially available aluminum nitride powder (average particle size 5 μm)
When 1# is crushed for 100 hours with an alcohol-based dispersion medium, compared to a similar alumina pot, the amount of mixed oxygen (including the oxidation of aluminum nitride itself) increases by 1/4 of that of alumina, such as x, Fe, st+ca9m, etc. The increase is 0.0
It was less than 1% f h .

アルミナポット粉砕粉と窒化アルミニウムポット粉砕粉
を1800℃でポットプレスしたところ、ともに完全に
緻密化したが、熱伝導率は前者が46 W / m、 
kであるのに対し、後者では73W/m、にであった≦
さらにこれをもとに特願昭58−233938に示した
方法で、Y2O3等の添加物を加えて焼結すると100
W/m、 k以上の高熱伝導率が達成された。
When alumina pot pulverized powder and aluminum nitride pot pulverized powder were pot-pressed at 1800°C, both were completely densified, but the former had a thermal conductivity of 46 W/m;
k, while in the latter it was 73W/m≦
Furthermore, based on this, when additives such as Y2O3 are added and sintered using the method shown in Japanese Patent Application No. 58-233938, 100
A high thermal conductivity of W/m, k or more was achieved.

〔発明の実施例〕[Embodiments of the invention]

実施例1゜ 市販の窒化アルミニウム粉末(平均粒径5μm)を酸化
アルミニウム製のボールミルで粉砕し、平均粒径1.5
μmの粉末をつくり、カーボン製のホットプレスモール
ドに粉末を充填し1800℃、300に9/cdの圧力
で2時間焼結し、内径18α×外径21α×長さ15c
IILの円筒状焼結体を得る。同様な方法で直径21c
IIL厚さ10I31Lの円板を作り組みあわせて、窒
化アルミニウム焼結体製のポットを製造した。
Example 1 Commercially available aluminum nitride powder (average particle size 5 μm) was ground with an aluminum oxide ball mill to obtain an average particle size of 1.5 μm.
Powder of μm was made, filled into a hot press mold made of carbon, and sintered at 1800℃ for 2 hours at a pressure of 300℃/cd, inner diameter 18α x outer diameter 21α x length 15c.
A cylindrical sintered body of IIL is obtained. In the same way, diameter 21c
A pot made of aluminum nitride sintered body was manufactured by making and combining disks with an IIL thickness of 10I31L.

また、同様に直径20m+31の窒化アルミニウム製の
ボールを200個製造した。
Similarly, 200 aluminum nitride balls with a diameter of 20 m+31 were manufactured.

これに市販A/N粉末1kgとブタノール1/iを充填
し100時間粉砕した。この粉末は平均粒径12μmで
めった。
This was filled with 1 kg of commercially available A/N powder and 1/1 of butanol, and pulverized for 100 hours. This powder was plated to have an average particle size of 12 μm.

この粉末をカーボン製のホットプレスモールドに充填し
1800°0,400J/dの圧力下で1時間焼結した
。焼結体から7X7X3−の試料を切シだしレーザー7
.7ツシエ法により熱伝導率を測定した。
This powder was filled into a carbon hot press mold and sintered at 1800° under a pressure of 0,400 J/d for 1 hour. Cut out a 7X7X3- sample from the sintered body and use laser 7
.. Thermal conductivity was measured by the 7tsussier method.

また粉末X線回折により構成相を固定した。Furthermore, the constituent phases were fixed by powder X-ray diffraction.

実施例2 実施例−1と同様にアルミナ・ポットで窒化アルミニウ
ムと3重量%の酸化イツトリウムを混合粉砕し、パラフ
ィンを7x1%添加し造粒した後、冷間、成形し、10
ctLX 15cRx l cIILの板状とした。
Example 2 Aluminum nitride and 3% by weight of yttrium oxide were mixed and pulverized in an alumina pot in the same manner as in Example-1, and 7x1% of paraffin was added and granulated.
It was made into a plate shape of ctLX 15cRx l cIIL.

これを窒素ガス中700°0をで加熱し脱脂した後、窒
素ガス中で1800℃2時間常圧焼結した。焼成した窒
化アルミニウム製の板をテフロン系の接着剤を用いて内
容積301の振動ミルのポットの内面にはυめわせた。
This was heated in nitrogen gas at 700°C to degrease it, and then sintered in nitrogen gas at 1800°C for 2 hours under normal pressure. A plate made of fired aluminum nitride was attached to the inner surface of a pot of a vibrating mill having an internal volume of 301 mm using a Teflon adhesive.

さらに、直径8絹×高さ10朋の窒化アルミニウム製の
ペレットを同様な常圧焼結法で作成し前述のポットに充
填した。市販窒化アルミニウムの粉末10kgとブタノ
ールをポットに充填し、20時間粉砕した。この粉末は
平均粒径1.0μmであった。この粉末を実施例1と同
様な方法焼結し評価した。
Further, aluminum nitride pellets measuring 8 mm in diameter and 10 mm in height were prepared using the same pressureless sintering method and filled into the pot described above. A pot was filled with 10 kg of commercially available aluminum nitride powder and butanol, and pulverized for 20 hours. This powder had an average particle size of 1.0 μm. This powder was sintered and evaluated in the same manner as in Example 1.

比較例1 市販のA/N粉末を実施例1と同様の焼結条件により窒
化アルミニウム焼結体を製造し、実施例1と同様の評価
を行りた。
Comparative Example 1 An aluminum nitride sintered body was produced using commercially available A/N powder under the same sintering conditions as in Example 1, and the same evaluation as in Example 1 was performed.

比較例2 市販のアルミナ製ボッ)(3,34りおよびボールを用
−ている以外実施例1と同様にして窒化アルミニウム焼
結体を製造し、評価した。
Comparative Example 2 An aluminum nitride sintered body was produced and evaluated in the same manner as in Example 1 except that commercially available alumina bottles (3, 34) and balls were used.

これらの結果を第1表に示す。窒化アルミニウムポット
を用いた場合、市販のアルミナポットと同等の粉砕性能
をもち、かつ、不純物混入が著しく低いことがわかる。
These results are shown in Table 1. It can be seen that when an aluminum nitride pot is used, it has the same crushing performance as a commercially available alumina pot, and the contamination of impurities is extremely low.

またそれに対応して熱伝導を阻害する構成相である酸窒
化物(AION)が生成せず熱伝導率も大巾に向上する
ことがわかる。
In addition, it can be seen that correspondingly, oxynitride (AION), which is a constituent phase that inhibits heat conduction, is not generated and the thermal conductivity is greatly improved.

以下余白 実施例3 実施例1および比較例2で作成した窒化アルミニウム粉
末に3%の酸化イツトリウムを混合し、実施例1と同様
に造粒・脱脂・焼結を行い実施例3及び比較例3とし評
価した。その結果、実施例3では107W/m、 kの
高熱伝導性を示したが、比較例3では70 W/m、 
kでめりた。
Below is a blank space Example 3 3% yttrium oxide was mixed with the aluminum nitride powder prepared in Example 1 and Comparative Example 2, and the mixture was granulated, degreased, and sintered in the same manner as in Example 1. Example 3 and Comparative Example 3 It was evaluated as follows. As a result, Example 3 showed a high thermal conductivity of 107 W/m,k, while Comparative Example 3 showed a high thermal conductivity of 70 W/m,k.
I fell in love with K.

いずれも高熱伝導化されているが、中でも窒化アルミニ
ウムポットによってその効果が大巾に向上した。
All of them have high thermal conductivity, but the aluminum nitride pot has greatly improved its effectiveness.

実施例4 実験用小製ジェット・ミルの内面にそった形状にMo 
フィルムを成形し、ざらにIJcIs  NHa系Gの
により窒化アルミニウムのコーティング層を設けた。コ
ーティング状件はAlC1a/NHa比がlX10−’
温度は1200°0である。膜厚は0.5 B/ 50
hrでるる。
Example 4 Mo was shaped along the inner surface of a small experimental jet mill.
The film was formed and a coating layer of aluminum nitride made of IJcIs NHa-based G was provided on the surface. The coating condition is AlC1a/NHa ratio lX10-'
The temperature is 1200°0. Film thickness is 0.5 B/50
HR is Ruru.

これを用いて、比較例1の市販窒化アルミニウム粉末を
粉砕して最大粒径1.5μmの粉末を得た。
Using this, the commercially available aluminum nitride powder of Comparative Example 1 was pulverized to obtain powder with a maximum particle size of 1.5 μm.

この粉末中の酸素不純物量は、1,951でめった。The amount of oxygen impurities in this powder was 1,951.

この粉末を実施例1と同様の条件でホットブレス焼結し
た結果、65W/m、にの熱伝導率を得た。
This powder was hot-breath sintered under the same conditions as in Example 1, resulting in a thermal conductivity of 65 W/m.

Claims (1)

【特許請求の範囲】 1)窒化アルミニウム粉末の製造方法において、粉砕器
の少なくとも内表面を構成する窒化アルミニウムを主体
とする層との衝突、摩擦により被粉砕窒化アルミニウム
粗粉を粉砕、微粉化する工程を具備した事を特徴とする
窒化アルミニウム粉末の製造方法。 2)窒化アルミニウムを主体とする層が、不純物として
10重量%以下の酸素、1重量%以下のシリコン、1重
量%以下の鉄、2重量%以下の陽イオン不純物を含有し
ている事を特徴とした特許請求の範囲第1項記載の窒化
アルミニウム粉末の製造方法。
[Claims] 1) In a method for producing aluminum nitride powder, coarse aluminum nitride powder to be crushed is crushed and pulverized by collision and friction with a layer mainly composed of aluminum nitride that constitutes at least the inner surface of a crusher. A method for producing aluminum nitride powder, characterized by comprising the steps. 2) The layer mainly composed of aluminum nitride contains as impurities 10% by weight or less of oxygen, 1% by weight or less of silicon, 1% by weight or less of iron, and 2% by weight or less of cationic impurities. A method for producing aluminum nitride powder according to claim 1.
JP26733384A 1984-12-20 1984-12-20 Production of aluminum nitride powder Pending JPS61146703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26733384A JPS61146703A (en) 1984-12-20 1984-12-20 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26733384A JPS61146703A (en) 1984-12-20 1984-12-20 Production of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPS61146703A true JPS61146703A (en) 1986-07-04

Family

ID=17443356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26733384A Pending JPS61146703A (en) 1984-12-20 1984-12-20 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS61146703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275111A (en) * 1985-05-31 1986-12-05 Denki Kagaku Kogyo Kk Powdery aluminium nitride for sintering and sintered aluminium nitride
JPH03177308A (en) * 1989-12-07 1991-08-01 Shin Etsu Chem Co Ltd High-purity aluminum nitride powder and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275111A (en) * 1985-05-31 1986-12-05 Denki Kagaku Kogyo Kk Powdery aluminium nitride for sintering and sintered aluminium nitride
JPH0478563B2 (en) * 1985-05-31 1992-12-11 Denki Kagaku Kogyo Kk
JPH03177308A (en) * 1989-12-07 1991-08-01 Shin Etsu Chem Co Ltd High-purity aluminum nitride powder and its production

Similar Documents

Publication Publication Date Title
US5756409A (en) Silicon-carbide sintered abrasive grain and process for its production
JPH0231031B2 (en)
JPS62238344A (en) Mechanical alloying method
JP2008162851A (en) Silicon alloy, silicon alloy powder, apparatus and method for manufacturing silicon alloy, and silicon alloy sintered compact
EP0429665B1 (en) Method of producing sintered ceramic materials
CN110408833A (en) A kind of preparation method of NbTaTiZr high-entropy alloy and its powder
CA1309882C (en) Powder particles for fine-grained hard material alloys and a process for the preparation of such particles
JPH0578107A (en) Nitride powder
JPS61146703A (en) Production of aluminum nitride powder
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JPH10194711A (en) Highly filling boron nitride powder and its production
JPH06302866A (en) Thermoelectric conversion material and manufacture thereof
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
JPH0761903B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP3032818B2 (en) Titanium boride dispersed hard material
JPH0222121B2 (en)
EP0887308B1 (en) Process for preparing aluminum nitride
JPH01246178A (en) Production of refractory for molten steel
JPH09183660A (en) High fillability hexagonal boron nitride powder, its production and use thereof
JPH01131069A (en) Complex compact calcined under ordinary pressure
US2807076A (en) Bodies of chromium boride and chromium molybdenum and their production
JPH01131062A (en) Complex compact calcined under ordinary pressure
JP2712049B2 (en) Manufacturing method of iron silicide thermoelectric element
JPH0615404B2 (en) High-purity aluminum nitride powder and method for producing the same
JPH11322311A (en) Silicon nitride powder