JPH0478563B2 - - Google Patents
Info
- Publication number
- JPH0478563B2 JPH0478563B2 JP60116511A JP11651185A JPH0478563B2 JP H0478563 B2 JPH0478563 B2 JP H0478563B2 JP 60116511 A JP60116511 A JP 60116511A JP 11651185 A JP11651185 A JP 11651185A JP H0478563 B2 JPH0478563 B2 JP H0478563B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- nitride powder
- sintering
- oxide
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 40
- 239000000843 powder Substances 0.000 claims description 25
- 238000005245 sintering Methods 0.000 claims description 24
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 15
- 229920000620 organic polymer Polymers 0.000 claims description 13
- 239000012298 atmosphere Substances 0.000 claims description 8
- 238000010298 pulverizing process Methods 0.000 claims description 8
- 239000002270 dispersing agent Substances 0.000 claims description 7
- 239000004014 plasticizer Substances 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 239000005416 organic matter Substances 0.000 claims description 3
- 239000002491 polymer binding agent Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 2
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 2
- 229940117972 triolein Drugs 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
〔産業上の利用分野〕
本発明は、熱伝導性にすぐれた窒化アルミニウ
ム焼結体及びその製造原料に関する。
窒化アルミニウム(AlN)焼結体は、耐熱
性・耐食性・耐熱衝撃性にすぐれた高温材料であ
ると共に、高熱伝導性・絶縁性材料で科学的安定
性に優れていることから電子機器の分野特に集積
回路等における絶縁放熱用基板材料として注目さ
れている。
〔従来の技術〕
窒化アルミニウム焼結体は、通常、窒化アルミ
ニウム粉末をコールドプレス法、ドクターブレー
ド法などで成形後、窒素等の不活性雰囲気中で焼
成して得られる。この場合、窒化アルミニウム粉
末の粒径は、平均粒径で3μ以下にすることが好
ましいといわれている。一方、窒化アルミニウム
粉末は、通常、金属アルミニウム粉末成形物を窒
素あるいはアンモニアガス下で窒化することによ
り製造されている。そして、窒化後の形状はブロ
ツク状となるため、ジヨークラツシヤー等の粗粉
砕機、更にボールミル等の微粉砕機を使用して数
μの粒径に粉砕される。
一般に入手出来る粉末は数μと粗いため、焼結
体を得ようとする場合、前処理として焼結助剤等
と共に粉砕混合処理を行なつている。
以上の様な粉砕工程を経る間に粉砕機材質から
の汚染或いは酸化のため、窒化アルミニウム粉末
が金属及び酸素で汚染されるので、高熱伝導性を
得ようとしてもこれらの不純物が大きな影響を与
え熱伝導性をしばしば悪化させる。
〔発明が解決しようとする問題点〕
本発明者は、金属不純物と酸素による汚染を極
力押え、窒化アルミニウムが持つ本来の高熱伝導
性を十分に発揮することができる窒化アルミニウ
ム粉末及び焼結体を得ることを目的として種々検
討した結果、従来のジヨークラツシヤーやボール
ミル等にかえて、有機重合体からなるポツトとジ
ルコニア質ボールとを組み合わせて使用すればよ
いことを見い出し、本発明を完成した。
〔問題点を解決するための手段〕
本発明は、以下の要旨とする焼結用窒化アルミ
ニウム粉末及び窒化アルミニウム焼結体である。
(1) 窒化アルミニウム粉末単独、もしくは焼結助
剤、粘結剤、分散剤、可塑剤の群から選ばれた
1種以上の物質との混合物を、有機重合体から
なるポツトとジルコニア質ボールとを組み合わ
せて平均粒径3μ以下に粉砕してなることを特
徴とする焼結用窒化アルミニウム粉末。
(2) 窒化アルミニウム粉末と、a酸化物及び
a酸化物から選ばれた1種以上の焼結助剤と、
必要に応じて、有機高分子粘結剤、有機分散剤
及び可塑剤の群から選ばれた1種以上の物質と
を、有機溶剤中に分散させ、有機重合体からな
るポツトとジルコニア質ボールとを組み合わせ
て平均粒径3μ以下の窒化アルミニウム粉末を
含むスラリーを調整した後グリーンシートを成
形し、有機物を除去した後不活性雰囲気下1700
℃以上の温度で焼結してなることを特徴とする
窒化アルミニウム焼結体。
以下、さらに詳しく本発明について説明する。
本発明の第1は、従来のジヨークラツシヤーや
ボールミル等にかえて、有機重合体からなるポツ
トとジルコニア質ボールとを組み合わせて、原料
窒化アルミニウム粉末を粉砕したものである点に
主たる特徴を有する。これによつて、酸素及び金
属不純物の混入を著しく少なくすることができ
る。
すなわち、通常、窒化アルミニウムは、粒径5
〜10μ程度のものが入手されるので、それを焼結
に好適な3μ以下の粒径とするのに、アルミナ製
のボールミルで粉砕している。しかし、それによ
つて、%オーダーの酸化アルミニウムが混入する
ので、その焼結体の熱伝導率は50w/mkとなつ
てしまうが、本発明では、そのようなことはな
い。
ポツト材質の有機重合体としては、ナイロン、
ポリエチレン、フツ素樹脂、ポリカーボネート、
エポキシ樹脂、シリコーン樹脂、フエノール樹
脂、ポリエチレンテレフタレートなどがあり、特
にナイロン、ポリエチレンが好ましい。有機溶剤
としては、トルエン等の芳香族系、トリクレン、
クロロセン等の塩素系、アセトン等のケトン系、
ヘキサン等のパラフイン系、ブチルアルコール等
のアルコール系などが使用されるが、ウレタン製
ポツトの場合は、有機溶剤を用いる湿式混合粉砕
の際、膨潤するおそれがあるので好ましくはな
い。
ボールの材質はジルコニア質であり、さらに
は、例えばCaO,MgO,Y2O3等で安定化したジ
ルコニアであつてもよい。
酸素混入量を減少させるためには、窒化ケイ素
や窒化アルミニウムのような非酸化物セラミツク
を用いることも考えられるが、それらのボールで
は、酸素の混入を防止することができても、窒化
ケイ素の場合は、Si3N4即ちSi分の混入を避ける
ことはできない。Si分が混入すると、焼結体中に
AlSiONなどの極端に熱伝導性を悪化させる相を
形成する。一方、窒化アルミニウムの場合は、原
料粉末と同一成分であることから不純物混入によ
る不利な点はなくすることができるが、比重が
3.2g/cm3と小さいので粉砕効率が極めて悪いこ
と、及び焼結することが窒化ケイ素ほど簡単では
ないので入手が困難であるという不都合がある。
他方、有機重合体をコーテイングしてなるポツ
ト及びボールを用いることも考えられるが、有機
重合体の摩耗が激しくなるので好ましくはない。
ポツトの大きさは、特に制限されないが、ポツ
ト容積の30〜60%ボールを充てんする。窒化アル
ミニウム粉末は、ポツト容積の5〜30%好ましく
はボールの空隙を埋める程度にするのがよい。ま
た、ボールの径としては、通常は5〜20mmφ好ま
しくは5〜15mmφ程度である。
次に、第2発明について説明する。
通常、窒化アルミニウム焼結体は、窒化アルミ
ニウム粉末と焼結助剤と必要に応じて粘結剤、分
散剤及び可塑剤の群から選ばれた1種以上の物質
とを、有機溶剤に分散させてスラリーを調整し、
それでグリーンシートを成形した後、有機物を除
去する脱脂工程を経て、不活性雰囲気下で焼結す
ることによつて製造されている。また、コールド
プレス法でグリーン成形物とし焼結する方法もあ
る。
本発明は、そのような方法において、焼結助剤
として、a酸化物及びa酸化物から選ばれた
1種以上を選択し、前述した第1発明のように、
有機重合体からなるポツトとジルコニア質ボール
とを組み合わせて湿式混合粉砕を行なうと共に、
グリーンシートを1700℃以上の温度で焼結すると
ころに主たる特徴がある。
焼結助剤であるa及びaの酸化物として
は、酸化イツトリウム、酸化セリウム、酸化カル
シウム、酸化ランタン、酸化ニオブ、酸化プラセ
オジウム、酸化ユーロピユーム、酸化バリウム、
酸化ストロンチウムなどがあげられる。さらに、
焼結中に酸化物に変化するような化合物例えば水
酸化などの形態で用いることも可能である。中で
も好ましいものは、酸化イツトリウム、酸化セリ
ウム、酸化ランタンである。a及びaの酸化
物から選ばれた1種以上の焼結助剤は、他の焼結
助剤に比べて窒化アルミニウムの熱伝導率を損な
わずに焼結できるという利点がある。
本発明に係る焼結助剤の添加量は、原料窒化ア
ルミニウム粉末の外割容量に対し1〜10%が適当
である。
有機重合体からなるポツトとジルコニア質ボー
ルとを組合わせ使用する理由は、第1発明におい
て詳述した。有機溶剤についても前述したものが
使えるが、クロロセン等の塩素系のものは取扱い
が容易である。なお、水やアルコールは、窒化ア
ルミニウムを加水分解させるので不適である。
グリーンシート成形後の脱脂は、400〜800℃の
温度において、不活性雰囲気下あるいは若干酸素
を含む雰囲気下の条件で行われ、その後、チツ素
やアルゴン等の不活性雰囲気下1700℃以上の温度
で焼結すれば、本発明の窒化アルミニウム焼結体
を製造することができる。焼結温度が1700℃未満
では、緻密な焼結体を得ることができない。好ま
しくは1800℃以上である。
なお、必要に応じて添加される粘結剤として
は、ポリビニルブチラール、ポリビニルアルコー
ル、アクリル系ポリマーなど、分散剤としてはト
リオレイン、グリセリンなど、また、可塑剤とし
てはジオクチルフタレートなどのフタル酸エステ
ル等通常のものがあげられ、使用量も通常量で十
分である。
以下、実施例をあげてさらに具体的に説明す
る。
〔実施例〕
実施例 1
容積1のボールミルに溶媒200gと市販の窒
化アルミニウム粉末(平均粒径7μ)100gを入
れ、ボールミルのポツトの材質とボールの材質及
び径とを変化させ、窒化アルミニウム粉末の平均
粒径が3μになるまでの時間と、金属不純物と酸
素の混入量を測定した。なお、ボールミルの回転
数は80rpmとした。溶剤としては、クロロセン、
トリクレン、アセトンを用いたが、いずれもほぼ
同程度の好結果が得られたので、クロロセンのみ
の結果について第1表に示した。
[Industrial Application Field] The present invention relates to an aluminum nitride sintered body with excellent thermal conductivity and a raw material for producing the same. Aluminum nitride (AlN) sintered body is a high-temperature material with excellent heat resistance, corrosion resistance, and thermal shock resistance. It is also a highly thermally conductive and insulating material with excellent scientific stability, so it is particularly popular in the field of electronic equipment. It is attracting attention as a substrate material for insulating heat dissipation in integrated circuits, etc. [Prior Art] Aluminum nitride sintered bodies are usually obtained by molding aluminum nitride powder by a cold press method, a doctor blade method, or the like, and then firing it in an inert atmosphere such as nitrogen. In this case, it is said that the average particle size of the aluminum nitride powder is preferably 3 μm or less. On the other hand, aluminum nitride powder is usually produced by nitriding a metal aluminum powder compact under nitrogen or ammonia gas. Since the shape after nitriding becomes block-like, it is pulverized to a particle size of several microns using a coarse pulverizer such as a geocrusher, and further a fine pulverizer such as a ball mill. Generally available powders are coarse, several microns in size, and therefore, in order to obtain a sintered body, a pulverization and mixing treatment is performed together with a sintering aid and the like as a pretreatment. During the above-mentioned grinding process, aluminum nitride powder becomes contaminated with metal and oxygen due to contamination or oxidation from the material of the grinder, and these impurities have a large effect even when trying to obtain high thermal conductivity. Often worsens thermal conductivity. [Problems to be solved by the invention] The present inventor has developed aluminum nitride powder and a sintered body that can suppress contamination by metal impurities and oxygen as much as possible and fully exhibit the high thermal conductivity inherent to aluminum nitride. As a result of various studies aimed at achieving this goal, it was discovered that instead of conventional diyoke crushers, ball mills, etc., a pot made of an organic polymer and a zirconia ball could be used in combination, and the present invention was completed. . [Means for Solving the Problems] The present invention is an aluminum nitride powder for sintering and an aluminum nitride sintered body having the following gist. (1) Aluminum nitride powder alone or a mixture with one or more substances selected from the group of sintering aids, binders, dispersants, and plasticizers is mixed into a pot made of an organic polymer and a zirconia ball. An aluminum nitride powder for sintering, characterized in that it is made by combining and pulverizing to an average particle size of 3μ or less. (2) aluminum nitride powder, one or more sintering aids selected from a-oxide and a-oxide;
If necessary, one or more substances selected from the group of organic polymer binders, organic dispersants, and plasticizers are dispersed in an organic solvent, and a pot made of an organic polymer and a zirconia ball are combined. After preparing a slurry containing aluminum nitride powder with an average particle size of 3μ or less, forming a green sheet and removing organic matter, 1700 μm under an inert atmosphere.
An aluminum nitride sintered body characterized by being sintered at a temperature of ℃ or higher. The present invention will be explained in more detail below. The first feature of the present invention is that the raw material aluminum nitride powder is pulverized using a combination of an organic polymer pot and zirconia balls instead of the conventional diyoke crusher or ball mill. have Thereby, the contamination of oxygen and metal impurities can be significantly reduced. That is, aluminum nitride usually has a particle size of 5
Since particles with a diameter of ~10μ are obtained, they are ground in an alumina ball mill to reduce the particle size to 3μ or less, which is suitable for sintering. However, as a result, aluminum oxide of the order of % is mixed in, and the thermal conductivity of the sintered body becomes 50 w/mk, but this does not occur in the present invention. Organic polymers for pot materials include nylon,
polyethylene, fluororesin, polycarbonate,
Examples include epoxy resins, silicone resins, phenolic resins, and polyethylene terephthalate, with nylon and polyethylene being particularly preferred. Examples of organic solvents include aromatic solvents such as toluene, trichlene,
Chlorine type such as chlorocene, ketone type such as acetone,
Paraffinic materials such as hexane and alcoholic materials such as butyl alcohol are used, but urethane pots are not preferred because they may swell during wet mixing and pulverization using organic solvents. The material of the ball is zirconia, and may also be zirconia stabilized with, for example, CaO, MgO, Y2O3 , or the like. In order to reduce the amount of oxygen mixed in, it is possible to use non-oxide ceramics such as silicon nitride or aluminum nitride, but even if these balls can prevent oxygen mixed in, the silicon nitride In this case, the contamination of Si 3 N 4 , that is, Si, cannot be avoided. When Si content is mixed into the sintered body,
Forms phases such as AlSiON that severely degrade thermal conductivity. On the other hand, in the case of aluminum nitride, the disadvantages due to impurity contamination can be eliminated because the ingredients are the same as the raw material powder, but the specific gravity is
Since it is as small as 3.2 g/cm 3 , its pulverization efficiency is extremely poor, and it is difficult to obtain because it is not as easy to sinter as silicon nitride. On the other hand, it is also conceivable to use pots and balls coated with an organic polymer, but this is not preferred because the organic polymer will be subject to severe wear. The size of the pot is not particularly limited, but the pot should be filled with 30 to 60% of the pot volume. The amount of aluminum nitride powder is preferably 5 to 30% of the pot volume, preferably enough to fill the voids in the ball. Further, the diameter of the ball is usually about 5 to 20 mmφ, preferably about 5 to 15 mmφ. Next, the second invention will be explained. Generally, aluminum nitride sintered bodies are produced by dispersing aluminum nitride powder, a sintering aid, and, if necessary, one or more substances selected from the group of binders, dispersants, and plasticizers in an organic solvent. Adjust the slurry using
After forming a green sheet, it undergoes a degreasing process to remove organic matter, and is then sintered in an inert atmosphere. There is also a method of forming a green molded product and sintering it using a cold press method. In such a method, the present invention selects one or more selected from a oxide and a oxide as a sintering aid, and as in the first invention described above,
In addition to wet mixing and pulverization using a combination of an organic polymer pot and zirconia balls,
The main feature is that the green sheet is sintered at a temperature of 1,700℃ or higher. The sintering aids a and the oxides of a include yttrium oxide, cerium oxide, calcium oxide, lanthanum oxide, niobium oxide, praseodymium oxide, europium oxide, barium oxide,
Examples include strontium oxide. moreover,
It is also possible to use compounds that convert into oxides during sintering, for example in the form of hydroxides. Among these, preferred are yttrium oxide, cerium oxide, and lanthanum oxide. One or more sintering aids selected from the oxides of a and a have an advantage over other sintering aids in that aluminum nitride can be sintered without impairing its thermal conductivity. The appropriate amount of the sintering aid according to the present invention is 1 to 10% relative to the external volume of the raw material aluminum nitride powder. The reason for using a pot made of an organic polymer in combination with a zirconia ball was detailed in the first invention. The organic solvents mentioned above can be used, but chlorine-based solvents such as chlorocene are easy to handle. Note that water and alcohol are unsuitable because they hydrolyze aluminum nitride. Degreasing after forming the green sheet is carried out at a temperature of 400 to 800°C under an inert atmosphere or an atmosphere containing a little oxygen, and then at a temperature of 1700°C or higher under an inert atmosphere such as nitrogen or argon. By sintering the aluminum nitride sintered body of the present invention, the aluminum nitride sintered body of the present invention can be produced. If the sintering temperature is less than 1700°C, a dense sintered body cannot be obtained. Preferably the temperature is 1800°C or higher. Incidentally, binders to be added as necessary include polyvinyl butyral, polyvinyl alcohol, acrylic polymers, etc. Dispersants include triolein, glycerin, etc., and plasticizers include phthalate esters such as dioctyl phthalate. Usual amounts can be used, and the amount used is sufficient. Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example] Example 1 200g of solvent and 100g of commercially available aluminum nitride powder (average particle size 7μ) were put into a ball mill with a volume of 1, and the material of the pot of the ball mill and the material and diameter of the balls were changed to produce aluminum nitride powder. The time required for the average particle size to reach 3μ and the amount of metal impurities and oxygen mixed in were measured. Note that the rotation speed of the ball mill was 80 rpm. As a solvent, chlorocene,
Trichlene and acetone were used, and almost the same good results were obtained with both, so Table 1 shows the results using only chlorocene.
【表】
実施例 2
原料窒化アルミニウム粉末(市販品:平均粒径
7μ)100g、有機粘結剤(ポリビニルブチラー
ル)5g、有機分散剤(トリオレイン)1g、可
塑剤(ジオクリルフタレート)2g及び焼結助剤
(酸化セリウム)10g(4.3容量%)の混合物を、
クロロセン200gに分散させてボールミルに投入
し、窒化アルミニウム粉末の平均粒径が3μ以下
となる各種の条件で混合粉砕をしスラリーを調整
した。
このスラリーをドクターブレード装置を用い、
ポリエチレンテレフタレートフイルムに塗布し、
乾燥してグリーンシートを作製した。グリーンシ
ートをフイルムより剥離してから、40mm角のシー
トとし、このシートを4枚積層圧着した後、温度
700℃の窒化ガス雰囲気下で2時間保持してポリ
ビニルブチラールを除去し、次いで温度1800℃の
窒素雰囲下で1時間焼結した。得られた焼結体の
密度と熱伝導率を測定した。その結果を第2表に
示す。[Table] Example 2 Raw material aluminum nitride powder (commercial product: average particle size
7 μ), 5 g of an organic binder (polyvinyl butyral), 1 g of an organic dispersant (triolein), 2 g of a plasticizer (diocryl phthalate), and 10 g (4.3 volume %) of a sintering aid (cerium oxide).
The mixture was dispersed in 200 g of chlorocene, placed in a ball mill, and mixed and pulverized under various conditions such that the average particle size of the aluminum nitride powder was 3 μm or less to prepare a slurry. This slurry is processed using a doctor blade device.
Apply to polyethylene terephthalate film,
It was dried to produce a green sheet. After peeling the green sheet from the film, it was made into a 40 mm square sheet, and after laminating and pressing four sheets, the temperature
The polyvinyl butyral was removed by holding in a nitriding gas atmosphere at 700°C for 2 hours, and then sintered in a nitrogen atmosphere at 1800°C for 1 hour. The density and thermal conductivity of the obtained sintered body were measured. The results are shown in Table 2.
【表】【table】
【表】
実施例 3
実施例2において、焼結助剤を平均粒径1.2μの
酸化イツトリウム又は酸化カルシウムとし、添加
量を8g(容積%は各々5.1,7.3)とし同様の測
定を行なつた。その結果を第3表に示す。[Table] Example 3 Similar measurements were carried out in Example 2, using yttrium oxide or calcium oxide with an average particle size of 1.2μ as the sintering aid, and adding an amount of 8g (volume %: 5.1 and 7.3, respectively). . The results are shown in Table 3.
【表】
実施例 4
実施例2の実験No.21の条件において、焼結温度
と焼結助剤量とを変化させて焼結体を製造し、そ
の熱伝導率を測定した。その結果を第4表に示
す。[Table] Example 4 Under the conditions of Experiment No. 21 of Example 2, sintered bodies were manufactured by varying the sintering temperature and the amount of sintering aid, and their thermal conductivity was measured. The results are shown in Table 4.
(1) 本発明の第1によれば、金属不純物と酸素の
混入量が少ない平均粒径3μ以下の窒化アルミ
ニウム粉末を得ることができる。
(2) しかも、ジルコニアの比重は7.6g/cm3と大
きいために粉砕効率が極めて高く、アルミナ
質、窒化ケイ素質、窒化アルミニウム質のボー
ルに較べて粉砕時間が1/3に短縮される。すな
わち、効率的な粉砕ができるために、粉砕中の
窒化アルミニウムの表面酸化を押える効果があ
る。
(3) 本発明の第2によれば、窒化アルミニウムが
本来もつ熱伝導性を損なわずに高い熱伝導率を
示し、かつ、焼結性も良好で、基板に必要な充
分な緻密性をもつた焼結体を得ることができ
る。
(1) According to the first aspect of the present invention, it is possible to obtain aluminum nitride powder having an average particle size of 3 μm or less and containing a small amount of metal impurities and oxygen. (2) Moreover, since the specific gravity of zirconia is as high as 7.6 g/cm 3 , the grinding efficiency is extremely high, and the grinding time is reduced to one-third compared to balls made of alumina, silicon nitride, or aluminum nitride. That is, since efficient pulverization is possible, surface oxidation of aluminum nitride during pulverization can be suppressed. (3) According to the second aspect of the present invention, aluminum nitride exhibits high thermal conductivity without impairing its inherent thermal conductivity, has good sinterability, and has sufficient density required for the substrate. A sintered body can be obtained.
Claims (1)
剤、粘結剤、分散剤、可塑剤の群から選ばれた1
種以上の物質との混合物を、有機重合体からなる
ポツトとジルコニア質ボールとを組み合わせて平
均粒径3μ以下に粉砕してなることを特徴とする
焼結用窒化アルミニウム粉末。 2 窒化アルミニウム粉末と、a酸化物及び
a酸化物から選ばれた1種以上の焼結助剤と、必
要に応じて、有機高分子粘結剤、有機分散剤及び
可塑剤の群から選ばれた1種以上の物質とを、有
機溶剤中に分散させ、有機重合体からなるポツト
とジルコニア質ボールとを組み合わせて平均粒径
3μ以下の窒化アルミニウム粉末を含むスラリー
を調整した後グリーンシートを成形し、有機物を
除去した後不活性雰囲気下1700℃以上の温度で焼
結してなることを特徴とする窒化アルミニウム焼
結体。[Claims] 1. Aluminum nitride powder alone, or 1 selected from the group of sintering aids, binders, dispersants, and plasticizers.
1. An aluminum nitride powder for sintering, which is obtained by pulverizing a mixture of more than one substance to an average particle size of 3 μm or less using a pot made of an organic polymer and a zirconia ball. 2 Aluminum nitride powder, one or more sintering aids selected from a oxide and a oxide, and if necessary, an organic polymer binder, an organic dispersant, and a plasticizer selected from the group. The average particle size is obtained by dispersing one or more substances in an organic solvent, and combining a pot made of an organic polymer and a zirconia ball.
An aluminum nitride sintered body characterized by preparing a slurry containing aluminum nitride powder of 3μ or less, forming a green sheet, removing organic matter, and sintering at a temperature of 1700°C or higher in an inert atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60116511A JPS61275111A (en) | 1985-05-31 | 1985-05-31 | Powdery aluminium nitride for sintering and sintered aluminium nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60116511A JPS61275111A (en) | 1985-05-31 | 1985-05-31 | Powdery aluminium nitride for sintering and sintered aluminium nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61275111A JPS61275111A (en) | 1986-12-05 |
JPH0478563B2 true JPH0478563B2 (en) | 1992-12-11 |
Family
ID=14688954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60116511A Granted JPS61275111A (en) | 1985-05-31 | 1985-05-31 | Powdery aluminium nitride for sintering and sintered aluminium nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61275111A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63260867A (en) * | 1987-01-20 | 1988-10-27 | ケラモント、アドバンスド、セラミック、プロダクツ、コーポレーション | Aluminum nitride body with high green density and high green strength |
JPH0615404B2 (en) * | 1989-12-07 | 1994-03-02 | 信越化学工業株式会社 | High-purity aluminum nitride powder and method for producing the same |
JP5901190B2 (en) * | 2011-09-13 | 2016-04-06 | 株式会社トクヤマ | Method for producing aluminum nitride sintered granules |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61146703A (en) * | 1984-12-20 | 1986-07-04 | Toshiba Corp | Production of aluminum nitride powder |
-
1985
- 1985-05-31 JP JP60116511A patent/JPS61275111A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61146703A (en) * | 1984-12-20 | 1986-07-04 | Toshiba Corp | Production of aluminum nitride powder |
Also Published As
Publication number | Publication date |
---|---|
JPS61275111A (en) | 1986-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4424659B2 (en) | Aluminum nitride material and member for semiconductor manufacturing equipment | |
JP2020528861A (en) | Slurry composition for tape casting for manufacturing silicon nitride sintered body | |
WO2015152292A1 (en) | Method for producing silicon nitride substrate | |
US8231964B2 (en) | Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus | |
JP4003907B2 (en) | Semiconductor manufacturing equipment-related products made of aluminum nitride sintered body, manufacturing method thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring, and particle catcher | |
US8022001B2 (en) | Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same | |
JPH0478563B2 (en) | ||
KR20160100110A (en) | Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same | |
JP3742661B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2006256934A (en) | High-dielectric material and its manufacturing method | |
EP0276149A2 (en) | Process for preparing sintered aluminium nitride bodies | |
JP2021172556A (en) | Aluminum nitride sintered compact and manufacturing method thereof | |
US6667264B2 (en) | Silicon nitride sintered material and process for production thereof | |
JP2666942B2 (en) | Aluminum nitride sintered body | |
JP3237965B2 (en) | Method for producing aluminum nitride powder | |
JPS6217076A (en) | Aluminum nitride powder composition | |
JPH0442861A (en) | Preparation of highly strong aluminum nitride sintered product | |
JP2008074678A (en) | Aluminum nitride slurry, and aluminum nitride granule, aluminum nitride formed body and aluminum nitride sintered compact obtained from the same | |
JP2587854B2 (en) | Method for producing aluminum nitride sintered body with improved thermal conductivity | |
JP4221006B2 (en) | Silicon nitride ceramic circuit board | |
KR100609307B1 (en) | Aluminum nitride materials and members for use in the production of semiconductors | |
JPH082967A (en) | Production of aluminum nitride sintered compact | |
JPS62270468A (en) | Aluminum nitride base sintered body | |
JP2901135B2 (en) | Semiconductor device | |
WO2019021919A1 (en) | Aluminum nitride sintered compact and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |