JPS61144879A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61144879A
JPS61144879A JP26717584A JP26717584A JPS61144879A JP S61144879 A JPS61144879 A JP S61144879A JP 26717584 A JP26717584 A JP 26717584A JP 26717584 A JP26717584 A JP 26717584A JP S61144879 A JPS61144879 A JP S61144879A
Authority
JP
Japan
Prior art keywords
wiring
gate
source region
control gate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26717584A
Other languages
Japanese (ja)
Inventor
Shinichi Tanaka
真一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26717584A priority Critical patent/JPS61144879A/en
Publication of JPS61144879A publication Critical patent/JPS61144879A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Abstract

PURPOSE:To prevent the step interruption on the cell section of the Al wiring and control gate wiring by burying a floating gate in the semiconductor substrate. CONSTITUTION:An N type source region 32 and a draion region 33 are formed in a P type Si substrate 31. A dent section 34 shallower than the source region 32 andthe drain region 33 is formed on the surface of the substrate 31 betweenthe regions 32 and 33 to bury a floating gate 36 of polycrystalline Si inside of the dent 34 through an insulation film 35. A polycrystalline control gate 38 is formed on the gate 36 through the insulation film 37, and then, an Al wiring 40 is formed on the gate through an insulation film 39. The wiring 40 is connected to the source region 33 and the drain region 33 through the contact hole 41 provided on the film 39. The gate 236 is buried in the substrate 31 to that the difference in the step on the contact section is reduced, thereby preventing the step interruption of the control gate wiring and the Al wiring.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はフローティングゲートを有する半導体装置に係
り、特に E P ROM (J、rasableJ:
rograiable  Jlead−Ω−nly M
emory )に使用される半導体装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device having a floating gate, and particularly relates to an E P ROM (J, rasable J:
rograiable Jlead-Ω-nly M
The present invention relates to a semiconductor device used in a semiconductor device.

[発明の技術的背景] 通常、EPROMのセル(記憶素子)には、電気的にフ
ローティングな導電性ゲートを備えたMOSトランジス
タが用いられている。
[Technical Background of the Invention] Typically, an EPROM cell (memory element) uses a MOS transistor having an electrically floating conductive gate.

第3図は、このMOSトランジスタの従来の代表的な構
造を示すものである。すなわち、このトランジスタは例
えばP型のシリコン基板11に、N型のソース領域12
及びドレイン領域13を離間して設け、この領域間に絶
縁膜(SiO2)14を介して多結晶シリコン等の導電
性の70−ティングゲート15及びコントロールゲート
16を積層する。ざらに、その上にCVD5iOz等の
層間絶縁膜17を介してA1配線18を形成し、このA
1配線18をコンタクトホール19を介してソース領域
12及びドレイン領域13に接続する。
FIG. 3 shows a typical conventional structure of this MOS transistor. That is, this transistor includes, for example, a P-type silicon substrate 11 and an N-type source region 12.
A conductive gate 15 and a control gate 16 made of polycrystalline silicon or the like are stacked between these regions with an insulating film (SiO2) 14 interposed therebetween. Roughly, an A1 wiring 18 is formed thereon via an interlayer insulating film 17 made of CVD5iOz, etc.
1 wiring 18 is connected to source region 12 and drain region 13 via contact hole 19.

[背景技術の問題点] 前述のように、従来のEPROMに於いては、フローテ
ィングゲート15とコントロールゲート16なる二つの
導電性ゲートを縦方向に積層しているため、コンタクト
ホール19部分に大きな段差が生じてしまう。
[Problems with the Background Art] As mentioned above, in the conventional EPROM, two conductive gates, the floating gate 15 and the control gate 16, are stacked vertically, so there is a large step difference in the contact hole 19 area. will occur.

メモリの高集積化が進むにつれ、ゲート幅、ゲ−トーコ
ンタクト間隔、A1配線18幅等はいずれも微細化しつ
つある現在、上記大きな段差はプロセス設計上大きな障
害となっている。
At present, as the integration of memories progresses, the gate width, gate contact interval, A1 wiring 18 width, etc. are all becoming finer, and the above-mentioned large step difference becomes a major obstacle in process design.

すなわち、大きな段差はA1配線18の段切れを誘発す
るため、それを防ぐためにコンタクトホール19にテー
パを設ける技術が必要であり、かつ隣りのコントロール
ゲート16との短絡の発生と相まって、その技術開発は
容易ではない。縦方向の段差は、A1配線18上極力小
さくすることが歩留り向上の面からも望ましい。
In other words, since a large level difference induces step breakage in the A1 wiring 18, a technology is required to provide a taper in the contact hole 19 to prevent this, and this, combined with the occurrence of short circuit with the adjacent control gate 16, requires the development of this technology. is not easy. It is desirable to make the height difference in the vertical direction of the A1 wiring 18 as small as possible from the viewpoint of improving yield.

さらに、第4図に示すのは、第3図のEPROMの幅方
向からの断面図である。すなわち、デバイス間を分離す
るフィールド酸化膜20までまたがって絶縁膜14上に
70−ティングゲート15とコントロールゲート16が
二層に積層されている。コントロールゲート16は配線
も兼ねているため、70−ティングゲート15端でやは
り段差を形成することになり、フローティングゲート1
5端の形状や、コントロールゲート18の形成時のエツ
チング条件の不安定性が原因で、A1配線18と同様に
段切れを生じることが少なくない。
Furthermore, FIG. 4 is a cross-sectional view of the EPROM shown in FIG. 3 from the width direction. That is, a 70-inch gate 15 and a control gate 16 are stacked in two layers on an insulating film 14 extending up to a field oxide film 20 separating devices. Since the control gate 16 also serves as a wiring, a step is also formed at the end of the floating gate 15.
Due to the shape of the fifth end and the instability of the etching conditions during formation of the control gate 18, breakage often occurs as in the case of the A1 wiring 18.

[発明の目的コ 本発明は上記実情に鑑みてなされたもので、その目的は
、AI配線及びコントロールゲート配線層のセル部での
段切れの発生を防止することのできる半導体装置を提供
することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a semiconductor device that can prevent the occurrence of step breaks in the cell portion of the AI wiring and control gate wiring layer. It is in.

[発明の概要] 本発明は、EFROMの段差を少なくするために、従来
半導体基板上に遊離していたフローティンゲートを半導
体基板内に埋め込むものであり、コントロールゲート並
びにA1配線の形成が滑らかに行われるようにしたもの
である。
[Summary of the Invention] The present invention embeds floating gates, which were conventionally free on a semiconductor substrate, in the semiconductor substrate in order to reduce the level difference in EFROM, and the control gate and A1 wiring can be formed smoothly. It was designed to be carried out.

[発明の実施例] 以下、図面を参照して本発明の一実施例を説明する。第
1図に於いて、例えばP型のシリコン基板31中に、N
型のソース領域32及びドレイン領域33が形成されて
いる。このソース領域32及びドレイン領域33間のシ
リコン基板31表面には、ソース領域32及びドレイン
領域33より浅く凹部34が形成され、この凹部34の
内部に絶縁1I135を介して例えば導電性多結晶シリ
コンにより形成されたフローティングゲート36が埋め
込まれている。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, for example, in a P-type silicon substrate 31, N
A source region 32 and a drain region 33 are formed. On the surface of the silicon substrate 31 between the source region 32 and the drain region 33, a recess 34 is formed which is shallower than the source region 32 and the drain region 33. The formed floating gate 36 is embedded.

さらに、このフローティングゲート36上には絶縁膜3
7を介して同じく導電性多結晶シリコンによるコントロ
ールゲート38が形成されている。このコントロールゲ
ート38上には眉間絶縁膜39を介してA1配@40が
形成されている。このA1配置a。
Furthermore, an insulating film 3 is provided on this floating gate 36.
A control gate 38 also made of conductive polycrystalline silicon is formed via 7. On this control gate 38, an A1 wiring @40 is formed with a glabella insulating film 39 interposed therebetween. This A1 arrangement a.

は層間絶縁膜39に設けられたコンタクトホール41を
介してソース領域32及びドレイン領域33に接続され
ている。
is connected to the source region 32 and drain region 33 via a contact hole 41 provided in the interlayer insulating film 39.

上記構造EPROMセルにあっては、フローティングゲ
ート36がシリコン基板31内に埋め込まれているため
、コンタクト部の段差は従来構造のセルに比べて大きく
緩和されており、周辺回路のトランジスタ等上の段差と
同程度となっている。
In the EPROM cell with the above structure, since the floating gate 36 is embedded in the silicon substrate 31, the level difference in the contact portion is greatly reduced compared to the conventional structure cell, and the level difference in the peripheral circuit transistors, etc. It is about the same.

なお、ソース領域32及びドレイン領域33は、フロー
ティンゲート39の下端よりさらに深く拡散しているた
め、EFROMとしての動作は全く同様に可能である。
Note that since the source region 32 and the drain region 33 are diffused deeper than the lower end of the floating gate 39, they can operate as an EFROM in exactly the same way.

第2図は第1図のEPROMセルを幅方向から見た断面
構造を示すものである。段差は全くなくなっており、コ
ントロールゲート40の段切れは皆無といって差支えな
い。
FIG. 2 shows a cross-sectional structure of the EPROM cell shown in FIG. 1 viewed from the width direction. There is no step difference at all, and it is safe to say that there is no break in the control gate 40.

[発明の効果] 以上のように本発明によれば、コントロールゲート配線
の段差による断線を防止し、かつA1配線の断線も大幅
に減少させることの可能な半導体装置を提供することが
できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a semiconductor device that can prevent disconnection of the control gate wiring due to a step difference and can significantly reduce disconnection of the A1 wiring.

【図面の簡単な説明】 第1図は本発明の一実施例に係るEPROMのセル構造
を示す断面図、第2図は第1図の構造を幅方向から見た
断面図、第3図は従来のE PROMのセル構造を示す
断面図、第4図は第1図の構造を幅方向から見た断面図
である。 31・・・シリコン基板、32・・・ソース領域、33
・・・ドレイン領域、34・・・凹部、35・・・絶縁
層、36・・・フローティングゲート、37・・・絶縁
層、38・・・コントロールゲート、39・・・層間絶
縁膜、40・・・A1配線。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a cross-sectional view showing the cell structure of an EPROM according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the structure shown in FIG. 1 viewed from the width direction, and FIG. FIG. 4 is a sectional view showing the cell structure of a conventional EPROM. FIG. 4 is a sectional view of the structure of FIG. 1 viewed from the width direction. 31... Silicon substrate, 32... Source region, 33
... Drain region, 34... Concavity, 35... Insulating layer, 36... Floating gate, 37... Insulating layer, 38... Control gate, 39... Interlayer insulating film, 40...・A1 wiring.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板と、この基板と反対導電型で同基
板内に離間して設けられたソース領域及びドレイン領域
と、前記基板の前記ソース領域及びドレイン領域間に設
けられた凹部と、この凹部に絶縁層を介して設けられた
フローティングゲートと、このフローティングゲート上
に絶縁層を介して設けられたコントロールゲートとを具
備したことを特徴とする半導体装置。
a semiconductor substrate of one conductivity type, a source region and a drain region of the opposite conductivity type and provided spaced apart within the same substrate, a recess provided between the source region and the drain region of the substrate; 1. A semiconductor device comprising: a floating gate provided in a recess with an insulating layer interposed therebetween; and a control gate provided on the floating gate with an insulating layer interposed therebetween.
JP26717584A 1984-12-18 1984-12-18 Semiconductor device Pending JPS61144879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26717584A JPS61144879A (en) 1984-12-18 1984-12-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26717584A JPS61144879A (en) 1984-12-18 1984-12-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61144879A true JPS61144879A (en) 1986-07-02

Family

ID=17441145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26717584A Pending JPS61144879A (en) 1984-12-18 1984-12-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61144879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979004A (en) * 1988-01-29 1990-12-18 Texas Instruments Incorporated Floating gate memory cell and device
US5045490A (en) * 1990-01-23 1991-09-03 Texas Instruments Incorporated Method of making a pleated floating gate trench EPROM
US5053839A (en) * 1990-01-23 1991-10-01 Texas Instruments Incorporated Floating gate memory cell and device
FR2807208A1 (en) * 2000-03-29 2001-10-05 St Microelectronics Sa Non-volatile memory semiconductor device has floating gate extending between the source and drain regions, and control gate situated above floating gate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979004A (en) * 1988-01-29 1990-12-18 Texas Instruments Incorporated Floating gate memory cell and device
US5045490A (en) * 1990-01-23 1991-09-03 Texas Instruments Incorporated Method of making a pleated floating gate trench EPROM
US5053839A (en) * 1990-01-23 1991-10-01 Texas Instruments Incorporated Floating gate memory cell and device
FR2807208A1 (en) * 2000-03-29 2001-10-05 St Microelectronics Sa Non-volatile memory semiconductor device has floating gate extending between the source and drain regions, and control gate situated above floating gate
US6642108B2 (en) 2000-03-29 2003-11-04 Stmicroelectronics Sa Fabrication processes for semiconductor non-volatile memory device

Similar Documents

Publication Publication Date Title
US8294236B2 (en) Semiconductor device having dual-STI and manufacturing method thereof
US8053831B2 (en) Semiconductor integrated circuit devices having contacts formed of single-crystal materials
US4536947A (en) CMOS process for fabricating integrated circuits, particularly dynamic memory cells with storage capacitors
KR0137974B1 (en) Semiconductor device & process for manufacturing the same
KR20030047693A (en) Semiconductor device
JPH0586663B2 (en)
KR960019711A (en) Buried Bitline DRAM Cells and Manufacturing Methods
JP2003142599A (en) Semiconductor device and its manufacturing method
KR970054486A (en) Semiconductor device and manufacturing method thereof
JPH05102439A (en) Semiconductor device
JPH06104397A (en) Dynamic random-access memory cell and its manufacture
US5598019A (en) Semiconductor device having trench isolation structure and method of manufacturing the same
US5643832A (en) Semiconductor device and method for fabrication thereof
JPS61144879A (en) Semiconductor device
US20050072993A1 (en) Semiconductor device and method for manufacturing the same
KR100374956B1 (en) Semiconductor device and method of manufacturing the same
JP2560517B2 (en) Floating gate type semiconductor memory device and manufacturing method thereof
JP4101564B2 (en) Semiconductor device and manufacturing method thereof
JP2538857B2 (en) Method for manufacturing semiconductor device
JPH04348070A (en) Semiconductor device and its manufacture
JP2956080B2 (en) Semiconductor device and manufacturing method thereof
JP3264402B2 (en) Semiconductor device
JPH0518259B2 (en)
JPS60148147A (en) Semiconductor device
JP3053941B2 (en) Semiconductor device and manufacturing method thereof