JPS6114261B2 - - Google Patents

Info

Publication number
JPS6114261B2
JPS6114261B2 JP53003690A JP369078A JPS6114261B2 JP S6114261 B2 JPS6114261 B2 JP S6114261B2 JP 53003690 A JP53003690 A JP 53003690A JP 369078 A JP369078 A JP 369078A JP S6114261 B2 JPS6114261 B2 JP S6114261B2
Authority
JP
Japan
Prior art keywords
yarn
cord
fineness
adhesive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53003690A
Other languages
Japanese (ja)
Other versions
JPS54101956A (en
Inventor
Hiroyoshi Hirono
Kohei Kawashima
Juji Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP369078A priority Critical patent/JPS54101956A/en
Publication of JPS54101956A publication Critical patent/JPS54101956A/en
Publication of JPS6114261B2 publication Critical patent/JPS6114261B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ゴム構造物補強材の製造法、特にゴ
ムとの接着性が優れ、且つ充分な耐疲労性と作業
性を有するゴム構造物の補強用、殊にタイヤの補
強用に適したポリエステルコードの製造法に関す
る。 ポリエステルコードは、ヤング率や強度が比較
的に高く且つフラツトスポツト性や耐熱性に優れ
ているため、最近ゴム構造物、殊に乗用車用タイ
ヤの補強用コードとして、ナイロンコードに代つ
て使用されるようになつた。 ポリエステルコードは、一般に、延伸および熱
セツトした多数の単糸より構成されるポリエステ
ルヤーンを下撚りした後合糸し、更に上撚りして
コードになし、次いで得られたコードに接着剤を
施した後熱処理することによつて製造されてい
る。 しかしながら、ポリエステルコードは、ナイロ
ンコードに比較してゴムとの接着性が本質的に悪
い。従来、この接着性を改善するために種々の検
討がなされているが、いずれにしても、要求され
る接着性を満足させるには、充分に接着剤を付与
する必要がある。しかし、充分な量の接着剤を付
与したコードは、その柔軟性が著しく損われる。
この柔軟性が損われると、作業性が悪化するばか
りでなく、耐疲労性も悪化する。作業性と耐疲労
性を考慮して接着剤の付与量を少なくすると、接
着性が不充分になり、接着性と柔軟性とは二律背
反となり、両者を満足させることは極めて困難で
あつた。 本発明は、接着性と柔軟性の両者を同時に満足
するポリエステルコードを提供せんとして検討を
重ねたところ、その柔軟性の悪化は、接着剤付与
後の熱処理時に、単糸が変形して単糸相互の接触
面積が増大することに起因することを知つた。こ
の知見に基いて更に鋭意研究した結果、コードの
作製に用いるヤーンの繊度とこのヤーンを構成す
る単糸の繊度とを特定の関係になし、且つ接着剤
付与前の熱セツト温度と付与後の熱処理温度とを
特定の関係にすれば、ゴムとの高い接着力を維持
し且つ充分な柔軟性を有するポリエステルコード
が得られることを見出し、本発明に到達したもの
である。 すなわち、本発明は延伸および熱セツトした主
たる繰返単位がエチレンテレフタレートであるポ
リエステルよりなるヤーンを下撚り、合糸および
上撚りしてコードになし、次いで該コードに接着
剤を付与した後熱処理してゴム構造物補強材を製
造するに当り、該ヤーンの繊度と該ヤーンを構成
する単糸の繊度との関係が下記式(1) (式中、Deは該ヤーンの繊度(デニール)、
deは該ヤーンを構成する単糸の繊度(デニ
ール)を示す。) を満足せしめ且つ接着剤付与前の熱セツト時のヤ
ーン温度と接着剤付与後の熱処理時のコード温度
との関係が下記式()および() T2―10<T1<T2+10 ……() 200<T2<250 ……() (式中、T1は接着剤付与前の熱セツト時の
ヤーン温度(℃)、T2は接着剤付与後の熱処
理時のコード温度(℃)を示す。 を満足せしめることを特徴とするゴム構造物補強
材の製造法である。 本発明で用いるヤーンを構成するポリエステル
としては、テレフタル酸成分とエチレングリコー
ル成分とからなるポリエチレンテレフタレートを
主たる対象とするが、テレフタル酸成分の一部
(通常10モル%以下、望ましくは5モル%以下)
を他の二官能性カルボン酸成分で置換えたポリエ
ステルであつても、および/またはエチレングリ
コール成分の一部(通常10モル%以下、望ましく
は5モル%以下)を他のジオール成分で置換えた
ポリエステルであつてもよい。また、かかるポリ
エステルには必要に応じて添加剤、例えば安定
剤、着色剤等を含有せしめてもよい。 かかるポリエステルの重合度は、広い範囲をと
ることができるが、あまりに高すぎると、得られ
るコードのヤング率が低くなつたり、熱収縮率が
大きくなる傾向があり、逆に低すぎると強度が低
下するようになるので、ヤーンの極限粘度で通常
0.3〜1.0の範囲であり、0.5〜0.9の範囲が好まし
い。なお、本明細書で言う極限粘度は、オルソク
ロルフエノールを溶媒とし、温度25℃で測定した
値より求めた。 上記ポリエステルよりなるヤーンは、適当な極
限粘度のポリエステルを常法に従つて紡糸、延伸
することによつて得られる。紡糸に際しては、延
伸後のヤーンの繊度(De)とこのヤーンを構成
する単糸の繊度(de)が次式() を満足するように、紡糸口金の孔数、吐出量およ
び巻取速度を設定する必要がある。延伸後のヤー
ンの繊度は、用途やコード作製時の合糸数等によ
つて異なり、一概に特定することはできない。例
えば乗用車用タイヤの補強に用いるコードにする
場合、合糸数が2本のときは通常1000〜1500デニ
ール、合糸数が3本のときは通常800〜1500デニ
ールの範囲で適宜選定される。このヤーンの繊度
が決定されれば、これを構成する単糸の繊度、即
ち紡糸口金の孔数は、上記()式の範囲で選定
すればよい。 延伸後のヤーンの繊度と単糸の繊度との関係が
上記式()の範囲から外れる場合、即ちヤーン
の繊度に対して単糸の繊度が大きすぎるとき、お
よび小さすぎるときは、後述する接着剤付与前の
ヤーンの熱セツト温度と付与後のコードの熱処理
温度とを最適にしても、所望の接着性を維持しよ
うとすれば、得られるコードの柔軟性が損われ
る。 紡糸して得た未延伸ヤーンを延伸し、この延伸
ヤーンに寸法安定性を付与するため熱セツトした
後下撚り、合糸、上撚りして生コードになし、得
られた生コードに接着剤を付与した後更に熱処理
を施して製品コードにする。 本発明の方法においては、これらの諸工程のう
ちの接着剤付与前後の熱処理温度を特別の関係に
するものである。即ち、接着剤付与前のヤーンの
熱セツト時におけるヤーン温度をT1(℃)と
し、接着剤付与後のコードの熱処理時におけるコ
ード温度をT2(℃)とすると、T1とT2が次式
()および() T2―10<T1<T2+10 ……() 200<T2<250 …………() を満足させる必要がある。 接着剤付与後のコードの熱処理は、コードに高
強力、高ヤング率、低収縮率を得るため、200〜
250℃の高温で行なう必要がある。この熱処理に
供するコードは、接着剤付与前の熱セツトに供す
るヤーンと異なり、通常20〜50回/10cmの下撚り
と合糸後更に20〜50回/10cmの上撚りが施されて
いるため、単糸は相互に強い力で締めつけられて
おり、熱処理時に断面変形を受け易い。従つて、
接着剤付与前のヤーンの熱セツト温度が不充分
で、この際のヤーン温度T1が上記式()の範
囲よりも低いときは、接着剤付与後のコードの熱
処理時に単糸断面が多角形状に変形し、単糸は最
密充填に近い間隙の少ない配列をとり、その結果
単糸間相互の接触面積が大になり、得られるコー
ドは柔軟性が著しく損われるようになる。また、
T1が上記式()の範囲よりも高いときは、得
られるコードの柔軟性は損われないが、その強力
保持率が大きく低下し、補強材としては不適当に
なる。 しかるに、T1とT2とが上記式()および
()を満足し、且つ延伸後のヤーンの繊度
(De)とこのヤーンを構成する単糸の繊度(de)
とが前記式()を満足するときは、優れた接着
性を維持したまま柔軟性を有し、接着性、耐疲労
性、作業性のすべてに優れたゴム構造物補強材が
得られる。 本発明の方法におけるヤーンの熱セツトおよび
コードの熱処理、更には延伸時の加熱には、任意
の加熱手段が採用されるが、通常液浴、気体浴、
加熱ローラ等が好ましく使用される。 なお、未延伸ヤーンの延伸に際しては、任意の
延伸法が採用されるが、高強力が要求されるた
め、二段以上の多段延伸が好ましい。また、生コ
ードに付与する接着剤としては、ゴム構造物補強
材のポリエステルコードに適用されるものであれ
ば任意のものが用いられる。 以下に実施例をあげて本発明を更に詳述する。
なお、実施例中における強力保持率(%)は、
JISL1017(1963年)第19頁1―3―2―2デイ
スク疲労強さ(グツドリツチ法)による。但し、
運転条件は雰囲気温度80℃、圧縮率17.5%、伸長
率5.8%、回転数2300rpm、時間23時間とした。
剥離接着力(Kg/コード)は処理コードをゴム中
に5本埋め込み、加硫(150℃×30分×加硫板面
圧25Kg/cm2)後の5本の剥離強力を測定し、1本
当りの平均値を示した。ガーレイ硬度(mg)はテ
ステーKK製ガーレイ測定器で測定した値を示し
た。 実施例 1,2および比較例 1,2 極限粘度0.89のポリエチレンテレフタレートを
第1表に記載種々の孔数を有する紡糸口金を用い
て吐出量417g/分、吐出温度300℃、巻取速度
458m/分で溶融紡糸した後、温度80℃のもと第
1表記載の種々の倍率で第1段延伸し、続いて温
度300℃のもと倍率1.6倍で第2段延伸し、次いで
収縮率5%、浴温度380℃で2秒間熱セツトし
た。熱セツト浴出口におけるヤーンの温度
(T1)は、バーンズ表面温度計で測定したところ
240℃であつた。得られたヤーンの合計繊度
(De)は1500デニール、単糸繊度(de)は第1表
に示した通りであつた。 このヤーンを400回/mの下撚りした後2本合
糸して更に400回/mの上撚りして生コードとな
し、この生コードに接着剤としてフエノールホル
ムアルデヒド樹脂とレゾルシンホルムアルデヒド
初期縮合物を配合し、これにゴムラテツクスを加
えた水分散配合物からなる接着剤(例、特公昭50
−3794)を付与した後、浴温度240℃で60秒間第
1段熱処理し、続いて浴温度240℃で60秒間第2
段熱処理した。第2段熱処理浴出口における処理
コードの温度(T2)は235℃であつた。得られた
処理コードの特性を第1表に示した。
The present invention relates to a method for producing a reinforcing material for rubber structures, particularly a polyester having excellent adhesion to rubber, sufficient fatigue resistance and workability, and suitable for reinforcing rubber structures, particularly for reinforcing tires. Concerning the method of manufacturing cords. Polyester cord has relatively high Young's modulus and strength, as well as excellent flat spot resistance and heat resistance, so it has recently been used as a reinforcing cord for rubber structures, especially passenger car tires, instead of nylon cord. It became. Polyester cords are generally made by first twisting a polyester yarn consisting of a large number of single yarns that have been drawn and heat set, then plying the yarns, then ply twisting them to form a cord, and then applying an adhesive to the resulting cord. Manufactured by post-heat treatment. However, polyester cords inherently have poor adhesion to rubber compared to nylon cords. Conventionally, various studies have been made to improve this adhesiveness, but in any case, in order to satisfy the required adhesiveness, it is necessary to apply a sufficient amount of adhesive. However, a cord with a sufficient amount of adhesive becomes significantly less flexible.
When this flexibility is impaired, not only workability deteriorates but also fatigue resistance deteriorates. If the amount of adhesive applied is reduced in consideration of workability and fatigue resistance, adhesion becomes insufficient, and adhesion and flexibility are antithetical, and it has been extremely difficult to satisfy both. The present invention has been studied to provide a polyester cord that satisfies both adhesion and flexibility at the same time, and it has been found that the deterioration in flexibility is caused by deformation of the single yarns during heat treatment after applying the adhesive. I learned that this is caused by an increase in the mutual contact area. As a result of further intensive research based on this knowledge, we established a specific relationship between the fineness of the yarn used to make the cord and the fineness of the single yarns that make up this yarn, and also determined the heat setting temperature before applying the adhesive and the fineness after applying the adhesive. The present invention was achieved based on the discovery that a polyester cord that maintains high adhesion to rubber and has sufficient flexibility can be obtained by setting a specific relationship between the heat treatment temperature and the heat treatment temperature. That is, the present invention involves first twisting, doubling, and ply twisting a drawn and heat-set polyester yarn whose main repeating unit is ethylene terephthalate to form a cord, and then applying an adhesive to the cord and then heat-treating the yarn. When manufacturing rubber structure reinforcement materials, the relationship between the fineness of the yarn and the fineness of the single yarns constituting the yarn is expressed by the following formula (1). (In the formula, De is the fineness (denier) of the yarn,
de indicates the fineness (denier) of the single yarn constituting the yarn. ), and the relationship between the yarn temperature during heat setting before applying adhesive and the cord temperature during heat treatment after applying adhesive is expressed by the following formulas () and () T 2 -10<T 1 <T 2 +10... ...() 200<T 2 <250 ...() (where, T 1 is the yarn temperature (℃) during heat setting before applying adhesive, and T 2 is the cord temperature during heat treatment after applying adhesive (℃) ) is a manufacturing method for a rubber structure reinforcing material characterized by satisfying the following.The polyester constituting the yarn used in the present invention is mainly polyethylene terephthalate consisting of a terephthalic acid component and an ethylene glycol component. However, a part of the terephthalic acid component (usually 10 mol% or less, preferably 5 mol% or less)
Even if it is a polyester in which the ethylene glycol component is replaced with another difunctional carboxylic acid component, and/or a part of the ethylene glycol component (usually 10 mol% or less, preferably 5 mol% or less) is replaced with another diol component. It may be. Further, such polyester may contain additives such as stabilizers, colorants, etc., as necessary. The degree of polymerization of such polyester can vary over a wide range, but if it is too high, the Young's modulus of the resulting cord tends to be low or the heat shrinkage rate tends to be high, while if it is too low, the strength decreases. The intrinsic viscosity of the yarn is usually
It ranges from 0.3 to 1.0, preferably from 0.5 to 0.9. Note that the intrinsic viscosity referred to in this specification was determined from a value measured at a temperature of 25° C. using orthochlorophenol as a solvent. The yarn made of the above-mentioned polyester can be obtained by spinning and drawing a polyester having a suitable intrinsic viscosity according to a conventional method. During spinning, the fineness (De) of the yarn after drawing and the fineness (de) of the single yarns that make up this yarn are calculated using the following formula () It is necessary to set the number of holes in the spinneret, the discharge amount, and the winding speed so as to satisfy the following. The fineness of the yarn after drawing varies depending on the use, the number of yarns to be folded during cord production, etc., and cannot be unconditionally specified. For example, when making a cord to be used for reinforcing passenger car tires, when the number of yarns is two, it is usually 1000 to 1,500 denier, and when the number of yarns is three, it is usually 800 to 1,500 denier. Once the fineness of this yarn is determined, the fineness of the single yarn constituting it, that is, the number of holes in the spinneret, may be selected within the range of the above formula (). If the relationship between the fineness of the yarn after drawing and the fineness of the single yarn is out of the range of the above formula (), that is, when the fineness of the single yarn is too large or too small compared to the fineness of the yarn, adhesion as described below will be applied. Even if the heat setting temperature of the yarn before application of the agent and the heat treatment temperature of the cord after application are optimized, the flexibility of the resulting cord will be compromised if the desired adhesion is to be maintained. The undrawn yarn obtained by spinning is drawn, heat-set to impart dimensional stability to the drawn yarn, and then pre-twisted, doubled, and ply-twisted to form a green cord, and an adhesive is applied to the obtained green cord. After applying this, it is further heat treated to create a product code. In the method of the present invention, among these steps, the heat treatment temperatures before and after applying the adhesive have a special relationship. That is, if the yarn temperature at the time of heat setting of the yarn before applying adhesive is T 1 (°C), and the cord temperature at the time of heat treatment of the cord after applying adhesive is T 2 (°C), then T 1 and T 2 are It is necessary to satisfy the following formulas () and () T 2 −10<T 1 <T 2 +10 ……() 200<T 2 <250 ……(). The heat treatment of the cord after applying the adhesive is done to obtain high strength, high Young's modulus, and low shrinkage of the cord.
It is necessary to carry out the process at a high temperature of 250℃. The cords subjected to this heat treatment are different from yarns subjected to heat setting before applying adhesive, as they are usually first twisted 20 to 50 times/10cm and then ply twisted an additional 20 to 50 times/10cm after doubling. , the single yarns are mutually tightened with strong force and are susceptible to cross-sectional deformation during heat treatment. Therefore,
If the heat setting temperature of the yarn before applying the adhesive is insufficient and the yarn temperature T 1 at this time is lower than the range of the above formula (), the single yarn cross section will become polygonal during the heat treatment of the cord after applying the adhesive. As a result, the single yarns are arranged in a close-packed arrangement with few gaps, and as a result, the contact area between the single yarns becomes large, and the flexibility of the resulting cord is significantly impaired. Also,
When T 1 is higher than the range of the above formula (), the flexibility of the obtained cord is not impaired, but its strength retention rate is greatly reduced, making it unsuitable as a reinforcing material. However, if T 1 and T 2 satisfy the above formulas () and (), and the fineness (De) of the yarn after drawing and the fineness (de) of the single yarn constituting this yarn are
When satisfies the above formula (), a rubber structure reinforcing material is obtained which has flexibility while maintaining excellent adhesion and has excellent adhesion, fatigue resistance, and workability. In the method of the present invention, any heating means can be employed for the heat setting of the yarn, the heat treatment of the cord, and the heating during stretching, but usually a liquid bath, a gas bath,
A heating roller or the like is preferably used. Note that any stretching method may be employed for stretching the unstretched yarn, but since high strength is required, multi-stage stretching of two or more stages is preferred. Further, as the adhesive applied to the raw cord, any adhesive can be used as long as it is applicable to the polyester cord of the rubber structure reinforcing material. The present invention will be explained in further detail by giving examples below.
In addition, the strong retention rate (%) in the examples is
Based on JISL1017 (1963), page 19, 1-3-2-2 Disk fatigue strength (Gutdrich method). however,
The operating conditions were an ambient temperature of 80°C, a compression ratio of 17.5%, an elongation ratio of 5.8%, a rotation speed of 2300 rpm, and a time of 23 hours.
Peel adhesion strength (Kg/cord) was determined by embedding 5 treated cords in rubber and measuring the peel strength of the 5 cords after vulcanization (150℃ x 30 minutes x vulcanized plate surface pressure 25Kg/cm 2 ). The true average value is shown. The Gurley hardness (mg) was measured using a Gurley measuring device manufactured by Testee KK. Examples 1 and 2 and Comparative Examples 1 and 2 Polyethylene terephthalate with an intrinsic viscosity of 0.89 is listed in Table 1. Using spinnerets with various hole numbers, the discharge rate was 417 g/min, the discharge temperature was 300°C, and the winding speed was
After melt spinning at 458 m/min, the first stage of stretching was carried out at a temperature of 80°C at various ratios listed in Table 1, followed by the second stage of stretching at a temperature of 300°C at a ratio of 1.6 times, followed by shrinkage. Heat setting was performed for 2 seconds at a bath temperature of 5% and a bath temperature of 380°C. The temperature of the yarn at the exit of the heat set bath (T 1 ) was measured with a Barnes surface thermometer.
It was 240℃. The total fineness (De) of the obtained yarn was 1500 denier, and the single yarn fineness (de) was as shown in Table 1. After first twisting this yarn 400 times/m, two yarns are combined and further twisted 400 times/m to form a raw cord, and an initial condensate of phenol formaldehyde resin and resorcin formaldehyde is applied to this raw cord as an adhesive. Adhesives consisting of water-dispersed mixtures with rubber latex added to them (e.g.,
-3794), the first stage heat treatment was carried out at a bath temperature of 240℃ for 60 seconds, followed by the second stage heat treatment at a bath temperature of 240℃ for 60 seconds.
It was heat treated in stages. The temperature (T 2 ) of the treatment cord at the outlet of the second stage heat treatment bath was 235°C. Table 1 shows the characteristics of the obtained processed code.

【表】 実施例 3,4および比較例 3,4 延伸後の熱セツト浴の温度を第2表記載の種々
の温度に変える以外は実施例2と同様に行なつ
た。得られた処理コードの特性を第2表に示し
た。
[Table] Examples 3 and 4 and Comparative Examples 3 and 4 The same procedure as in Example 2 was carried out except that the temperature of the hot setting bath after stretching was changed to various temperatures listed in Table 2. The characteristics of the obtained processed code are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 延伸および熱セツトした主たる繰返単位がエ
チレンテレフタレートであるポリエステルよりな
るヤーンを下撚り、合糸および上撚りしてコード
になし、次いで該コードに接着剤を付与した後熱
処理してゴム構造物補強材を製造するに当り、該
ヤーンの繊度と該ヤーンを構成する単糸の繊度と
の関係が下記式(1) (式中、Deは該ヤーンの繊度(デニール)、
deは該ヤーンを構成する単糸の繊度(デニ
ール)を示す。) を満足せしめ且つ接着剤付与前の熱セツト時のヤ
ーン温度と接着剤付与後の熱処理時のコード温度
との関係が下記式()および() T2―10<T1<T2+10 ……() 200<T2<250 ……() (式中、T1は接着剤付与前の熱セツト時の
ヤーン温度(℃)、T2は接着剤付与後の熱処
理時のコード温度(℃)を示す。) を満足せしめることを特徴とするゴム構造物補強
材の製造法。
[Scope of Claims] 1. A drawn and heat-set yarn made of polyester whose main repeating unit is ethylene terephthalate is first twisted, doubled and plied to form a cord, and then an adhesive is applied to the cord. When producing a rubber structure reinforcement material by heat treatment, the relationship between the fineness of the yarn and the fineness of the single yarns constituting the yarn is expressed by the following formula (1). (In the formula, De is the fineness (denier) of the yarn,
de indicates the fineness (denier) of the single yarn constituting the yarn. ), and the relationship between the yarn temperature during heat setting before applying adhesive and the cord temperature during heat treatment after applying adhesive is expressed by the following formulas () and () T 2 -10<T 1 <T 2 +10... ...() 200<T 2 <250 ...() (where, T 1 is the yarn temperature (℃) during heat setting before applying adhesive, and T 2 is the cord temperature during heat treatment after applying adhesive (℃) ).) A method for manufacturing a rubber structure reinforcing material, characterized by satisfying the following.
JP369078A 1978-01-19 1978-01-19 Production of reinforcing material for rubber structure Granted JPS54101956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP369078A JPS54101956A (en) 1978-01-19 1978-01-19 Production of reinforcing material for rubber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP369078A JPS54101956A (en) 1978-01-19 1978-01-19 Production of reinforcing material for rubber structure

Publications (2)

Publication Number Publication Date
JPS54101956A JPS54101956A (en) 1979-08-10
JPS6114261B2 true JPS6114261B2 (en) 1986-04-17

Family

ID=11564384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP369078A Granted JPS54101956A (en) 1978-01-19 1978-01-19 Production of reinforcing material for rubber structure

Country Status (1)

Country Link
JP (1) JPS54101956A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112952A (en) * 1984-06-22 1986-01-21 東洋紡績株式会社 Adhesive treated polyester code for reinforcing rubber
JPS6119880A (en) * 1984-07-09 1986-01-28 横浜ゴム株式会社 Treatment of polyester synthetic fiber for reinforcing rubber
JPH05239541A (en) * 1992-02-28 1993-09-17 Fuji Denshi Kogyo Kk High-frequency induction heating method and high-frequency induction heating coil
JPH05247523A (en) * 1992-03-05 1993-09-24 Fuji Denshi Kogyo Kk Method and coil for high frequency induction heating
JP7139752B2 (en) * 2018-07-24 2022-09-21 横浜ゴム株式会社 pneumatic radial tire

Also Published As

Publication number Publication date
JPS54101956A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
TW200844280A (en) Polyethylene naphthalate fiber and method for production thereof
JPH10505640A (en) Polyester filament yarn, polyester tire cord and method for producing the same
EP1510604B1 (en) High tenacity polyethylene-2,6-naphthalate fibers
JP4502589B2 (en) Pneumatic tire
JPS6114261B2 (en)
JPH0545700B2 (en)
KR101602385B1 (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
JPS6141320A (en) Polyester fiber
JPS6119812A (en) Polyester fiber
US4043985A (en) Tire monofilaments
KR102001061B1 (en) Polyethyleneterephthalate tire cord having good creep resistance
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
JP2659724B2 (en) Manufacturing method of high strength composite fiber
JP2776003B2 (en) Method for producing polyester fiber
JP2647661B2 (en) Composite fiber with high strength
KR100209110B1 (en) Polyester tire cord and its apparatus
IE902984A1 (en) Polyester monofil for the carcass of radial tires
WO2012134229A2 (en) Method for manufacturing polyethylene terephthalate drawn fiber, polyethylene terephthalate drawn fiber, and tire cord
JPS593578B2 (en) Manufacturing method of high toughness polyester cord
KR20050051103A (en) High performance radial tire using hybrid cord for carcass ply
JP2002105751A (en) Polyester yarn for reinforcing rubber and dipped cord
JPS6071240A (en) Manufacture of tire reinforcing cord
KR20170085880A (en) Manufacturing method of polyethylene terephthalate having high strength and low shrinkage
JPH0274612A (en) Conjugate fiber having high tenacity
JP2770509B2 (en) Polyester dip cord