JPS6114215B2 - - Google Patents

Info

Publication number
JPS6114215B2
JPS6114215B2 JP56125995A JP12599581A JPS6114215B2 JP S6114215 B2 JPS6114215 B2 JP S6114215B2 JP 56125995 A JP56125995 A JP 56125995A JP 12599581 A JP12599581 A JP 12599581A JP S6114215 B2 JPS6114215 B2 JP S6114215B2
Authority
JP
Japan
Prior art keywords
hot
steel
rolling
temperature
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125995A
Other languages
Japanese (ja)
Other versions
JPS5827931A (en
Inventor
Hideo Kukuminato
Sadao Izumyama
Takashi Ono
Akya Yagishima
Koichi Komamura
Hikosaku Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12599581A priority Critical patent/JPS5827931A/en
Publication of JPS5827931A publication Critical patent/JPS5827931A/en
Publication of JPS6114215B2 publication Critical patent/JPS6114215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低炭素Alキルド鋼の連続鋳造鋼片
を、それぞれ熱間圧延―酸洗―冷間圧延の工程を
経て鋼板とした後、この鋼板に連続焼鈍を施すこ
とにより、調質度T―5並びにT―4のぶりき及
びテインフリー鋼板用原板を製造する方法に関す
るものである。現今ぶりき、テインフリー鋼板
(TFS)は炭酸飲料缶のように内圧に耐えられる
強度を要求されるものから、絞り缶のように軟質
で加工性が要求されるものまで、その用途に応じ
て種々の調質度(ロツクウエルT硬度HR30T)
のものがある。これらの調質度を得るために、従
来はリムド鋼またはキヤツプド鋼を用い、バツチ
焼鈍と連続焼鈍とによつて、作り分けてきた。そ
の種別は第1表に示すとおりである。
In the present invention, a continuous cast billet of low carbon Al killed steel is made into a steel plate through the steps of hot rolling, pickling and cold rolling, respectively, and then continuous annealing is performed on this steel plate to achieve a tempering degree of T. The present invention relates to a method for producing base plates for tinplate and stain-free steel sheets of T-5 and T-4. Nowadays, stain-free steel sheets (TFS) are used in various applications, from those that require strength to withstand internal pressure, such as carbonated beverage cans, to those that require softness and workability, such as squeeze cans. Various degrees of heat treatment (Rockwell T hardness HR30T)
There is something like that. In order to obtain these degrees of heat refinement, conventionally rimmed steel or capped steel has been used and produced by batch annealing and continuous annealing. The types are shown in Table 1.

【表】 しかし、最近はぶりき、テインフリー鋼板用原
板も連鋳化が進み、鋼種は当然、低炭素Alキル
ド鋼を利用するようになつてきている。 低炭素Alキルド鋼板をバツチ焼鈍で仕上げる
方法は、自動車用等の絞り加工用冷延鋼板の分野
で古くから開発されてきているので、目標とする
硬度やその他の機械的性質を求めるための工程条
件は、ほぼ確立されている。したがつて、ぶりき
の分野においても、低炭素Alキルド鋼板ごバツ
チ焼鈍で仕上げる方法をこれに応用することによ
つて、規定の調質度は容易に求められるようにな
つた。しかし、過度効処理を有しない連続焼鈍仕
上げのT―4,T―5については、安定した技術
が確立されていないのが現状である。 一方、製缶加工においては、製缶技術の向上に
従つて、従来T―4ぶりきを使つていた用途にお
いて、調質度T―5を使い、板厚を約5〜20μm
薄くして、素材原価の低減がはかられだした。 従来、調質度T―5のぶりき、TFS用原板
は、C含有量が0.01〜0.15%と高くしたもの、あ
るいはC量が0.05〜0.08%,N total80〜
120PPMのものが開発されて現実に採用されてき
た。 しかるにこの方法では、冷間圧延における連鋳
比率が向上するに従つて、冷間圧延では特異な現
象があらわれた。すなわち、Alキルド連鋳材を
連続して冷間圧延を行うと造塊材を圧延している
場合には、累積圧延トン数が少なくまだまだ圧延
できる時点でもAlキルド連鋳材では、スリツプ
トラブルが生じ、ストリツプがスタンド間で破断
するということが起きた。この原因は、まだ十分
解明はされてないが、次のような現象がみられ
た。スリツプトラブルでストリツプが破断した時
のロール表面を詳細に観察すると、ロール研削後
にみられたグリツドラインがなくなり、いわゆる
“てかてか”になつていることがわかつた。また
電子顕微鏡でロール表面を調べると、Al2O3粒子
が喰いこんでいた。 更に、連鋳材の冷間圧延変形抵抗を、スリツプ
トラブル及びこの現象が生じる直前の板厚変動や
スタンド間張力の変動を観察して、キヤツプド鋼
と比較すると、連鋳材の方が大きいことがわか
り、次のような考察を得た。 変形抵抗の大きな連鋳材を連続して圧延を行う
と、ストリツプから分離した超硬質のAl2O3粒子
によるロール表面研磨作用を受けて、ワークロー
ル表面の摩耗が進み、摩擦係数(μ)が小さくな
つて、ロールとストリツプの間でスリツプが起
る。スリツプが起るとロール速度が上がり、スタ
ンド間張力が大きくなつて、板厚が局部的に薄く
なる。このスリツプの程度が大きくなるとチヤタ
リング現象となつて、ストリツプが破断する。こ
の現象は前段スタンドロールで生じやすいため、
破断したストリツプがロールに巻き付き、取り替
えなくてはならず、膨大な損害をこうむることに
なる。 この対策としては、冷間圧延では事前にロール
を取り替えるとか、圧延油の濃度を調整すること
などが有効であることがわかつたが、製造原価が
高くなり、経済的に不利である。したがつて、被
圧延材の変形抵抗を小さくすることが最も有効な
対策であるとの決論に達した。 なお本発明者らは、別に調質度T―4のぶりき
及びテインフリー鋼板用原板をAlキドル鋼の連
続鋳造鋼片から製造する方法を開発した。この方
法は、C:0.04〜0.08%のAlキルド連続鋳造鋼片
を熱間圧延して500℃〜580℃で巻取り、酸洗、冷
間圧延工程を経て鋼板に連続焼鈍を施すものであ
るが、C量が比較的高いため熱延板が比較的硬く
なつて、冷間圧延性に多少の問題があつた。 そこで本発明の目的とするところは、低炭素
Alキルド鋼の連続鋳造鋼片を素材として、これ
に順次、熱間圧延、酸洗、冷間圧延を行つた後、
連続焼鈍を施すことによつて、調質度T―5並び
にT―4のぶりき及びテインフリー鋼板用原板
を、上述したような冷間圧延に障害を生ずること
なく製造することができる方法を提供することに
ある。 ところで、低炭素Alキルド鋼を連続鋳造して
作られた鋼片を熱間圧延、冷間圧延を行つて鋼板
となし、これに連続焼鈍して、ぶりき並びにテイ
ンフリー鋼板用原板に製造する方法が既に特公昭
55−48574号公報によつて提案されている。この
公報記載の発明は、調質度がT―1からT―6に
わたる広い範囲のものを対象としており、個々の
調質度のものの製造に対して、それぞれ素材成
分、特にC量をどのように調整するのか、またど
のような製造条件で製造するのか、については明
らかにされていない。特にT―4,T―5のもの
について必要な製造条件は具体的に説明されてい
ない。 本発明者らは、ぶりきの硬度に及ぼす製造条件
を種々の実験に基づいて詳細に調べた結果、ぶり
きの硬度は、固溶C、結晶粒度、固溶Nの順に支
配され、固溶Cの影響が最も大きいことが明らか
となり、この点から素材のC量にそれぞれの調質
度に対して最適な範囲があること、更に熱延板の
巻取温度(CT)にも最適範囲があることが新規
に知見された。 本発明は、この知見に基づいくものであつて、
その要旨は、以下のとおりのものである。 1 C:0.01〜0.04%(ただし0.04%は含まず)
の低炭素Alキルド鋼からなる連続鋳造鋼片を
熱間圧延して500℃〜560℃で巻取り、次いで酸
洗し冷間圧延した後、再結晶温度以上Ac1変態
点未満で連続焼鈍を行い、次に調質圧延を施す
ことを特徴とする、調質度T―5を有するぶり
き及びテインフリー鋼板用原板の製造方法 2 C:0.01〜0.04%(ただし0.04%は含まず)
の低炭素Alキルド鋼からなる連続鋳造鋼片を
熱間圧延して560℃〜580℃(ただし560℃は含
まず)で巻取り、次いで酸洗し冷間圧延した
後、再結晶温度以上Ac1変態点未満で連続焼鈍
を行い、次に調質圧延を施すことを特徴とす
る、調質度T―4を有するぶりき及びテインフ
リー鋼板用原板の製造方法。 以下更に詳しく本発明(1),(2)について説明す
る。 先ず連続焼鈍(CAL)がぶりき原板の硬度に
及ぼす製造上の要因としては、(1)化学成分、(2)熱
延巻取温度(CT)、(3)連続焼鈍条件が主に考えら
れる。 (1) 化学成分については、C,Mn,Si,P,
Al,Nなどの含有量が多くなると原板の硬度
が高くなることは、バツチ焼鈍仕上げては良く
知られている。しかし本発明における急熱急冷
の連続焼鈍の場合には、これらの条件の他に固
溶C、固溶Nによる時効硬化が考えられる。 なお、硬度を高くする方法として、Si,Cr等
を製鋼時添加する方法もあるが、添加することに
よる製造原価の向上は勿論、食缶に使われるもの
では、これらの元素の増加により耐食性を著しく
劣化させる。 (2) 熱延巻取温度については、高温巻取り(約
580℃以上)を行えば、熱延コイルが保有する
熱により自己焼鈍が起り結晶粒は大きくなり、
それが冷間圧延、再結晶後の結晶粒径にも影響
を及ぼし、最終製品の結晶粒径は大きくなる。
しかし、同時に炭化物を凝集粗大化する。この
ような高温巻取したものに連続焼鈍を行うと、
結晶粒径が大きくなる。しかし、高温巻取りを
行つた熱延板表面には、スケール層が厚く生成
するし、冷間圧延前の酸洗工程において脱スケ
ール性の悪いスケール組成になるため、酸洗が
困難になるという問題は生じる。 (3) 連続焼鈍条件については、再結晶温度以上〜
A1変態点温度末満の領域で低温側で焼鈍を行
うに従つて、結晶粒は小さく、硬度は高くな
る。したがつてT―5のぶりき板を得るために
は、再結晶温度直上の低温側で焼鈍すること
が、硬度を高める意味で有効であるが、工場生
産的には非常に危険を伴う。 他方、高温側で焼鈍を行うに従つて、結晶粒は
大きくなる。その結果、硬度は低くなる。しかし
高温焼鈍を行うと、当然、燃料エネルギー原単位
は高くなり経済的に不利である。 またAc1変態点以上で焼鈍すると結晶粒界に炭
化物が析出してきてぶりき及びテインフリーの耐
食性が劣化するのでAc1変態点末満とする必要が
ある。 一方、冷間圧延時に連鋳材特有の現象として、
スリツプトラブルの発生頻度が高くなるので、そ
の対策をとる必要がある。 また、Alキルド鋼を製造する場合、その製鋼
工程で、Nは空気中より主としてAlNとなつて最
高60PPMほど溶けこみ、熱延工程の鋼片加熱中
にAlNの一部ないし全部が解離し、固溶Nとして
鋼中に存在する。 以上の事項からみて、連続鋳造して得られた
Alキルド鋼片から連続焼鈍仕上げによつてT―
5並びにT―4のぶりき及びテインフリー鋼板用
原板を製造するに当たり、特殊元素を添加しない
通常のAlキルド鋼を用いて、冷間圧延性の優れ
た熱延板が得られるような、原板の製造条件が求
められるならば、T―5並びにT―4のぶりき又
はテインフリー鋼板用原板が技術的かつ経済に価
値のある方法で製造されることになる。 本発明者らは、上記の目的を満足することがで
きる製造条件を種々検討した結果、次の事実がわ
かり、この知見から上記製造条件を求めることが
できた。 先ず、ぶりきの結晶粒度(G.S.N.)及び硬度に
及ぼすぶりき原板のC量(%)と原板の熱延巻取
温度(CT)の影響を調べたところ、その結果
は、第1図に示すとおりであつた。すなわち粒径
は、C量が低くなるに従い大きくなり、またCT
が高くなるに従つて大きくなつた。しかし硬度
は、C量が0.04%より低くなると、いずれのCT
水準においても高くなる傾向を示している。そし
て同一C量水準でCTとの関係を比較すると、
CT:650℃の場合は、粒径が最も大きく、したが
つて原板は軟化を示すことが考えられるにもかか
わらず、硬度が高くなつており、他方520℃の場
合は、C量が低下していくに伴つて粒径が大きく
なつていくので、硬度の低下を示すものと考えら
れるに反して硬度の上昇を示している。 第2図は、第1表に示したぶりきのうち、C:
0.016%及びC:0.057%のものについて、熱延巻
取温度別に、ぶりきのフエライト組織、セメンタ
イトの顕微鏡写真及びぶりきの硬度を示したもの
である。第2図によれば、C量が高く(0.057
%),CT:520℃,570℃のものは、セメンタイト
が細かく密に分散しており、またフエライト結晶
粒径はより小さくなつているが、ぶりき硬度は低
くなつておりT―5水準に達していないこと、他
方、C量が低く(0.016℃)、CTが同一のもの
は、フエライト結晶粒径はより大きく、セメンタ
イトが少くなつているが、CTが520℃のものはT
―5水準のぶりき硬度を満足していることが知見
される。 以上に述べたごとく、Alキルド連続鋳造材を
素材とする連続焼鈍仕上げによるぶりき原板は、
C量が低くなるに従つて結晶粒は大きくなるが、
ぶりきの硬度は高くなること、そして熱延巻取温
度を高くしたものも、また結晶粒が大きくなる
が、ぶりきの硬度は高くなる、という特異の現象
を示すことが新たに知見された。 以上の事実は、バツチ焼鈍によるぶりきの現象
と大きく異なつている。これらの原因は、原板の
C量が少ないと、析出核としてのセメンタイトが
少なくなること、また熱延巻取温度を高くすると
セメンタイトが凝集粗大化して、Cの析出移動距
離が長くなることによつて、Cの析出が充分に進
行し得ないために固溶C量が多くなり、この結
果、歪時効が起つて、結晶粒の粗大化による軟化
を相殺することを超えて、ぶりきの硬度が高くな
つたものと考えられる。 なお、熱延巻取温度が中間にあるものは、セメ
ンタイトが凝集粗大化していない領域で、結晶粒
が大きくなるために、硬度が低くなるものと考え
られる。 次いで、連続鋳造Alキルド鋼片による熱延板
の冷間圧延性に及ぼす熱延板のC量の影響を
CT:520℃,570℃,650℃のそれぞれの場合につ
いて調査した。その結果を第3図に示す。 これによれば、C量が少なくなり、かつCTが
高くなるに従つて、冷間圧延でのHHT(Horse
power―Hour per Ton)(圧延消費動力)が低く
なることがわかつた。 また、熱延コイルの酸洗性は、CTが高くなる
に従つて、酸洗効率が悪くなる。 以上、説明してきたとおり、ぶりき原板の硬度
に対しては、固溶Cが大きく影響するのであつ
て、そのために目標とする硬度のものを得るに
は、C量に最適の範囲があること、更に熱延の巻
取温度がセメンタイトの形態の変化を介して固溶
Cの析出に関係するので、巻取温度にも最適の範
囲があることを本発明者らは新たに知見した。 ところで、前記の特公昭55−48574号の発明で
は熱間仕上温度がAr3変態点を起える温度では、
塊状炭化物を生成するため、冷却中にCが析出す
る核が少なくなり、C及びNを多く固溶して時効
硬化を大ならしめるとして、熱延仕上温度をAr3
点以下と限定している。 これに対して、本発明者らは、前記説明したと
おり、熱延巻取温度が低い程炭化物が細かく分散
すること、他方巻取温度が高くなるに従つて炭化
物が凝集し粗大化すること、すなわち、このよう
に巻取温度の変化によつて起こる炭化物の形態の
相違がぶりき硬度に影響することご新たに知見し
たのである。 そこで、本発明1では連続鋳造によるAlキル
ド鋼片を素材として、過時効処理を伴わない連続
焼鈍仕上げによつて、T―5級の所定硬度のもの
を容易な冷間圧延で製造し得るのに必要であり、
かつ充分な製造条件は、鋼片のC量を0.01〜0.04
%として、熱延巻取温度を500℃〜560℃とするも
のである。 本発明1によれば、上記条件によつて熱延板を
軟質にすることができるので、冷間圧延において
変形抵抗が小さくなり、他方連続焼鈍後は、逆に
硬質のものが得られる、という一見矛循している
ようであるが、事実このような効果が奏されるの
である。 しかして、連続鋳造してなるAlキルド鋼片を
素材として連続焼鈍仕上げによつて比較的軟質の
T―4のぶりき及びテインフリー鋼板用原板を、
容易な冷間圧延で製造することができることに対
して、必要であり、かつ充分な条件としては、本
発明2にによるごとく鋼片のC量を0.01%〜0.04
%(ただし0.04%は含まず)とし、熱延板の巻取
温度を560℃〜580℃とする。 低炭素Alキルド鋼を素材として、バツチ焼鈍
で軟質のものを製造するには、C量を低くして、
熱延巻取温度を高温にすればよいが、連続焼鈍で
軟質なものを製造するには、C量が低い場合で
は、巻取温度をバツチ焼鈍の場合よりも低くする
ことが必要であり、その結果、冷間圧延性に優れ
た方法で、T―4のぶりき原板を製造することが
できる、との新しい知見を本発明者らは得たので
ある。本発明2は、このような新しい知見に基づ
いて創案したところに特徴がある。 なお、本発明1,2における鋼板成分について
は、C元素以外は特別に管理をする必要がなく、
過度な脱P,脱S,そしてMn鉱石も特に多く添
加することも必要がない。Mnは0.60%以下、P
は0.025%以下、Sは0.030%以下、Sol.Alは0.020
〜0.150%の通常の低炭素Alキルド鋼の成分でよ
い。 次に、本発明1,2において、それぞれC量範
囲及び熱延巻取温度範囲の上限値、下限値を上記
のように定めた根拠を述べる。 C:0.01〜0.04%(ただし0.04%は含まず)鋼
片のC量が0.01%未満では、製鋼において脱炭を
行うのが困難である。他方0.04%を超えると、熱
延板においてセメンタイトが増して再結晶核が多
くなつて、結晶粒が微細化するため熱延板が硬く
なり、スリツプトラブルが起り易くなつて冷間圧
延性を悪くする。また冷延、焼鈍後も固溶C量が
少ないので、時効硬化が弱まつて原板は軟化して
T―5水準に達し得なくなる。 これに対し、C:0.01〜0.04%の場合は、熱延
板の結晶粒が比較的大きくなつて、軟質となり圧
延変形抵抗が小さくなるため冷間圧延性は良好と
なる。そして500℃〜560℃で熱延板を巻取ると焼
鈍後の原板は、固溶C量が多いのでその析出によ
る時効硬化が充分に進行して、原板はT―5水準
を満足することができる。また560℃〜580℃の温
度で熱延板を巻取ると、焼鈍後の原板は時効硬化
が弱まつて原板はT―4水準を満足することがで
きる。 よつて、本発明1,2ともにC量を0.01〜0.04
%とする。ただし0.04%は、本発明者らによる本
出願と同日出願の発明との重複を避けるために除
くこととする。 熱延巻取温度: 500℃〜560℃(本発明1) 560℃〜580℃(ただし560℃は含まず)(本発明
2) 巻取温度の下限を500℃とするのは、現在まで
500℃より低い温度では、特殊な実験材を除き、
ほとんど巻取つた実績がないために、巻取設備に
支障を及ぼすのではないかと危惧されるためであ
り、また熱板コイルの自己焼鈍が充分に行なわれ
ないため、熱延板の結晶が微細となつて熱延板が
硬くなつて、冷間圧延が困難となると予想される
からでもある。 他方、560℃を超えると、熱延板には、固溶C
の析出が増え、かつ結晶粒も大きくなる。これが
焼鈍後の冷延板にも影響して時効硬化が弱まると
ともに、結晶粒も大きいので、原板の硬度が低く
なつてT―5水準に達し得なくなる。したがつて
本発明1では、巻取温度を500℃〜560とする。 他方、本発明2では、調質度T―4を目標とす
るため、巻取温度を560℃を超える温度とする。
しかし約580℃以上になると熱延板中の固溶Cが
より多く析出し、かつ結晶粒が大きくなり、これ
が焼鈍後の冷延板にも影響して、時効硬化が弱ま
るとともに結晶粒が大きいため、原板の硬化が更
に低下して調質度T―4水準より小さくなる。 また、熱延巻取温度が高くなると、更に熱延板
の酸化被膜マグネタイト(Fe3O4)を主成分とす
るものになり、そして緻密になるので、脱スケー
ル性が悪くなつて酸洗時間が長くかかる。またセ
メンタイトが粗大化して、原板表面のセメンタイ
ト上にはSnメツキがされにくくなるので、ぶり
きの耐食性が低下することになる。第4図は熱延
巻取温度(CT)と#25ぶりきのI.S.V.試験
(Iron solution test value)による鉄溶出量(μ
g/oin2)との関係を示すものであつて、CT:
580℃を超えると急激に鉄溶出量が増加している
ことを明らかにしている。 上記I.S.V.試験とは、めつき前の原板表面及び
めつき層の耐食抵抗を求めるため、缶詰の反応を
まねた試験状態でぶりき試片から溶出したFe量
を求める試験法であつて、この値により耐食性の
評価を行なうものである。 以上により、本発明2では、巻取温度を560℃
〜580℃とするのである。 以下、本発明(1),(2)の実施例について述べる。 実施例1(本発明1) 製鋼においてC量を0.01%,0.03%,0.07%,
0.13%の目標にし、その他の成分は、通常のAlキ
ルド鋼の成分範囲になるようにして各1チヤージ
精錬して出鋼した。なおC:0.01%,0.03%を目
標にしたものは、真空脱ガス処理を行つて脱炭し
た。この溶鋼から連続鋳造によつてスラブを製造
した。この際のタンテイシユ内の溶鋼の成分の分
析値を第2表に示す。C以外の各成分について
は、通常のAlキルド鋼片の含有量である。
[Table] However, in recent years, the continuous casting of blanks for tinplate and stain-free steel sheets has progressed, and the use of low-carbon Al-killed steel has naturally begun. The method of finishing low-carbon Al-killed steel sheets by batch annealing has been developed for a long time in the field of cold-rolled steel sheets for drawing for automobiles, etc., so it is a process to obtain the target hardness and other mechanical properties. The conditions are almost established. Therefore, in the field of tinplate as well, by applying the finishing method of batch annealing of low-carbon Al-killed steel sheets, it has become easy to obtain a specified degree of heat treatment. However, the current situation is that no stable technology has been established for T-4 and T-5, which are finished by continuous annealing and do not require over-effect treatment. On the other hand, in the can manufacturing process, as can manufacturing technology has improved, the plate thickness has been reduced to approximately 5 to 20 μm by using T-5 heat treatment instead of T-4 tin.
By making it thinner, we began to reduce material costs. Conventionally, tinplate and TFS sheets with a heat treatment level of T-5 have a high C content of 0.01 to 0.15%, or have a C content of 0.05 to 0.08% and N total 80 to
A 120PPM version has been developed and actually used. However, in this method, as the continuous casting ratio in cold rolling increased, a peculiar phenomenon appeared in cold rolling. In other words, if Al-killed continuous cast material is cold-rolled continuously, slip trouble will occur even when the cumulative rolling tonnage is small and it can still be rolled. This caused the strip to break between the stands. Although the cause of this has not yet been fully elucidated, the following phenomenon was observed. When the roll surface was observed in detail when the strip broke due to slip trouble, it was found that the grid lines that had been seen after roll grinding had disappeared and the strip had become so-called "shiny". Furthermore, when the roll surface was examined using an electron microscope, Al 2 O 3 particles were found to be embedded. Furthermore, when comparing the cold rolling deformation resistance of continuous cast steel with capped steel by observing slip trouble and changes in plate thickness and tension between stands just before this phenomenon occurs, it was found that continuous cast steel has greater resistance to cold rolling deformation than capped steel. was found, and the following considerations were obtained. When a continuously cast material with high deformation resistance is continuously rolled, the surface of the work roll is abraded due to the polishing action of the ultra-hard Al 2 O 3 particles separated from the strip, and the coefficient of friction (μ) increases. becomes smaller and slips occur between the roll and the strip. When slipping occurs, the roll speed increases, the tension between the stands increases, and the plate thickness becomes locally thinner. When the degree of slip increases, a chattering phenomenon occurs and the strip breaks. This phenomenon tends to occur in the front stand roll, so
The broken strip wraps around the roll and must be replaced, resulting in extensive damage. As countermeasures against this problem, it has been found that in cold rolling, it is effective to replace the rolls in advance or adjust the concentration of rolling oil, but this increases the manufacturing cost and is economically disadvantageous. Therefore, it was concluded that the most effective measure was to reduce the deformation resistance of the rolled material. The inventors of the present invention have separately developed a method for producing base plates for tinplate and stain-free steel sheets with a heat treatment degree of T-4 from continuous casting billets of Al kiddle steel. This method involves hot rolling an Al-killed continuous cast steel billet containing 0.04 to 0.08% C, coiling it at 500 to 580 °C, and subjecting it to continuous annealing through pickling and cold rolling processes. However, since the C content was relatively high, the hot rolled sheet became relatively hard, causing some problems in cold rolling properties. Therefore, the purpose of the present invention is to
After sequentially hot rolling, pickling, and cold rolling, a continuously cast Al-killed steel billet is used as a raw material.
Provided is a method for producing original plates for tinplate and stain-free steel sheets with a tempering degree of T-5 and T-4 by continuous annealing without causing problems in cold rolling as described above. It is about providing. By the way, a steel billet made by continuous casting of low-carbon Al-killed steel is hot-rolled and cold-rolled into a steel plate, which is then continuously annealed to produce a base plate for tinplate and stain-free steel plates. The method has already been
This method is proposed by Japanese Patent No. 55-48574. The invention described in this publication is aimed at a wide range of heat quality from T-1 to T-6, and how to adjust the material components, especially the amount of C, for each heat quality. It has not been made clear whether the product will be adjusted or what manufacturing conditions will be used to manufacture it. In particular, the manufacturing conditions required for T-4 and T-5 are not specifically explained. The present inventors have investigated in detail the manufacturing conditions that affect the hardness of tinplate based on various experiments. As a result, the hardness of tinplate is dominated by solute C, crystal grain size, and solute N in that order. It became clear that the influence of C was the largest, and from this point, it was found that there is an optimal range for the amount of C in the material for each degree of heat treatment, and there is also an optimal range for the coiling temperature (CT) of the hot-rolled sheet. Something new was discovered. The present invention is based on this knowledge, and includes:
The summary is as follows. 1 C: 0.01 to 0.04% (excluding 0.04%)
Continuously cast billets made of low carbon Al-killed steel are hot rolled and coiled at 500°C to 560°C, then pickled and cold rolled, followed by continuous annealing at a temperature above the recrystallization temperature but below the Ac 1 transformation point. Method 2 for producing base plates for tinplate and stain-free steel sheets having a temper degree of T-5, which is characterized by carrying out heat rolling and then subjecting to temper rolling.
Continuously cast billets made of low carbon Al-killed steel are hot rolled and coiled at 560°C to 580°C (excluding 560°C), then pickled and cold rolled, then Ac 1. A method for producing a base sheet for tinplate and stain-free steel sheet having a heat treatment degree of T-4, which comprises performing continuous annealing at a temperature below 1 transformation point and then skin pass rolling. The present inventions (1) and (2) will be explained in more detail below. First, the main manufacturing factors that affect the hardness of tinplate blanks during continuous annealing (CAL) are (1) chemical composition, (2) hot rolling coiling temperature (CT), and (3) continuous annealing conditions. . (1) Regarding chemical components, C, Mn, Si, P,
It is well known that when the content of Al, N, etc. increases, the hardness of the original plate increases when batch annealing is performed. However, in the case of continuous annealing of rapid heating and rapid cooling in the present invention, age hardening due to solid solution C and solid solution N is considered in addition to these conditions. One way to increase hardness is to add Si, Cr, etc. during steel manufacturing, but adding these elements not only improves manufacturing costs, but also increases the corrosion resistance of food cans by increasing the amount of these elements. cause significant deterioration. (2) Regarding hot rolling coiling temperature, high temperature coiling (approximately
(580℃ or higher), self-annealing occurs due to the heat held by the hot-rolled coil, and the crystal grains become larger.
This also affects the crystal grain size after cold rolling and recrystallization, resulting in a larger crystal grain size in the final product.
However, at the same time, carbides are aggregated and coarsened. When continuous annealing is performed on such a high-temperature coiled material,
Crystal grain size increases. However, a thick scale layer forms on the surface of the hot-rolled sheet after high-temperature coiling, and the pickling process before cold rolling creates a scale composition that has poor descaling properties, making pickling difficult. Problems arise. (3) Regarding continuous annealing conditions, above the recrystallization temperature
As annealing is performed at a lower temperature in the region below the A1 transformation temperature, the crystal grains become smaller and the hardness becomes higher. Therefore, in order to obtain a T-5 tin plate, annealing at a low temperature just above the recrystallization temperature is effective in increasing hardness, but this is extremely dangerous in terms of factory production. On the other hand, as annealing is performed at a higher temperature, the crystal grains become larger. As a result, the hardness becomes low. However, high-temperature annealing naturally increases the fuel energy consumption, which is economically disadvantageous. Furthermore, if annealing is performed at a temperature higher than the Ac 1 transformation point, carbides will precipitate at the grain boundaries, deteriorating the corrosion resistance of tinplate and tinplate, so it is necessary to keep the Ac 1 transformation point lower or lower. On the other hand, as a phenomenon peculiar to continuously cast materials during cold rolling,
Since slip troubles occur more frequently, it is necessary to take measures against them. In addition, when producing Al-killed steel, during the steel-making process, N is mainly converted into AlN from the air and melts at a maximum of 60 PPM, and some or all of the AlN dissociates during heating of the steel billet in the hot-rolling process. It exists in steel as solid solution N. In view of the above matters, it is clear that the
T-
5 and T-4 tinplates and stain-free steel sheets, using ordinary Al-killed steel without adding special elements, the original sheet can be used to obtain hot-rolled sheets with excellent cold rollability. If manufacturing conditions are required, T-5 and T-4 tin or stain-free steel plates can be manufactured in a technically and economically valuable manner. The present inventors investigated various manufacturing conditions that could satisfy the above objectives, and as a result found the following fact, and were able to determine the above manufacturing conditions from this knowledge. First, we investigated the effects of the carbon content (%) of the tin plate and the hot rolling winding temperature (CT) of the tin plate on the grain size (GSN) and hardness of the tin plate, and the results are shown in Figure 1. That's right. In other words, the particle size increases as the C content decreases, and the CT
It got bigger as it got higher. However, when the C content is lower than 0.04%, the hardness of any CT
The level also shows a tendency to increase. And when comparing the relationship with CT at the same C amount level,
CT: At 650°C, the particle size is the largest, so although the original sheet may be softened, its hardness increases, while at 520°C, the amount of C decreases. As the grain size increases, the particle size increases, which would be expected to indicate a decrease in hardness, but this shows an increase in hardness. Figure 2 shows the tinplates shown in Table 1, C:
0.016% and C: 0.057%, the ferrite structure of tinplate, micrographs of cementite, and hardness of tinplate are shown according to the hot rolling and winding temperature. According to Figure 2, the amount of C is high (0.057
%), CT: At 520℃ and 570℃, cementite is finely and densely dispersed, and the ferrite crystal grain size is smaller, but the tin hardness is lower and reaches the T-5 level. On the other hand, those with a lower C content (0.016℃) and the same CT have larger ferrite grain sizes and less cementite, but those with a CT of 520℃ have a lower T.
It is found that it satisfies tinplate hardness of -5 level. As mentioned above, the tin plate made of Al-killed continuous casting material and continuously annealed is
As the C content decreases, the crystal grains become larger, but
It has been newly discovered that the hardness of tinplate increases, and that when the hot-rolling temperature is increased, crystal grains also become larger, but the hardness of tinplate also increases. . The above facts are very different from the tinting phenomenon caused by batch annealing. These causes are due to the fact that when the amount of C in the original sheet is small, there is less cementite as precipitation nuclei, and when the hot rolling winding temperature is increased, cementite aggregates and becomes coarser, increasing the distance that C precipitation travels. As a result, the amount of solid solute C increases because the precipitation of C cannot proceed sufficiently, and as a result, strain aging occurs, and the hardness of the tin increases beyond offsetting the softening due to coarsening of crystal grains. This is thought to have increased. It is considered that the hot rolling coiling temperature in the intermediate range is a region where cementite is not aggregated and coarsened, and the crystal grains become large, resulting in low hardness. Next, we investigated the effect of the amount of C in the hot-rolled sheet on the cold rollability of the hot-rolled sheet made of continuously cast Al-killed steel slabs.
CT: The cases of 520℃, 570℃, and 650℃ were investigated. The results are shown in FIG. According to this, as the amount of C decreases and the CT increases, HHT (Horse
It was found that rolling power (hour per ton) (rolling power consumption) was lower. In addition, as for the pickling property of the hot-rolled coil, as the CT becomes higher, the pickling efficiency becomes worse. As explained above, solid solution C has a large influence on the hardness of tin plate, and therefore, there is an optimal range for the amount of C in order to obtain the target hardness. Furthermore, the present inventors have newly found that the coiling temperature of hot rolling is related to the precipitation of solid solution C through changes in the morphology of cementite, and that there is also an optimum range for the coiling temperature. By the way, in the invention of Japanese Patent Publication No. 55-48574 mentioned above, when the hot finishing temperature is the temperature at which the Ar 3 transformation point occurs,
The hot rolling finishing temperature was set to Ar 3 because the generation of massive carbides reduces the number of nuclei in which C precipitates during cooling, which leads to a large amount of solid solution of C and N, which increases age hardening.
It is limited to points below. In contrast, as explained above, the present inventors found that the lower the hot rolling coiling temperature, the more finely the carbides are dispersed, and on the other hand, as the coiling temperature becomes higher, the carbides aggregate and become coarser. In other words, it has been newly discovered that the difference in the form of carbides caused by changes in the winding temperature affects the hardness of tin. Therefore, in the present invention 1, a steel piece with a predetermined hardness of T-5 class can be manufactured by easy cold rolling using an Al-killed steel piece by continuous casting and continuous annealing without overaging treatment. is necessary for
And sufficient manufacturing conditions are such that the C content of the steel billet is 0.01 to 0.04.
%, the hot rolling winding temperature is 500°C to 560°C. According to the first invention, the hot-rolled sheet can be made soft under the above conditions, so that the deformation resistance is reduced during cold rolling, and on the other hand, after continuous annealing, a hard sheet can be obtained. Although it may seem contradictory at first glance, this effect is actually produced. Therefore, by using continuously cast Al-killed steel pieces as raw materials and continuously annealing them, we can produce comparatively soft T-4 tin plate and stain-free steel plate.
As a necessary and sufficient condition that the steel billet can be manufactured by easy cold rolling, the C content of the steel billet is 0.01% to 0.04% as in accordance with the present invention 2.
% (excluding 0.04%), and the winding temperature of the hot rolled sheet is 560°C to 580°C. In order to produce a soft product by batch annealing using low carbon Al killed steel, the amount of C should be lowered.
The hot rolling coiling temperature may be set to a high temperature, but in order to produce a soft product by continuous annealing, when the amount of C is low, it is necessary to lower the coiling temperature than in the case of batch annealing. As a result, the present inventors have obtained new knowledge that it is possible to manufacture T-4 tin plate blanks by a method with excellent cold rolling properties. The present invention 2 is characterized in that it was invented based on such new knowledge. In addition, regarding the steel sheet components in Present Inventions 1 and 2, there is no need to specially control the components other than element C.
There is no need to excessively remove P or S, and there is no need to add a particularly large amount of Mn ore. Mn is 0.60% or less, P
is 0.025% or less, S is 0.030% or less, Sol.Al is 0.020
~0.150% normal low carbon Al killed steel composition is sufficient. Next, in the present inventions 1 and 2, the basis for determining the upper and lower limits of the C amount range and the hot rolling coiling temperature range as described above will be described. C: 0.01 to 0.04% (excluding 0.04%) If the C content of the steel slab is less than 0.01%, it is difficult to decarburize in steelmaking. On the other hand, if it exceeds 0.04%, the amount of cementite in the hot rolled sheet increases, the number of recrystallization nuclei increases, the crystal grains become finer, the hot rolled sheet becomes harder, slip trouble is more likely to occur, and cold rolling properties deteriorate. do. Furthermore, since the amount of solid solute C is small even after cold rolling and annealing, age hardening is weakened and the original sheet becomes soft and cannot reach the T-5 level. On the other hand, in the case of C: 0.01 to 0.04%, the crystal grains of the hot rolled sheet become relatively large and soft, resulting in low rolling deformation resistance and good cold rollability. When the hot-rolled sheet is rolled up at 500℃ to 560℃, the original sheet after annealing has a large amount of solid solute C, so age hardening due to the precipitation of C occurs sufficiently, and the original sheet satisfies the T-5 standard. can. Further, when the hot rolled sheet is wound up at a temperature of 560°C to 580°C, the age hardening of the annealed original sheet is weakened and the original sheet can satisfy the T-4 standard. Therefore, in both inventions 1 and 2, the amount of C is 0.01 to 0.04.
%. However, 0.04% will be excluded in order to avoid duplication with inventions filed on the same day as this application by the present inventors. Hot rolling coiling temperature: 500℃ to 560℃ (Invention 1) 560℃ to 580℃ (However, 560℃ is not included) (Invention 2) Until now, the lower limit of the coiling temperature is 500℃.
At temperatures lower than 500℃, except for special experimental materials,
This is because there is little experience of winding, so there is a fear that it may cause trouble to the winding equipment.Also, because the hot plate coil is not sufficiently self-annealed, the crystals in the hot rolled sheet may be fine. This is also because it is expected that the hot-rolled sheet will become hard over time, making cold rolling difficult. On the other hand, when the temperature exceeds 560℃, the hot rolled sheet contains solid solution C.
Precipitation increases and crystal grains also become larger. This affects the cold-rolled sheet after annealing, weakening age hardening, and since the crystal grains are also large, the hardness of the original sheet becomes low and cannot reach the T-5 level. Therefore, in the present invention 1, the winding temperature is set to 500°C to 560°C. On the other hand, in the second aspect of the invention, the winding temperature is set to exceed 560° C. in order to aim for a refining degree of T-4.
However, at temperatures above about 580℃, more solid solution C in the hot-rolled sheet precipitates and the crystal grains become larger, which also affects the cold-rolled sheet after annealing, weakening age hardening and making the crystal grains larger. Therefore, the hardening of the original sheet further decreases, and the degree of heat treatment becomes lower than the T-4 level. In addition, as the hot-rolling winding temperature increases, the oxide film of the hot-rolled sheet becomes mainly composed of magnetite (Fe 3 O 4 ) and becomes denser, which deteriorates the descaling properties and reduces the pickling time. takes a long time. Furthermore, the cementite becomes coarse and it becomes difficult to apply Sn plating on the cementite on the surface of the original plate, resulting in a decrease in the corrosion resistance of the tin plate. Figure 4 shows the hot rolling coiling temperature (CT) and the iron elution amount (μ
CT :
It has been revealed that the amount of iron eluted increases rapidly when the temperature exceeds 580℃. The above-mentioned ISV test is a test method that measures the amount of Fe eluted from tinplate specimens under test conditions that mimic the reaction of canned food in order to determine the corrosion resistance of the surface of the original plate and the plating layer before plating. Corrosion resistance is evaluated based on the value. As described above, in the present invention 2, the winding temperature is set to 560°C.
The temperature is set at ~580℃. Examples of the present invention (1) and (2) will be described below. Example 1 (Invention 1) In steelmaking, the amount of C was 0.01%, 0.03%, 0.07%,
The target was 0.13%, and the other components were within the range of normal Al-killed steel, and the steel was refined and tapped at one charge. In addition, those aiming at C: 0.01% and 0.03% were decarburized by vacuum degassing treatment. A slab was manufactured from this molten steel by continuous casting. Table 2 shows the analytical values of the components of the molten steel in the tongue steel at this time. The content of each component other than C is that of a normal Al-killed steel piece.

【表】 次いで熱間仕上温度をγ領域で行つて、板厚
2.6mmまでに熱間圧延を行なつた。熱延板の巻取
温度の目標を520℃,550℃,600℃以上の各水準
にとつて、熱延板を水冷し直ちに巻取つてコイル
となし、これにより自己焼鈍を行つた。続いてこ
れらの熱延コイルに対して通常の酸洗、冷間圧延
を行つて、板厚0.32mmの冷延板となし、過時効処
理設備を有しない連続焼鈍ラインで最高温度はそ
れぞれについて、600℃と650℃を目標にして焼鈍
を行つた。 焼鈍後、2スタンドテンパーミルで圧下率1.5
±0.2%目標の調質圧延を行つた。そして、コイ
ル準備ラインで不良部を除去した後、ハロゲンタ
イプの電気錫めつきを行つた。 めつき後、錫めつき板を230〜250℃に通電加熱
を行なつて錫を再溶融し、直ちに水冷した。 このようにぶりきにしたものについて、それぞ
れ代表的サンプルを採取した後、ロツクウエルT
硬度を測定した。その結果は第2表に示すとおり
である。 なお、熱延板の脱スケール性(酸洗性)の評価
を3水準で行ない、その結果も第2表に示した。 また冷間圧延工程で、熱延板の冷間圧延性を調
べるため、その際のHHT(圧延消費動力)を測
定するとともに、スリツプトラブル現象を観察
し、これらについて各チヤージ例を評価した。 この結果も第2表に示した。調質度T―5のぶ
りき板硬度は65±3(目標)であるが、第2表に
おいて、この条件を満足できるのはA1,A2,
A4,B1,B2,B4及びC3,D1,D2,
D3のもので、その他は基準を外れている。しか
し、酸洗性については、CTを高くしたA4,B
4は当然悪く、経済性に欠けている。また、冷間
圧延性をHHTで評価した場合、C含有量の低い
ものは小さく省エネルギの観点から優れている。
又、C含有量が高く熱延板の材質になるとスリツ
プトラブルが生じている。 最も品質的かつ経済的に安定して生産できるの
は、C含有量の少ないA、Bチヤージの内、
CT:520℃,550℃(目標)のA1,A2とB
1,B2である。 実施例2(本発明2) 製鋼においてC量を0.01%,0.03%,0.07%の
目標にし、その他の成分は、通常のAlキルド鋼
の組成の範囲になるようにして各1チヤージ精錬
して出鋼した。なおC:0.01%,0.03%を目標に
したものは、真空脱ガス処理を行つて脱炭した。
この溶鋼から連続鋳造によつてフラプを製造し
た。この際のタンデイシユ内の溶鋼の成分の分析
値を第3表に示す。C以外の各成分については、
通常のAlキルド鋼片の含有量である。
[Table] Next, the hot finishing temperature is applied in the γ region, and the plate thickness is
Hot rolling was carried out to a thickness of 2.6 mm. The coiling temperature of the hot-rolled sheet was set at 520°C, 550°C, and 600°C or higher, and the hot-rolled sheet was water-cooled and immediately wound to form a coil, thereby performing self-annealing. These hot-rolled coils were then subjected to normal pickling and cold rolling to form cold-rolled sheets with a thickness of 0.32 mm, and the maximum temperature was Annealing was performed with the targets of 600℃ and 650℃. After annealing, the rolling reduction is 1.5 using a 2-stand temper mill.
Temper rolling was carried out with a target of ±0.2%. After removing defective parts in the coil preparation line, halogen type electric tinning was performed. After plating, the tin-plated plate was electrically heated to 230 to 250°C to remelt the tin, and immediately cooled with water. After collecting representative samples of each of these tinned items, Rockwell T
Hardness was measured. The results are shown in Table 2. Note that the descaling properties (pickling properties) of the hot rolled sheets were evaluated on three levels, and the results are also shown in Table 2. In addition, in order to examine the cold rollability of the hot-rolled sheet during the cold rolling process, HHT (rolling power consumption) was measured, slip trouble phenomena were observed, and each charge example was evaluated for these. The results are also shown in Table 2. The hardness of tin plate with heat treatment level T-5 is 65±3 (target), but in Table 2, the only types that can satisfy this condition are A1, A2,
A4, B1, B2, B4 and C3, D1, D2,
It is D3, and the others are out of standard. However, regarding pickling properties, A4 and B with higher CT
4 is of course bad and lacks economy. Furthermore, when cold rolling properties are evaluated by HHT, those with a low C content are small and are excellent from the viewpoint of energy saving.
In addition, when the C content is high and the material is used for hot-rolled sheets, slip trouble occurs. Of the A and B charges with low C content, the ones that can be produced most qualitatively and economically are:
CT: A1, A2 and B of 520℃, 550℃ (target)
1, B2. Example 2 (Invention 2) In steelmaking, C content was targeted at 0.01%, 0.03%, and 0.07%, and other components were refined with one charge each within the composition range of ordinary Al-killed steel. Steel was tapped. In addition, those aiming at C: 0.01% and 0.03% were decarburized by vacuum degassing treatment.
A flap was manufactured from this molten steel by continuous casting. Table 3 shows the analytical values of the components of the molten steel in the tundish at this time. For each component other than C,
This is the content of normal Al-killed steel pieces.

【表】 次いで、実施例1と同一条件で熱間圧延、酸洗
冷間圧延、連続焼鈍を順次行い、焼鈍後、2スタ
ンドテンパーミルで圧下率0.8±0.2%目標の調質
圧延を行い、不良部を除去した後、実施例1と同
様に錫めつきを行つた。 このようにぶりきにしたものについて、それぞ
れ代表的サンプルを採取した後、ロツクウエルT
硬度を測定した。その結果は第3表に示したとお
りである。 また、実施例1と同様に冷間圧延性を調べるた
め、HHTを測定するとともに、スリツプトラブ
ル現象を観察して、これらについて各チヤージ例
を評価した。この結果も第3表に示した。 調質度T―4のぶりき板硬度は61±3(目標)
であるが、この条件を満足できないのはA1,A
3,B1,B3の4例で他はすべて基準を満足し
ている。しかし、冷間圧延性をHHTで評価した
場合、C含有量の高いC1〜C3のチヤージはHHT
が大きく、省エネルギーの立場から不利である。 最も経済的に安定して生産できるのは、C含有
量の少ないA、Bチヤージの内、CT:570℃目標
のA2とB2である。 以上の説明では、ぶりき及びその原板について
説明してきたが、テインフリー鋼板用原板に対し
ても、本発明(1),(2)が適用できるのは明らかであ
る。
[Table] Next, hot rolling, pickling cold rolling, and continuous annealing were performed in sequence under the same conditions as in Example 1, and after annealing, skin pass rolling was performed using a two-stand temper mill with a target rolling reduction of 0.8 ± 0.2%. After removing the defective parts, tin plating was performed in the same manner as in Example 1. After collecting representative samples of each of these tinned items, Rockwell T
Hardness was measured. The results are shown in Table 3. In addition, in the same manner as in Example 1, in order to examine cold rollability, HHT was measured, slip trouble phenomena were observed, and each charge example was evaluated with respect to these. The results are also shown in Table 3. The hardness of tin plate with heat treatment level T-4 is 61±3 (target)
However, A1 and A cannot satisfy this condition.
In the four cases No. 3, B1, and B3, all others satisfied the standards. However, when cold rolling property is evaluated by HHT, the charge of C 1 to C 3 with high C content is HHT.
is large, which is disadvantageous from the standpoint of energy conservation. Of the A and B charges with low C content, A2 and B2 with a CT target of 570°C can be produced most economically and stably. In the above explanation, tinplate and its original plate have been explained, but it is clear that the present inventions (1) and (2) can also be applied to the original plate for stain-free steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ぶりきの結晶粒度(G.S.N)及び硬
度(HR30T)に対するぶりき原板のC含有量及
び熱延巻取温度(CT)の影響を示したグラフで
ある。第2図は、C:0.016%とC:0.057%のぶ
りきについて、熱延巻取温度別に、そのフエライ
ト組織とセメンタイトを示す顕微鏡写真である。
なお結晶粒度及び硬度を併せて示す。第3図は、
冷間圧延時の圧延消費動力(HHT)に対する熱
延板のC含有量及び熱延巻取温度(CT)の影響
を示したグラフである。第4図は、巻取温度
(CT)と#25ぶりきのI.S.V.試験による鉄溶出量
(μg/3in2)との関係を示すグラフである。
FIG. 1 is a graph showing the influence of the C content of the tin plate and the hot rolling winding temperature (CT) on the grain size (GSN) and hardness (HR30T) of the tin plate. FIG. 2 is a photomicrograph showing the ferrite structure and cementite of tinplates containing 0.016% C and 0.057% C, depending on the hot-rolling and winding temperature.
Note that the crystal grain size and hardness are also shown. Figure 3 shows
It is a graph showing the influence of C content of a hot rolled sheet and hot rolling winding temperature (CT) on rolling power consumption (HHT) during cold rolling. FIG. 4 is a graph showing the relationship between the winding temperature (CT) and the iron elution amount (μg/3in 2 ) of #25 tin plate according to the ISV test.

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.04%(ただし0.04%は含まず)
の低炭素Alキルド鋼からなる連続鋳造鋼片を熱
間圧延して500℃〜560℃で巻取り、次いで酸洗し
冷間圧延した後、再結晶温度以上Ac1変態点未満
で連続焼鈍を行い、次に調質圧延を施すことを特
徴とする、調質度T―5を有するぶりき及びテイ
ンフリー鋼板用原板の製造方法。 2 C:0.01〜0.04%(ただし0.04%は含まず)
の低炭素Alキルド鋼からなる連続鋳造鋼片を熱
間圧延して560%〜580℃(ただし560℃は含ま
ず)で巻取り、次いで酸洗し冷間圧延した後、再
結晶温度以上Ac1変換態点未満で連続焼鈍を行
い、次に調質圧延を施すことを特徴とする、調質
度T―4を有するぶりき及びテインフリー鋼板用
原板の製造方法。
[Claims] 1C: 0.01 to 0.04% (excluding 0.04%)
Continuously cast billets made of low carbon Al-killed steel are hot rolled and coiled at 500°C to 560°C, then pickled and cold rolled, followed by continuous annealing at a temperature above the recrystallization temperature but below the Ac 1 transformation point. 1. A method for producing a base sheet for tinplate and stain-free steel sheet having a temper degree of T-5, the method comprising the steps of: 2 C: 0.01 to 0.04% (excluding 0.04%)
Continuously cast billets made of low carbon Al-killed steel are hot rolled and coiled at 560% to 580°C (excluding 560°C), then pickled and cold rolled to Ac A method for manufacturing a base plate for tinplate and stain-free steel sheet having a heat treatment degree of T-4, characterized by performing continuous annealing at less than one conversion state and then subjecting the material to skin pass rolling.
JP12599581A 1981-08-13 1981-08-13 Production of black plate for tin plate and tin-free steel plate Granted JPS5827931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12599581A JPS5827931A (en) 1981-08-13 1981-08-13 Production of black plate for tin plate and tin-free steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12599581A JPS5827931A (en) 1981-08-13 1981-08-13 Production of black plate for tin plate and tin-free steel plate

Publications (2)

Publication Number Publication Date
JPS5827931A JPS5827931A (en) 1983-02-18
JPS6114215B2 true JPS6114215B2 (en) 1986-04-17

Family

ID=14924108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12599581A Granted JPS5827931A (en) 1981-08-13 1981-08-13 Production of black plate for tin plate and tin-free steel plate

Country Status (1)

Country Link
JP (1) JPS5827931A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168026A (en) * 1984-09-12 1986-04-08 オリンパス光学工業株式会社 Flexible tube of endoscope
DE69311393T2 (en) * 1992-02-21 1997-09-25 Kawasaki Steel Co Process for producing high-strength steel sheets for cans
CN102766800A (en) * 2011-05-05 2012-11-07 上海梅山钢铁股份有限公司 Steel for hard tinplate bottle caps and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158520A (en) * 1974-06-12 1975-12-22
JPS54107419A (en) * 1978-02-09 1979-08-23 Nippon Kokan Kk <Nkk> Manufacture of cold rolled killed steel plate with baking hardenability
JPS54107415A (en) * 1978-02-09 1979-08-23 Nippon Kokan Kk <Nkk> Cold rolled steel plate with baking hardenability for deep drawing
JPS5548574A (en) * 1978-09-27 1980-04-07 Nagano Denshi Kogyo Kk Polishing method
JPS563413A (en) * 1979-06-18 1981-01-14 Olympus Optical Co Ltd Noise suppression circuit
JPS5770227A (en) * 1980-10-16 1982-04-30 Nippon Steel Corp Production of extra thin steel sheet by continuous annealing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158520A (en) * 1974-06-12 1975-12-22
JPS54107419A (en) * 1978-02-09 1979-08-23 Nippon Kokan Kk <Nkk> Manufacture of cold rolled killed steel plate with baking hardenability
JPS54107415A (en) * 1978-02-09 1979-08-23 Nippon Kokan Kk <Nkk> Cold rolled steel plate with baking hardenability for deep drawing
JPS5548574A (en) * 1978-09-27 1980-04-07 Nagano Denshi Kogyo Kk Polishing method
JPS563413A (en) * 1979-06-18 1981-01-14 Olympus Optical Co Ltd Noise suppression circuit
JPS5770227A (en) * 1980-10-16 1982-04-30 Nippon Steel Corp Production of extra thin steel sheet by continuous annealing

Also Published As

Publication number Publication date
JPS5827931A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
JPS6116323B2 (en)
JPH0152450B2 (en)
JPH034607B2 (en)
JPS6045690B2 (en) Manufacturing method of ultra-thin steel sheet for cans with small in-plane anisotropy
JPS583922A (en) Production of class t-3 tin plate of superior aging property
JPS6114214B2 (en)
JPS6114215B2 (en)
JPS5827934A (en) Production of mild blackplate having excellent corrosion resistance by continuous annealing
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JPS6114216B2 (en)
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JPH06306536A (en) Surface treated original sheet for di can excellent in pressure withstanding strength and necked-in property and its production
JPS6330969B2 (en)
JPS638165B2 (en)
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JP3496333B2 (en) DTR can-adaptive steel plate with excellent side wall break resistance
JP3223758B2 (en) DTR can-adaptive steel sheet with excellent side wall break resistance
JP3164853B2 (en) Manufacturing method of thin steel plate for food cans
JP3223760B2 (en) DTR can-adaptive steel sheet with excellent side wall break resistance
JPH09310124A (en) Manufacture of nonoriented silicon steel sheet excellent in shape and magnetic property
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH02415B2 (en)
JP2980486B2 (en) Manufacturing method of steel plate for non-aging low earring container
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability