JPS6114208B2 - - Google Patents

Info

Publication number
JPS6114208B2
JPS6114208B2 JP55089020A JP8902080A JPS6114208B2 JP S6114208 B2 JPS6114208 B2 JP S6114208B2 JP 55089020 A JP55089020 A JP 55089020A JP 8902080 A JP8902080 A JP 8902080A JP S6114208 B2 JPS6114208 B2 JP S6114208B2
Authority
JP
Japan
Prior art keywords
temperature
flux density
magnetic flux
annealing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55089020A
Other languages
Japanese (ja)
Other versions
JPS5716121A (en
Inventor
Masuhiro Sato
Ichiro Kokubo
Shingo Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8902080A priority Critical patent/JPS5716121A/en
Publication of JPS5716121A publication Critical patent/JPS5716121A/en
Publication of JPS6114208B2 publication Critical patent/JPS6114208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Description

【発明の詳細な説明】 本発明は鉄損ならびに磁束密度のすぐれた無方
向性電気鉄板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a non-oriented electric iron plate with excellent iron loss and magnetic flux density.

無方向性電気鉄板は一般に鋼スラブ→熱間圧延
→脱スケール→冷間圧延→焼鈍→絶縁皮膜処理
(場合によつては冷間圧延、焼鈍をくり返すこと
もある)なる工程によつて製造されている。本発
明者らは、このような工程にて製造される冷間圧
延無方向性電気鉄板の特性のうちとくに磁束密度
と鉄損を向上せしめる方法について検討し、熱間
圧延板に於て、結晶粒を粗大化させ、かつ炭化物
の大きさおよび分散状態を適正にコントロールす
ることによつて磁気特性が大きく改善されること
を見出した。
Non-oriented electrical steel sheets are generally manufactured through the following process: steel slab → hot rolling → descaling → cold rolling → annealing → insulation coating treatment (cold rolling and annealing may be repeated in some cases) has been done. The present inventors investigated ways to improve the magnetic flux density and iron loss, especially among the properties of cold-rolled non-oriented electrical steel sheets manufactured by such a process, and found that It has been found that magnetic properties can be greatly improved by coarsening the grains and appropriately controlling the size and dispersion state of carbides.

熱間圧延板の炭化物の分散状態をコントロール
に、磁束密度を改善する方法については、本発明
者らは特許出願している。(特開昭50―15725)こ
の方法はC0.01〜0.1%,Si3.5%以下を含む鋼ス
ラブを熱間圧延したのち冷間圧延、焼鈍して無方
向性電気鉄板を製造するにあたつて、熱間圧延後
の巻取温度を500℃以下とするかあるいは熱間圧
延後急冷し、その後300〜500℃に保持して、炭化
物を析出せしめ、さらに焼鈍の際の加熱速度を
100℃/分以上とすることを特徴とする磁束密度
の高い無方向性電気鉄板の製造方法である。
The present inventors have filed a patent application for a method for improving magnetic flux density by controlling the dispersion state of carbides in hot rolled sheets. (Japanese Patent Laid-Open No. 15725-1572) This method is used to hot-roll a steel slab containing 0.01-0.1% C and 3.5% or less Si, then cold-roll and anneale it to produce non-oriented electrical steel sheets. Then, the coiling temperature after hot rolling is set to 500°C or less, or after hot rolling, it is rapidly cooled and then held at 300 to 500°C to precipitate carbides, and the heating rate during annealing is reduced.
This is a method for producing a non-directional electric iron plate with a high magnetic flux density, characterized in that the magnetic flux density is 100°C/min or more.

この方法によれば、磁束密度は著るしく改善さ
れるが、熱延板を低温で巻取るか、あるいは急冷
するために、熱延板の結晶粒径が細かくなりやす
く、鉄損が充分低くならないことが明らかになつ
た。本発明者らは、この点について、さらに検討
した結果、熱間圧延後に高温で巻取つて、結晶粒
を粗大化させ、その後あらためて、炭素の溶体化
および析出処理を行なうことにより炭化物の分散
を、コントロールすることにより低鉄損、高磁束
密度が得られることを見出した。
According to this method, the magnetic flux density is significantly improved, but since the hot-rolled sheet is coiled at a low temperature or rapidly cooled, the grain size of the hot-rolled sheet tends to become finer, and the iron loss is sufficiently low. It became clear that this was not the case. As a result of further study on this point, the present inventors found that after hot rolling, the crystal grains were coarsened by coiling at a high temperature, and then the carbon was subjected to solution treatment and precipitation treatment to improve the dispersion of carbides. It was discovered that low iron loss and high magnetic flux density can be obtained by controlling the magnetic flux density.

すなわち、本発明は、C0.1%以下、Si3.5%以
下を含有する鋼を熱間圧延した後、冷間圧延、焼
鈍して無方向性電気鉄板を製造するに際して、熱
間圧延板を650℃以上の温度で巻取つた後、700℃
以上の温度に30秒以上加熱し、その後5℃/秒以
上の冷却速度で300〜500℃の温度で冷却し、300
〜500℃で30秒以上保持して冷却し、その後冷間
圧延、焼鈍することを特徴とする磁気特性のすぐ
れた無方向性電気鉄板の製造方法である。
That is, the present invention hot-rolls a steel containing 0.1% or less of C and 3.5% or less of Si, and then cold-rolls and anneales it to produce a non-oriented electrical steel plate. After winding at a temperature of 650℃ or higher, 700℃
Heat to a temperature of 30 seconds or more, then cool to a temperature of 300 to 500 degrees Celsius at a cooling rate of 5 degrees Celsius or more, and
This is a method for producing a non-oriented electric iron sheet with excellent magnetic properties, which is characterized by cooling by holding at ~500°C for 30 seconds or more, followed by cold rolling and annealing.

本発明において、熱間圧延後、充分な粒成長を
起させるためには巻取温度を650℃以上にするこ
とが必要である。その後の析出処理で炭化物の適
正な分散を得るためには、前述のごとく一坦炭素
を溶体化し、しかる後に適当な温度で析出させる
必要があるがこのためには以下のような処理を行
なう。まず、700℃以上の温度に30秒以上加熱し
て炭素を溶体化する。その後5℃/秒以上の冷却
速度で300〜500℃の温度まで、冷却するが、これ
はこの冷却速度が遅すぎると、固溶炭素の一部が
冷却中に粒界に析出してしまい、望ましい過飽和
度が得られないためである。300〜500℃に冷却し
たのちこの温度で保持して炭化物の析出を進行せ
しめるが、この保持時間は700℃からの冷却速度
において決まり、冷却速度が速いほど短時間で析
出が完了する。但し、水冷のような著るしく速い
冷却速度の場合でも30秒以上は必要である。
In the present invention, in order to cause sufficient grain growth after hot rolling, it is necessary to set the coiling temperature to 650°C or higher. In order to obtain proper dispersion of carbides in the subsequent precipitation treatment, it is necessary to solutionize the uniform carbon as described above and then precipitate it at an appropriate temperature. To this end, the following treatment is performed. First, carbon is dissolved by heating it to a temperature of 700°C or more for 30 seconds or more. After that, it is cooled to a temperature of 300 to 500°C at a cooling rate of 5°C/second or more, but if this cooling rate is too slow, some of the solid solution carbon will precipitate at grain boundaries during cooling. This is because a desired degree of supersaturation cannot be obtained. After cooling to 300 to 500°C, it is held at this temperature to allow carbide precipitation to proceed, but the holding time is determined by the cooling rate from 700°C, and the faster the cooling rate, the shorter the precipitation will be completed. However, even in the case of extremely fast cooling rate such as water cooling, 30 seconds or more is necessary.

このようにして処理された熱延鋼板は、所定の
厚みに冷却され、しかる後に焼鈍されるが、焼鈍
の際の加熱速度は速いほど磁束密度は向上し、
100℃/min以上が望ましい。これは、急熱するこ
とにより、磁束密度の向上に好ましい集合組織が
形成されることによるものであると考えられる。
また中間焼鈍をはさんだ2回以上の冷却を行なう
ことも可能であり、さらに、焼鈍時に脱炭を行な
つて、鉄損をさらに向上させることも可能であ
る。
The hot-rolled steel sheet treated in this way is cooled to a predetermined thickness and then annealed. The faster the heating rate during annealing, the higher the magnetic flux density.
100℃/min or more is desirable. This is thought to be due to the formation of a texture favorable for improving magnetic flux density by rapid heating.
It is also possible to perform cooling two or more times with intermediate annealing in between, and it is also possible to perform decarburization during annealing to further improve iron loss.

スラブ加熱温度、熱延仕上げ温度は常法にした
がえばよいが、磁気特性を、より向上せしめるた
めにはスラブ加熱温度は、1200℃以下、望ましく
は1100℃以下、熱延仕上げ温度はd+y域にする
のがよい。
The slab heating temperature and hot rolling finishing temperature may be determined according to the usual method, but in order to further improve the magnetic properties, the slab heating temperature should be 1200°C or lower, preferably 1100°C or lower, and the hot rolling finishing temperature should be in the d+y range. It is better to

成分元素を限定した理由は、次の通りである。
次にCは多量に存在すると磁気特性を劣化させ、
脱炭焼鈍を行なう場合において脱炭を困難にす
る。したがつて0.1%以下であることが必要であ
る。Siは3.5%をこえると冷間加工が著るしく困
難になり、圧延ができないため3.5%以下である
ことが必要である。これらの元素の他必要に応じ
て、0.1〜0.5%程度のAi、0.3〜1.0%程度の
Mn0.03〜0.2%程度のPなどを添加することも可
能である。
The reason for limiting the component elements is as follows.
Next, when C exists in large amounts, it deteriorates magnetic properties,
Makes decarburization difficult when performing decarburization annealing. Therefore, it is necessary that the content be 0.1% or less. If Si exceeds 3.5%, cold working will be extremely difficult and rolling will not be possible, so it must be 3.5% or less. In addition to these elements, about 0.1-0.5% Ai, about 0.3-1.0%
It is also possible to add P or the like in an amount of about 0.03 to 0.2% of Mn.

次に本発明の実施例を、比較例とともに示す。 Next, examples of the present invention will be shown together with comparative examples.

実施例 表1に示す成分の鋼スラブを810℃(鋼1.2)、
及び820℃(鋼2)の仕上げ温度で熱間圧延した
のち740℃,600℃の2水準で巻取つた。このコイ
ルからサンプルを採取し750℃×1分保持し、約
30℃/secの冷却速度で300℃,400℃,500℃,700
℃の温度まで冷却し各温度に於て3.5分保持した
のち常温まで冷却した。これを75%冷間圧延し、
その後800℃にて脱炭焼鈍を実施した。焼鈍の際
の加熱速度は約800℃/分と10℃/分の2水準と
した。脱炭焼鈍板からエプスタイン試験片を採取
し、JISに定められた方法で磁束密度を測定し
た。結果を第1図に示す。磁束密度は析出処理温
度が500℃以下の場合に高くなり700℃になると、
低下する。この傾向はSi量、加熱速度にかかわら
ず見られるが急熱の場合の方が磁束密度の絶対値
が高くなる。差取温度は主として鉄損に大きく影
響し、高温巻取の場合に鉄損が低下する。
Example A steel slab with the components shown in Table 1 was heated at 810℃ (steel 1.2).
After hot rolling at a finishing temperature of 820°C (Steel 2), it was rolled at two levels: 740°C and 600°C. A sample was taken from this coil and held at 750℃ for 1 minute.
300℃, 400℃, 500℃, 700℃ with cooling rate of 30℃/sec
The mixture was cooled to a temperature of °C, held at each temperature for 3.5 minutes, and then cooled to room temperature. This is 75% cold rolled,
After that, decarburization annealing was performed at 800°C. The heating rate during annealing was set at two levels: approximately 800°C/min and 10°C/min. Epstein test pieces were taken from the decarburized and annealed plates, and the magnetic flux density was measured using the method specified in JIS. The results are shown in Figure 1. The magnetic flux density increases when the precipitation temperature is below 500℃, and when it reaches 700℃,
descend. This tendency is observed regardless of the amount of Si and the heating rate, but the absolute value of the magnetic flux density becomes higher in the case of rapid heating. The takeoff temperature mainly has a large effect on the iron loss, and the iron loss decreases in the case of high temperature winding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cはそれぞれ鋼1,2,3につ
いての本発明の実施例及び比較例における析出処
理温度と磁束密度、鉄損との関係を示す図であ
り、第1図において、黒丸印は巻取温度740℃、
焼鈍時加熱速度800℃/分の場合、白丸印は同740
℃、同10℃/分の場合、黒三角印は同600℃、同
800℃/分の場合、白三角印は同600℃、同10℃/
分の場合である。
Figures 1a, b, and c are diagrams showing the relationship between precipitation treatment temperature, magnetic flux density, and iron loss in Examples and Comparative Examples of the present invention for Steels 1, 2, and 3, respectively; The black circle indicates the winding temperature of 740℃.
If the heating rate during annealing is 800℃/min, the white circle mark is 740℃.
℃, 10℃/min, the black triangle indicates 600℃, 10℃/min.
In the case of 800℃/min, the white triangle mark indicates 600℃/min, 10℃/min.
This is the case for minutes.

Claims (1)

【特許請求の範囲】 1 C0.1%以下、Si3.5%以下を含有する鋼を熱
間圧延した後、冷間圧延、焼鈍して無方向性電気
鉄板を製造するに際して、熱間圧延板を650℃以
上の温度で巻取つた後、700℃以上の温度に30秒
以上加熱し、その後5℃/秒以上の冷却速度で
300〜500℃の温度まで冷却し、300〜500℃で30秒
以上保持して冷却し、その後冷間圧延、焼鈍する
ことを特徴とする磁気特性のすぐれた無方向性電
気鉄板の製造方法。 2 特許請求の範囲第1項において焼鈍時の加熱
速度を100℃/分以上とすることを特徴とする磁
気特性のすぐれた無方向性電気鉄板の製造方法。
[Claims] 1. When producing a non-oriented electrical steel plate by hot rolling steel containing 0.1% or less of C and 3.5% or less of Si, the hot rolled plate is cold rolled and annealed. After coiling at a temperature of 650℃ or higher, heat it to a temperature of 700℃ or higher for 30 seconds or more, and then cool it at a cooling rate of 5℃/second or higher.
A method for producing a non-oriented electric iron sheet with excellent magnetic properties, which comprises cooling to a temperature of 300 to 500°C, holding at 300 to 500°C for 30 seconds or more to cool, and then cold rolling and annealing. 2. A method for producing a non-oriented electric iron plate with excellent magnetic properties as set forth in claim 1, characterized in that the heating rate during annealing is 100° C./min or more.
JP8902080A 1980-06-30 1980-06-30 Manufacture of nonoriented electric iron plate Granted JPS5716121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8902080A JPS5716121A (en) 1980-06-30 1980-06-30 Manufacture of nonoriented electric iron plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8902080A JPS5716121A (en) 1980-06-30 1980-06-30 Manufacture of nonoriented electric iron plate

Publications (2)

Publication Number Publication Date
JPS5716121A JPS5716121A (en) 1982-01-27
JPS6114208B2 true JPS6114208B2 (en) 1986-04-17

Family

ID=13959218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8902080A Granted JPS5716121A (en) 1980-06-30 1980-06-30 Manufacture of nonoriented electric iron plate

Country Status (1)

Country Link
JP (1) JPS5716121A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974223A (en) * 1982-10-20 1984-04-26 Kawasaki Steel Corp Production of non-directional silicon steel sheet having excellent magnetic characteristic
KR20040026041A (en) * 2002-09-17 2004-03-27 주식회사 포스코 Method for manufacturing the non-oriented electrical steel sheet having low core loss

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100926A (en) * 1975-03-03 1976-09-06 Kobe Steel Ltd
JPS5476422A (en) * 1977-11-30 1979-06-19 Nippon Steel Corp Manufacture of non-oriented electrical sheet with superior magnetism by self annealing of hot rolled sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100926A (en) * 1975-03-03 1976-09-06 Kobe Steel Ltd
JPS5476422A (en) * 1977-11-30 1979-06-19 Nippon Steel Corp Manufacture of non-oriented electrical sheet with superior magnetism by self annealing of hot rolled sheet

Also Published As

Publication number Publication date
JPS5716121A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JPH05171280A (en) Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO1990012896A1 (en) Method of manufacturing non-oriented electromagnetic steel plates with excellent magnetic characteristics
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JPS6114208B2 (en)
JP2786576B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3389402B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS58491B2 (en) It's been a long time since I've been in the middle of a long time since I've been in the middle of a long time since I've been in the middle of a long time.
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR920008692B1 (en) Making process for electric steel plates
JPS62199720A (en) Production of non-oriented electrical steel sheet having excellent magnetic characteristic
JPH07300619A (en) Production of nonoriented silicon steel sheet