JPS61141183A - Manufacture of mos semiconductor integrated circuit device - Google Patents

Manufacture of mos semiconductor integrated circuit device

Info

Publication number
JPS61141183A
JPS61141183A JP26393284A JP26393284A JPS61141183A JP S61141183 A JPS61141183 A JP S61141183A JP 26393284 A JP26393284 A JP 26393284A JP 26393284 A JP26393284 A JP 26393284A JP S61141183 A JPS61141183 A JP S61141183A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
diffusion layers
oxide film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26393284A
Other languages
Japanese (ja)
Inventor
Matsuo Ichikawa
市川 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26393284A priority Critical patent/JPS61141183A/en
Publication of JPS61141183A publication Critical patent/JPS61141183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To contrive to improve the mass production and reliability of a MOS semiconductor integrated circuit device by a method wherein an Si3N4 film, a polycrystalline Si layer and low-impurity concentration diffusion layers are formed in a wiring form and after an oxidation is performed at the specified temperature using the diffusion layers as masks to form an oxide film on the sides of the gate electrode wiring layer, high-impurity concentration diffusion layers are formed. CONSTITUTION:Field oxide films 12 are selectively formed on a P-type single crystal silicon substrate 11 and after a gate oxide film 13 is formed and a polycrystalline silicon layer 14 is formed on the gate oxide film 13, an N<+> type impurity is doped and an SiO2N4 film 15 is formed on the polycrystalline silicon layer 14. Parts of the Si2N4 film 15 and the polycrystalline silicon layer 14 are removed by performing an etching according to a photo etching method and a low-concentration phosphorus impurity is ion-implanted to form N<+> type diffusion layers 16. Then, a wet oxidation is performed at low temperature of 950 deg.C or less using the Si3N4 films 16 as masks to selectively form a thick oxide film on the sides of the polycrystalline silicon wiring layer, an implantation of phosphorus is performed from the polycrystalline silicon wiring layers and the sides thereof in the concentration stronger than that of the N<+>-diffusion layers 16 and N<+> type diffusion layers are formed. After the Si3N4 film 15 is removed by performing an etching, a CVDPSG film 19 is formed and after an annealing is performed, a contact hole is formed, and after that, Al wiring layers 20 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はbMostt界効果トランジスタを構成要素と
するMOSffi半導ff状回路装置に関し、+ Nドープされた多結晶シリコンをゲート電極配線として
用い、電極配線のサイドに酸化膜をもうけたLDD構造
のMOS電界効果トランジスタを構成要素とするMOE
l型半導体集積回路装置の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a MOSffi semiconductor FF-shaped circuit device having a bMostt field effect transistor as a component, using +N-doped polycrystalline silicon as a gate electrode wiring, MOE whose component is an LDD structure MOS field effect transistor with an oxide film on the side of the electrode wiring.
The present invention relates to a method of manufacturing an l-type semiconductor integrated circuit device.

〔従来の技術〕[Conventional technology]

半導体集積回路装置は、高速化とコストダウンの要求か
ら、微細化及び高集積化が年々めざましく進んでいる。
2. Description of the Related Art Semiconductor integrated circuit devices are becoming increasingly finer and more highly integrated year by year due to demands for higher speeds and lower costs.

特にMOS型半導体集積回路装置においては、目をみは
るものがある。
Particularly in MOS type semiconductor integrated circuit devices, there are some remarkable things.

現在%最も多く量産されているMOS型半導体集積回路
装置は、チャンネル長3μmの8μデザインルールのも
ので、チャンネル長2μ倶の2μデザインルールのMO
S型半導体集積回路装置が最近になって量産され始めて
きている。2μルールの次に来るMOS型半導体集積回
路装置は1.2β〜1.5μルールのものと言われてお
り、種々の問題点をクリアーにして量産にのせようと5
日夜、技術開発が進められている。
Currently, the most mass-produced MOS semiconductor integrated circuit devices are those with an 8μ design rule with a channel length of 3μm, and those with a 2μ design rule with a channel length of 2μm.
S-type semiconductor integrated circuit devices have recently begun to be mass-produced. It is said that the MOS type semiconductor integrated circuit device that comes after the 2μ rule will be based on the 1.2β to 1.5μ rule, and efforts are being made to overcome various problems and put it into mass production.
Technology development is progressing day and night.

種々の問題の中で、最も大きな問題として取り挙げられ
ている点は、短チャンネル化によって引き起こされるホ
ットエレクトロンによるvth変蛎の問題である。現在
のMO日電界効果トランジスタの構造で、ホットエレク
トロンによるvth変動金考慮して、信頼性保証をして
いくとしたら、チャンネル長2μm程度が限度である。
Among the various problems, the most important one is the problem of VTH variation due to hot electrons caused by the shortening of the channel. In the current MO field effect transistor structure, if reliability is to be guaranteed by taking into account vth fluctuations due to hot electrons, the channel length is limited to about 2 μm.

上記のホットエレクトロンの問題を考慮したトランジス
タ構造として注目をあつめ、検討が進められているもの
にLDD構造のトランジスタがある。
A transistor with an LDD structure is attracting attention and being studied as a transistor structure that takes the above-mentioned hot electron problem into consideration.

従来のLDD構造のトランジスタについての形成方法と
問題点を第1〜夕図に例を示して説明する。
The method of forming a conventional LDD structure transistor and its problems will be explained using examples shown in the first to second figures.

第1図に示すように、P型車結晶Bi基板11上にフィ
ールド酸化膜2ft選択的に形成し、ゲート酸化膜8t
−形成して、その上に多結晶シリコン層4t−形成した
後、Nドープし配線状にホトエツチングをおζなう、さ
らに、101〜1011乙−程度の通常のソース・ドレ
イン拡散層のイオン打込みよりも低い濃度でリンのイオ
ン打込みをしてN拡散層5t−形成し、CVDBイo、
6を形成する。
As shown in FIG. 1, a field oxide film of 2ft is selectively formed on a P-type wheel crystal Bi substrate 11, and a gate oxide film of 8t is selectively formed.
After forming a polycrystalline silicon layer 4t on top of the polycrystalline silicon layer 4t, dope it with N and photoetch it in the shape of a wiring.Furthermore, perform ion implantation of a normal source/drain diffusion layer of about 101 to 1011 By implanting phosphorus ions at a lower concentration than
form 6.

第2図に示すように、異方性のプラズマエツチングによ
ってCVD8zO,を全面エツチングすると多結晶シリ
コン層4のサイドの部分のCvDsho、膜が残り、サ
イドクールとなる。
As shown in FIG. 2, when the entire CVD film is etched by anisotropic plasma etching, the CVD film remains on the sides of the polycrystalline silicon layer 4, forming a side cool.

g8図に示すように%N拡散層5よりも濃い濃度で(1
0”〜10”7cm” ) 、リンの打込みeLN拡1
散層7を形成する。
As shown in figure g8, at a concentration higher than %N diffusion layer 5 (1
0”~10”7cm”), phosphorus implantation eLN expansion 1
A diffused layer 7 is formed.

第4図に示すように、CVD’PBG8を形成して、ア
ニール’ThLだ後コンタクトホールを形成しその後、
AL配線9を形成する。
As shown in FIG. 4, after forming CVD'PBG8 and annealing 'ThL, contact holes are formed.
AL wiring 9 is formed.

以上の従来方法でLDD構造におけるサイドクールを形
成すると1次のような問題点が生じる。
When forming a side coolant in an LDD structure using the conventional method described above, the following first-order problem occurs.

C”1D8i0z Mt5000〜10000A8度形
成するが、ウェハー内の膜形成ラツキが5チル20%発
生する。又、ウェハー間でも相当のバラツキが発生する
のと、ウェハーが大口径化すると、バラツキは大きくな
る。これを枚葉式のR工Eドライエツチャーでエツチン
グすると、エツチングバラツキも加味されて、部分的に
cvDs7o。
C"1D8i0z Mt5000~10000A8 degree is formed, but the film formation unevenness within the wafer occurs by 20% per 5 chill. Also, considerable variation occurs between wafers, and as the diameter of the wafer becomes larger, the variation becomes larger. When this is etched with a single-wafer type R-E dry etcher, the etching variation is also taken into account, resulting in a partial cvDs7o.

が残りてしまいトランジスタが形成されないとか、部分
的にはエツチングが早く進み、単結晶シリコン基板をエ
ツチングしてしまい、基板にダメージが入ってしまう。
This may result in the transistor not being formed because etching remains, or the etching progresses quickly in some areas, etching the single-crystal silicon substrate and damaging the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記のような問題を解決する所にあり、本発明
の目的は、CVD5j02の膜厚のバラツキやエツチン
グのバラツキによって発生している、部分的に膜が残っ
てしまいトランジスタが形成さ−れなくなるという問題
と、部分的にエツチングが早く進み基板をエツチング及
びダメージを与えるという問題を解決する所にある。
The purpose of the present invention is to solve the above-mentioned problems, and an object of the present invention is to prevent the formation of transistors due to partial film remaining due to variations in the film thickness of CVD5J02 and variations in etching. This method solves the problems of the substrate being etched and damaged, and the etching progressing too quickly in some areas.

〔問題点を解決する手段〕[Means to solve problems]

問題点を解決する手段は、バラツキの多いCVDEi7
0.やR工Eのエツチング方を用いないで、Nドープさ
れた多結晶シリコン配線のサイドを選択酸化する事によ
って、サイドツールを形成する方法である。
The solution to the problem is CVDEi7, which has many variations.
0. In this method, a side tool is formed by selectively oxidizing the side of an N-doped polycrystalline silicon interconnection without using the etching method of R or E.

〔実施例〕〔Example〕

第5図に示すように%Flu単結晶シリコン基板ll上
にフィールド酸化膜12t−選択的に形成し、ゲート酸
化J[13を形成して、その上に多結晶シリコン層14
を形成した後、Nド、−プして、その上にB(3N4膜
15を形成する。
As shown in FIG. 5, a field oxide film 12t is selectively formed on a %Flu single crystal silicon substrate 11, a gate oxide film 13 is formed, and a polycrystalline silicon layer 14 is formed thereon.
After forming, N-doping is performed, and a B (3N4 film 15) is formed thereon.

第6図に示すように、ホトエツチングにより、sz3m
4膜と多結晶シリコン層をエツチング除去する。
As shown in Figure 6, by photoetching, sz3m
4 film and the polycrystalline silicon layer are removed by etching.

さらに、10 ” ”−111ls/♂程度の低い濃度
のリンをイオン打込みしてN拡散7a’16を形成する
Further, phosphorus is ion-implanted at a low concentration of about 10''-111ls/♂ to form the N diffusion 7a'16.

第7図に示すようにs SS3”4膜をマスクに、95
0℃以下の低温でウェット酸化すると、低い濃度のN拡
散#16上よりもNドープした多結晶シリコン層の方が
酸化レートが格段に早いので、選択的に多結晶シリコン
配線のサイドに厚い酸化膜が形成される。その上から、
?拡散/fJ16よりも汲い濃度で(10” =IO”
 / cm ” ) 、リンの打込みをし+ N拡散層を形成する。
As shown in Figure 7, using the SS3''4 film as a mask, 95
When wet oxidized at a low temperature below 0°C, the oxidation rate is much faster on the N-doped polycrystalline silicon layer than on the low-concentration N-diffused #16 layer, so thick oxidation is selectively applied to the side of the polycrystalline silicon wiring. A film is formed. From above,
? Diffusion/fJ16 with pumping concentration (10" = IO"
/cm''), and phosphorus is implanted to form a +N diffusion layer.

第8図に示すように、S$3”4膜をエツチング除去し
た後、CVDPSG19f:形成し了ニールをした後コ
ンタクトホールを形成して、そのk % AL配線加を
形成する。
As shown in FIG. 8, after the S$3''4 film is removed by etching, CVDPSG 19f is formed and annealed, a contact hole is formed, and its k% AL wiring is formed.

〔発明の効果〕〔Effect of the invention〕

以上のような1本発明の方法を用いると、従来問題とな
っていたCVDB10.の膜厚のバラツキやエツチング
のバラツキによって発生していた。
When the method of the present invention as described above is used, the conventional problem of CVDB10. This was caused by variations in film thickness and etching.

部分的に膜が残ってしまいトランジスタが形成されなく
なるという問題や、部分的にエツチングが早く進み基板
をエツチング及び基板にダメージを与えるという問題が
なくなり、量産に適したプロセスとなる。又、サイドツ
ールの酸化膜を熱酸化で形成するため、信頼性も高くな
る。
This process is suitable for mass production because it eliminates the problem of parts of the film remaining and transistors not being formed, and the problem of parts of the film being etched too quickly and causing damage to the substrate. Furthermore, since the oxide film of the side tool is formed by thermal oxidation, reliability is also increased.

又、本発明′の例では、イオン打込みのイオン種に、リ
ンを用いた例を示したが、このかぎりではなく、砒素等
を用いても良く、併用してもなんらさしつかえない。
Furthermore, in the example of the present invention, phosphorus is used as the ion species for ion implantation, but this is not the only option; arsenic or the like may also be used, and there is no harm in using them in combination.

又、本発明の例では1Mチャンネル形のMOSICの例
を示したが、相補型のMOSICでも同様である。
Further, in the example of the present invention, a 1M channel type MOSIC is shown as an example, but the same applies to a complementary type MOSIC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、従来方法による製造工程順の断面構
造図である。 第5図〜第8図は、本発明の方法による製造工程順の断
面構造図である。 以   上
FIGS. 1 to 4 are cross-sectional structural diagrams in the order of manufacturing steps according to a conventional method. FIG. 5 to FIG. 8 are cross-sectional structural views showing the order of manufacturing steps according to the method of the present invention. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)N^+ドープされた多結晶シリコンをゲート電極
配線として用い、該電極配線のサイドに酸化膜を形成し
てLDD構造(ライト、ドープド、ドレイン構造の略、
以後LDD構造と略す。)をとるMOS電界効果トラン
ジスタを構成要素とするMOS型半導体集積回路装置の
製造方法において、N^+ドープされた該多結晶シリコ
ンを形成した後、Si_3N_4膜を形成し、ホトエッ
チにより配線状に該Si_3N_4膜、該多結晶シリコ
ンをエッチング形成した後、イオン打込みにより低濃度
で、ソース、ドレイン等の拡散層を形成して、該Si_
3N_4膜をマスクに950℃以下の低温でウェット酸
化をして、該ゲート電極配線のサイドに該酸化膜を選択
的に形成し、イオン打込みにより高濃度でソース、ドレ
イン等の拡散層を形成して、LDD構造のMOS型電界
効果トランジスタを形成した事を特徴とするMOS型半
導体集積回路装置の製造方法。
(1) N^+ doped polycrystalline silicon is used as the gate electrode wiring, and an oxide film is formed on the side of the electrode wiring to create an LDD structure (abbreviation for light, doped, drain structure).
Hereinafter, it will be abbreviated as LDD structure. ), in which the N^+ doped polycrystalline silicon is formed, a Si_3N_4 film is formed, and a wiring pattern is formed by photoetching. After forming the Si_3N_4 film and the polycrystalline silicon by etching, diffused layers such as sources and drains are formed at low concentration by ion implantation, and the Si_3N_4 film is formed by etching the polycrystalline silicon.
Using the 3N_4 film as a mask, perform wet oxidation at a low temperature of 950°C or lower to selectively form the oxide film on the side of the gate electrode wiring, and form high concentration diffusion layers such as source and drain by ion implantation. A method for manufacturing a MOS semiconductor integrated circuit device, characterized in that a MOS field effect transistor having an LDD structure is formed.
(2)該多結晶シリコンと該Si_3N_4膜の間に酸
化膜をもうけた事を特徴とする特許請求の範囲第1項記
載のMOS型半導体集積回路装置の製造方法。
(2) A method for manufacturing a MOS type semiconductor integrated circuit device according to claim 1, characterized in that an oxide film is provided between the polycrystalline silicon and the Si_3N_4 film.
JP26393284A 1984-12-14 1984-12-14 Manufacture of mos semiconductor integrated circuit device Pending JPS61141183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26393284A JPS61141183A (en) 1984-12-14 1984-12-14 Manufacture of mos semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26393284A JPS61141183A (en) 1984-12-14 1984-12-14 Manufacture of mos semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61141183A true JPS61141183A (en) 1986-06-28

Family

ID=17396262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26393284A Pending JPS61141183A (en) 1984-12-14 1984-12-14 Manufacture of mos semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61141183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134256A (en) * 1988-11-16 1990-05-23 Casio Comput Co Ltd Thermal head and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134256A (en) * 1988-11-16 1990-05-23 Casio Comput Co Ltd Thermal head and manufacture thereof

Similar Documents

Publication Publication Date Title
US7276407B2 (en) Method for fabricating semiconductor device
JPH0352224B2 (en)
US6066563A (en) Method for manufacturing semiconductor device
JPH09289323A (en) Manufacture of semiconductor device
JPH05326854A (en) Manufacture of bicmos semiconductor element
JPS58204570A (en) Manufacture of semiconductor integrated circuit device
JPS61141183A (en) Manufacture of mos semiconductor integrated circuit device
JP2917918B2 (en) Method for manufacturing semiconductor device
KR0179794B1 (en) Well-forming method of semiconductor device
JPS6197859A (en) Manufacture of cmos ic
JPS62265765A (en) Semiconductor device and manufacture thereof
JP3200978B2 (en) Method for manufacturing semiconductor device
KR100353466B1 (en) A transistor and method for manufacturing the same
KR850000037B1 (en) The method of mos with self alignment metal electroid
KR100265824B1 (en) Method for fabricating transistor of ldd structure
JPH06188259A (en) Manufacture of semiconductor device
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JPH0621458A (en) Semiconductor device and manufacture thereof
JPH0485871A (en) Manufacture of complementatry mos semiconductor device
JPS6214458A (en) Manufacture of semiconductor device
JPH11274491A (en) Semiconductor device and its manufacturing method
JPS59114869A (en) Non-volatile semiconductor memory device having floating gate of polycrystalline silicon
JPH03108727A (en) Manufacture of semiconductor device
JPS6123670B2 (en)
JPH09181193A (en) Manufacture of semiconductor device