JPS61141116A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPS61141116A
JPS61141116A JP26336484A JP26336484A JPS61141116A JP S61141116 A JPS61141116 A JP S61141116A JP 26336484 A JP26336484 A JP 26336484A JP 26336484 A JP26336484 A JP 26336484A JP S61141116 A JPS61141116 A JP S61141116A
Authority
JP
Japan
Prior art keywords
thin film
substrate
composition
xgex
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26336484A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oshima
弘之 大島
Hideaki Iwano
岩野 英明
Hiroshi Komatsu
博志 小松
Yoshifumi Tsunekawa
吉文 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26336484A priority Critical patent/JPS61141116A/en
Publication of JPS61141116A publication Critical patent/JPS61141116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive the improvement in crystallizability of a Ge thin film by alleviating the mismatching of the lattice by changing a composition ratio x of the Si1-xGex, which is arranged between an Si substrate and a Ge thin film as a buffer layer, from x=0 to x=1 continuously and monotonously from the Si substrate side toward the Ge thin film. CONSTITUTION:On an Si substrate 101, an Si1+xGex thin film 102 which is to be a buffer layer is formed and a Ge thin film 103 and a GaAs thin film 104 are formed on that. A composition ratio x of the Si1-xGex thin film is x=0, i.e., the composition of Si in the position where it contacts with the underlying Si substrate 101, and x=1, i.e., the composition of Ge in the position where it contacts with the Ge thin film 103 above. Between them, a value of x changes continuously and monotonously from 0 to 1 and the mismatching between Si and Ge is alleviated. The Si1-xGex thin film can be formed by a reduced CVD method using monosilane gas and german gas. As the composition ratio x is controlled by a flow ratio of the gas, it can be changed as it is desired by changing a gas flow ratio continuously and monotonously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体デバイス用の半導体基板忙関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to semiconductor substrates for compound semiconductor devices.

〔従来の技術〕[Conventional technology]

近年、0(L AAIを始めとする化合物半導体材料を
用い定デバイスの研究が活発に行な、われている。
In recent years, research on fixed devices using compound semiconductor materials such as LAAI has been actively conducted.

これkは、高純度で欠陥密度の小ざい単結晶半導体基板
が不可欠である。
This k requires a single crystal semiconductor substrate of high purity and low defect density.

従来、化合物半導体の単結晶基板としては、GIZ 1
8や工npが用いられているが、基板サイズが小さい上
に高価であるという難点を抱えている危め、Si単結晶
基板上にGaA&の単結晶薄膜をエピタキシャル成長プ
せ、これを化合物半導体デバイス用の単結晶基板として
用いようとする試入が行なわれている(例えば、WZt
gndad kb8tract80f the 16t
h(1984International、l  0o
nftrence  onsolid。
Conventionally, GIZ 1 has been used as a single crystal substrate for compound semiconductors.
8 and NPs have been used, but they have the disadvantages of small substrate size and high cost. Therefore, a single crystal thin film of GaA and silicon is grown epitaxially on a Si single crystal substrate, and this is used for compound semiconductor devices. (For example, WZt
gndad kb8tract80f the 16t
h (1984 International, l 0o
nftrence on solid.

8tatt Devices and Materia
ls、p、 115.1984)fa2図は、この従来
の半導体基板の構成を示す断面図である。Bi単結晶基
板201上ICGe薄膜202が形成され、メら忙該G
e薄膜上VcGn、に8薄膜が形成メれている。
8tatt Devices and Materia
ls, p, 115.1984) FA2 is a sectional view showing the structure of this conventional semiconductor substrate. An ICGe thin film 202 is formed on a Bi single-crystal substrate 201.
Eight thin films were formed on the VcGn thin film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このよ’+に構成ばれ友従来の半導体基板は次
のような欠点を有している。すなわち、下の表IVC示
すよ)に、GeとG(L Al1の格子定数及び線膨張
係数は非常建良く一致し、極めて良好な結晶成長が可卵
であるが、8iとGeは格子定数h’−約4%、線膨張
係数が約1.8倍、それぞれ異なるため、Si上のGe
薄膜のエビタキクヤル成長は極めて困難である。このた
め、Si上のGe中には多くの転位h′−存在し、界面
準位密度も高い。こhらは表   1 Ge J:に形成されるGσA8薄膜の結晶性にも悪影
響を与え、欠陥密度の低い良質なCkn、kS薄陣を実
現することhζ困難であった。
However, conventional semiconductor substrates having such a structure have the following drawbacks. In other words, as shown in Table IVC below, the lattice constants and linear expansion coefficients of Ge and G (L Al1 agree very well, and extremely good crystal growth is possible, but 8i and Ge have a lattice constant h ' - about 4%, and the linear expansion coefficient is about 1.8 times different, so Ge on Si
It is extremely difficult to grow thin films. Therefore, many dislocations h'- exist in Ge on Si, and the density of interface states is high. These also adversely affected the crystallinity of the GσA8 thin film formed in Table 1 Ge J:, making it difficult to realize a high-quality Ckn, kS thin film with low defect density.

未発明はこのよ5な従来の問題点を解決するものであり
、その目的とするところはSi基板上に結晶性の良好な
GQ、 ASS薄紫有する半導体基板を提併するところ
にある。
The present invention is intended to solve these five conventional problems, and its purpose is to provide a semiconductor substrate having good crystallinity of GQ and ASS light purple on a Si substrate.

r問題点を解決するための手段〕 本発明は前記Si基板と前記Ge薄膜の間に。rMeans for solving problems] The present invention is provided between the Si substrate and the Ge thin film.

Sj、、 Ge x薄膜を7977層として設けたこと
を特徴とする。また、llf Sj、、 Cke Z薄
膜の組成比χをsi基板側からGe薄1ti忙向けて、
x=0からX=1まで連続的かつ単調に変化させたこと
tt%微とする。
It is characterized by having 7977 layers of Sj, Ge x thin films. In addition, the composition ratio χ of the llf Sj, Cke Z thin film is directed from the Si substrate side to the Ge thin 1ti layer,
It is assumed that the value is changed continuously and monotonically from x=0 to x=1 by tt%.

〔作用〕[Effect]

本発明の上記の構成によれば、格子不整合の大きいSi
基板とGe薄膜の間忙1両者の中間的な性質を有する5
i1−エae Z薄膜を設けるため、格子不整合が緩和
謬れる。また、組成比2を連続的1c変化させること罠
より、Siの組成からGeの組成に至るまで5i1−エ
ae Z薄膜の組成がなめらかに変化し、より一層、格
子不整合を緩和することができる。このため、Si上に
形成;れfl−(1g薄膜の結晶性を著しく改善するこ
とができる。
According to the above configuration of the present invention, Si with large lattice mismatch
Between the substrate and the Ge thin film 1 Has intermediate properties between the two 5
Since the i1-air ae Z thin film is provided, the lattice mismatch can be alleviated. In addition, by continuously changing the composition ratio 2 by 1c, the composition of the 5i1-air Z thin film changes smoothly from the Si composition to the Ge composition, which further alleviates the lattice mismatch. can. Therefore, the crystallinity of a 1g thin film formed on Si can be significantly improved.

〔実施例〕〔Example〕

第1図は1本発明の実施例における半導体基板1の断面
図である。S<基板101上に、バー17ア層となるs
i、、zae Z薄膜102が形成されてかり、その上
にGe薄膜103とGA A&薄膜104が形成されて
いる。ま友gi、、 ae r;薄膜の組成比2け、下
のSi基板101と接する位置でけz=0、ナなわちS
iの組成となっており、十のGe薄@103と接する位
置でけx=1.すなわちGeの組成とt「つている。
FIG. 1 is a sectional view of a semiconductor substrate 1 in an embodiment of the present invention. S<s to become the bar 17a layer on the substrate 101
A Z thin film 102 is formed, and a Ge thin film 103 and a GA A& thin film 104 are formed thereon. Mayugi,, ae r; The composition ratio of the thin film is 2 digits, and the position in contact with the lower Si substrate 101 is z=0, that is, S
The composition is x=1. In other words, t is similar to the composition of Ge.

その間では、Xの値け0から1まで連続的かつ単調に変
化し、SiとGe間の不整合を緩和している。
In between, the value of X changes continuously and monotonically from 0 to 1, thereby alleviating the mismatch between Si and Ge.

上述のSt、1−z Gv z i9膜は、例えばモノ
シラン(Bi H4)ガスとゲルマン(GeH4)ガス
を用いて減圧0VD(化学気相成長)法忙より形成する
ことhtできる。組成比Xけそり、ぞhのガスの流量比
により制御でれガス流量比を連続的かつ単調に変化シせ
ることにより組成比X″1r+’5i望辿9忙賓えるこ
とができる。
The above-mentioned St, 1-z Gv z i9 film can be formed by a low pressure 0VD (chemical vapor deposition) method using, for example, monosilane (BiH4) gas and germane (GeH4) gas. By continuously and monotonically changing the gas flow rate ratio, which can be controlled by the gas flow rate ratio of the composition ratio X, the composition ratio X''1r+'5i can be adjusted.

第3図は、本発明による半導体基板における格子定数の
深情分布を模式的忙示すグラフである。
FIG. 3 is a graph schematically showing the deep distribution of lattice constants in a semiconductor substrate according to the present invention.

縦軸は格子定数であり、横軸は深さ方向の位置を表わし
ているつ点AけSi基板とSi、−エG4 Z  薄膜
との界面を1点BはSSi1−2G Z薄膜とGe薄膜
との界面を、点CけGe薄膜とG(L AI9薄嗅との
界面をそれぞれ示している。図より明らかなよへに、S
i基板の格子定数とGe薄膜の格子定数の差を、バ・・
)7層のSi、、GIZ薄模が徐AK緩和している。
The vertical axis is the lattice constant, and the horizontal axis is the position in the depth direction. Point A is the interface between the Si substrate and the Si, -G4 Z thin film. Point B is the interface between the SSi1-2G Z thin film and the Ge thin film. Point C indicates the interface between the Ge thin film and G(LAI9).As is clear from the figure, S
The difference between the lattice constant of the i-substrate and the lattice constant of the Ge thin film is
) 7-layer Si, GIZ thin pattern exhibits gradual AK relaxation.

従来は、バッファ層となるs7.−πGv z薄膜が存
在しなかつたために、lpAと点Bが一致しており、格
子定数が不連続VC!化し、Ge薄膜とGcy、As薄
膜の結晶性に悪影4tを及ぼして(/にた。
Conventionally, s7. -πGv z Since there was no thin film, lpA and point B coincide, and the lattice constant is discontinuous VC! , which has a negative impact on the crystallinity of Ge thin films, Gcy, and As thin films.

〔発明の効果〕〔Effect of the invention〕

本発明は以下忙述べるよ5な効果を有している。 The present invention has five effects as described below.

第1T/C1Si基板上忙結晶性の優れたaa 1g薄
膜を形成することができる。これは、剪述の如く、バ・
H7ァ層と【7てei、4 as z薄膜を設けたこと
Kよる。これによりE4i$板上のGe薄膜の結晶性が
改善ばれ、この結果、欠陥密度の小ざい良好なaaAs
薄膜を形成することができる。
An aa 1g thin film with excellent crystallinity can be formed on the first T/C1Si substrate. This is, as stated above,
This is due to the fact that the H7a layer and the [7tei, 4asz thin film were provided. This improves the crystallinity of the Ge thin film on the E4i$ plate, resulting in a good aaAs film with a small defect density.
A thin film can be formed.

第2に、 上記に伴って、si基板上K 5(LkBを
用いた化合物半導体デバイスを形成することがで舞る。
Second, along with the above, it is possible to form a compound semiconductor device using K5 (LkB) on a Si substrate.

このようなデバイスとしては、半導体レーザなどの発光
デバイスや、トランジスタなどの高速デバイスミt挙げ
られる。発光デバイスでは、GCLk8薄膜中の結晶欠
陥は非発光再結合中心となる定め効率の骨減(出力の減
少)やしきい値電流の増大などの悪影響を及ぼす。高速
デバイスでは、GIZAS薄膜中の結晶欠陥はキャリア
の散乱源となるため移動度の減少(動作速度の低下)な
どの悪影響を及ぼす。本発明によれば、結晶欠陥の少な
いGCLAR薄1@に*現で^る友め、Si基板上に高
性能な化合物半導体デバイス、を実現中ることhiでき
る。
Such devices include light emitting devices such as semiconductor lasers and high speed devices such as transistors. In light emitting devices, crystal defects in the GCLk8 thin film become non-radiative recombination centers and have negative effects such as loss of efficiency (reduction in output) and increase in threshold current. In high-speed devices, crystal defects in the GIZAS thin film become a source of carrier scattering, resulting in negative effects such as a decrease in mobility (decreased operating speed). According to the present invention, it is now possible to realize a high-performance compound semiconductor device on a Si substrate using a thin GCLAR with few crystal defects.

第3に、安価で大面積の半導体基板を提供することがで
きる。s71仮は、大量の需要を背景として、直径5イ
ンチとい)大面積基板が極めて安価に供給されている。
Thirdly, it is possible to provide an inexpensive, large-area semiconductor substrate. Due to the large demand for s71, large-area boards (5 inches in diameter) are being supplied at extremely low prices.

しかも公害や資源枯渇の心配/); r(い。このよ’
IK恵まれたSi基板上にGaA、9薄嘆が形成でき、
化合物半導体デバイスを実現できることは極めて大会す
長所である。
Moreover, there are concerns about pollution and resource depletion.
GaA, 9-thickness can be formed on the IK-rich Si substrate,
The ability to realize compound semiconductor devices is an extremely advantageous feature.

以上述べ几よ5に1本発明は数多〈の優れた効果を有す
るものである。
As stated above, the present invention has numerous excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体基板の構造を示す断面図で
ある。 第2図は従来の半導体基板の構造を示+断面図である。 第3図は本発明の半導体基板忙おける格子定数の深ζ方
向変化?示ナグラフである。 101゜201川・・・Bi単結晶基板102−曲5f
fl、−,Ge x @膜103 、202 ・−・−
・・att @嗅1n4 、203 ・−−−−・Ga
 Aa薄模以  上 出履人 株式会社 諏訪精工舎 第2図 第3図
FIG. 1 is a sectional view showing the structure of a semiconductor substrate according to the present invention. FIG. 2 is a sectional view showing the structure of a conventional semiconductor substrate. Figure 3 shows the change in the lattice constant in the depth ζ direction in the semiconductor substrate of the present invention. This is a graph. 101゜201 River...Bi single crystal substrate 102-curve 5f
fl, −, Gex @ film 103, 202 ・−・−
・・att@olfactory1n4, 203 ・----・Ga
Aa thin model or above, Suwa Seikosha Co., Ltd. Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)Si単結晶基板上にSi_1_−_xGe_xを
有し、該Si_1_−_xGe_x薄膜上にGe薄膜を
有し、該Ge薄膜上にGaAS薄膜を有することを特徴
とする半導体基板。
(1) A semiconductor substrate comprising Si_1_-_xGe_x on a Si single crystal substrate, a Ge thin film on the Si_1_-_xGe_x thin film, and a GaAS thin film on the Ge thin film.
(2)前記Si_1_−_xGe_x薄膜の組成比xを
、膜厚方向に対して、x=0からx=1まで連続的かつ
単調に変化させたことを特徴とする特許請求の範囲第1
項記載の半導体基板。
(2) The composition ratio x of the Si_1_-_xGe_x thin film is continuously and monotonically changed from x=0 to x=1 in the film thickness direction.
Semiconductor substrate described in Section 1.
JP26336484A 1984-12-13 1984-12-13 Semiconductor substrate Pending JPS61141116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26336484A JPS61141116A (en) 1984-12-13 1984-12-13 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26336484A JPS61141116A (en) 1984-12-13 1984-12-13 Semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS61141116A true JPS61141116A (en) 1986-06-28

Family

ID=17388457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26336484A Pending JPS61141116A (en) 1984-12-13 1984-12-13 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS61141116A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334994A (en) * 1986-07-29 1988-02-15 Mitsubishi Electric Corp Photoelectric integrated circuit device and manufacture thereof
KR100516339B1 (en) * 2001-12-11 2005-09-22 샤프 가부시키가이샤 Semiconductor device and production process thereof
JP2010225981A (en) * 2009-03-25 2010-10-07 Fujitsu Ltd Optical semiconductor device, integrated element and method of manufacturing optical semiconductor device
JP2011014896A (en) * 2009-06-05 2011-01-20 Sumitomo Chemical Co Ltd Optical device, semiconductor substrate, optical device producing method, and semiconductor substrate producing method
JP2011114160A (en) * 2009-11-26 2011-06-09 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device and method of manufacturing the semiconductor substrate
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
JP2014197669A (en) * 2013-03-08 2014-10-16 キヤノン株式会社 Photoconductive element, method for manufacturing photoconductive element, and terahertz time domain spectral device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334994A (en) * 1986-07-29 1988-02-15 Mitsubishi Electric Corp Photoelectric integrated circuit device and manufacture thereof
KR100516339B1 (en) * 2001-12-11 2005-09-22 샤프 가부시키가이샤 Semiconductor device and production process thereof
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
JP2010225981A (en) * 2009-03-25 2010-10-07 Fujitsu Ltd Optical semiconductor device, integrated element and method of manufacturing optical semiconductor device
JP2011014896A (en) * 2009-06-05 2011-01-20 Sumitomo Chemical Co Ltd Optical device, semiconductor substrate, optical device producing method, and semiconductor substrate producing method
JP2011114160A (en) * 2009-11-26 2011-06-09 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device and method of manufacturing the semiconductor substrate
JP2014197669A (en) * 2013-03-08 2014-10-16 キヤノン株式会社 Photoconductive element, method for manufacturing photoconductive element, and terahertz time domain spectral device

Similar Documents

Publication Publication Date Title
KR100448352B1 (en) Method for fabricating GaN-based nitride layer
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
JPS61141116A (en) Semiconductor substrate
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
JP2005510081A (en) Fabrication method of high mobility silicon germanium structure by low energy plasma enhanced chemical vapor deposition
KR930009805B1 (en) Semiconcuctor device with buffer structure for eliminating defect from growing semiconductor layer
JP4535935B2 (en) Nitride semiconductor thin film and manufacturing method thereof
JPS5946414B2 (en) compound semiconductor device
JPS63158832A (en) Semiconductor substrate
WO2016166949A1 (en) Semiconductor wafer and semiconductor device
JPH10284510A (en) Semiconductor substrate
JPS61105832A (en) Si substrate with iii-v compound monocrystalline thin film and fabrication thereof
JPS59184570A (en) Field effect transistor
JPS60211912A (en) Low-transition semi-insulation substrate
KR20150035413A (en) Epitaxial growth of compound semiconductors using lattice-tuned domain-matching epitaxy
JPS62291909A (en) Gaas epitaxial growth method
JPH08264456A (en) Growing method for crystal of compound semiconductor
JP3124616B2 (en) Method for growing compound semiconductor thin film
JP2003133548A (en) Semiconductor substrate and field effect transistor, and their manufacturing methods
JPS6164118A (en) Manufacture of semiconductor device
JPS63186415A (en) Compound semiconductor substrate
JP3319052B2 (en) Metalorganic vapor phase epitaxy
JPS62104025A (en) Semiconductor crystal substrate
JPS6258614A (en) Arsenide galium epitaxial wafer and manufacture thereof
JPH04290423A (en) Manufacture of semiconductor substrate and semiconductor device