JP4535935B2 - Nitride semiconductor thin film and manufacturing method thereof - Google Patents

Nitride semiconductor thin film and manufacturing method thereof Download PDF

Info

Publication number
JP4535935B2
JP4535935B2 JP2005146974A JP2005146974A JP4535935B2 JP 4535935 B2 JP4535935 B2 JP 4535935B2 JP 2005146974 A JP2005146974 A JP 2005146974A JP 2005146974 A JP2005146974 A JP 2005146974A JP 4535935 B2 JP4535935 B2 JP 4535935B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
thin film
substrate
composition
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005146974A
Other languages
Japanese (ja)
Other versions
JP2006324512A (en
Inventor
哲也 赤坂
俊樹 牧本
一英 熊倉
正伸 広木
春喜 横山
小林  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005146974A priority Critical patent/JP4535935B2/en
Publication of JP2006324512A publication Critical patent/JP2006324512A/en
Application granted granted Critical
Publication of JP4535935B2 publication Critical patent/JP4535935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、III族元素を含有する窒化物半導体薄膜およびその製造方法に関する。   The present invention relates to a nitride semiconductor thin film containing a group III element and a method for producing the same.

窒化物半導体は、B、Al、Ga、またはIn等のIII族元素のうち少なくとも1つ以上の元素と、V族元素である窒素との化合物であり、一般式Al1−a−b−cGaInN(0≦a≦1,0≦b≦1,0≦c≦1)で表される。窒化物半導体は、電界効果トランジスタ等の電子デバイス、可視光領域から紫外領域の短波長帯の発光デバイスに用いる活性材料として、近年、盛んに研究および技術開発が行われている。 A nitride semiconductor is a compound of at least one element among group III elements such as B, Al, Ga, or In and nitrogen that is a group V element, and has a general formula of Al 1-abc. B a Ga b In c N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1). Nitride semiconductors have been actively researched and developed in recent years as active materials used in electronic devices such as field effect transistors and light emitting devices in the short wavelength band from the visible light region to the ultraviolet region.

窒化物半導体薄膜は、一般的には、サファイア、窒化珪素(SiC)等の異種基板の上に、ヘテロエピタキシー技術を用いて作製される。ところが、窒化物半導体とサファイアおよびSiCとは、格子定数や熱膨張係数が大きく異なるため、作製された窒化物半導体薄膜には、クラック、貫通転位等の欠陥が多数存在する。近年、GaN、AlN等の結晶基板が商業的に入手できるようになった。しかしながら、一般式で示した様々なIII族元素を有する窒化物半導体と、これら結晶基板とでは、依然として格子定数や熱膨張係数が大きく異なる。例えば、一般式で示した窒化物半導体と、AlN結晶基板とでは、ウルツ鉱型の場合で最大12%も格子定数(a軸)が異なる。   A nitride semiconductor thin film is generally produced on a heterogeneous substrate such as sapphire or silicon nitride (SiC) using a heteroepitaxy technique. However, since the nitride semiconductor and sapphire and SiC have greatly different lattice constants and thermal expansion coefficients, the produced nitride semiconductor thin film has many defects such as cracks and threading dislocations. In recent years, crystal substrates such as GaN and AlN have become commercially available. However, the lattice constants and the thermal expansion coefficients are still greatly different between the nitride semiconductors having various group III elements represented by the general formula and these crystal substrates. For example, the nitride constant shown by the general formula and the AlN crystal substrate have a lattice constant (a-axis) different by 12% at maximum in the case of the wurtzite type.

従って、電子デバイス、発光デバイスに用いられるような、様々なIII族元素を含む窒化物半導体多層膜を高品質化するためには、転位密度を減少させることが非常に重要である。窒化物半導体の転位密度を減少させる方法として、HVPE(Hydride Vapor Phase Epitaxy)による横方向成長法(例えば、非特許文献1参照)、基板上に形成したSi−N単層を用いて量子ドットを形成するシリコンアンチサーファクタント法(例えば、非特許文献2参照)、低温成長のAlN中間層を用いる方法(例えば、非特許文献3参照)、SiOマスクを用いてファセット形成を行うファセット制御横方向成長法(例えば、非特許文献4参照)等が提案されている。しかしながら、十分に低い転位密度、広い面積にわたっての均質性、作製プロセスの簡便さ、経済性等をすべて満足する方法は未だにないのが実情である。 Therefore, it is very important to reduce the dislocation density in order to improve the quality of nitride semiconductor multilayer films containing various group III elements, such as those used in electronic devices and light-emitting devices. As a method for reducing the dislocation density of a nitride semiconductor, a quantum dot is formed using a lateral growth method by HVPE (Hydride Vapor Phase Epitaxy) (see, for example, Non-Patent Document 1), and a Si—N single layer formed on a substrate. Silicon anti-surfactant method to be formed (for example, see Non-Patent Document 2), a method using an AlN intermediate layer grown at a low temperature (for example, see Non-Patent Document 3), facet-controlled lateral growth in which facet formation is performed using a SiO 2 mask The law (for example, refer nonpatent literature 4) etc. is proposed. However, in reality, there is still no method that satisfies all of a sufficiently low dislocation density, homogeneity over a wide area, simplicity of the production process, economy, and the like.

A.Usui, et al., ”Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Vol.36, pp.L899-L902, 1997A. Usui, et al., “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Vol. 36, pp. L899-L902, 1997 S.Tanaka, et al., ”Anti-Surfactant in III-Nitride Epitaxy Quantum Dot Formation and Dislocation Termination-”, Jpn. J. Appl. Phys. Vol.39, pp.L831-L834, 2000S. Tanaka, et al., “Anti-Surfactant in III-Nitride Epitaxy Quantum Dot Formation and Dislocation Termination-”, Jpn. J. Appl. Phys. Vol.39, pp.L831-L834, 2000 M.Iwaya, et al., ”High-Quality AlXGa1-XN using Low Temperature Interlayer and its Application to UV Detector”, Mat. Res. Soc. Symp. Vol.595, W1.10.1, 2000M.Iwaya, et al., “High-Quality AlXGa1-XN using Low Temperature Interlayer and its Application to UV Detector”, Mat. Res. Soc. Symp. Vol.595, W1.10.1, 2000 Y.Honda, et al., ”Transmission Electron Microscopy Investigation of Dislocations in GaN Layer Grown by Facet-Controlled Epitaxial Lateral Overgrowth”, Jpn. Appl. Phys. Vol.40, pp.L309-L312, 2001Y. Honda, et al., “Transmission Electron Microscopy Investigation of Dislocations in GaN Layer Grown by Facet-Controlled Epitaxial Lateral Overgrowth”, Jpn. Appl. Phys. Vol.40, pp.L309-L312, 2001 S.Heikman, et al., ”Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition”, Appl. Phys. Lett. Vol.81, No.3, pp.439-441, 2002S. Heikman, et al., “Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition”, Appl. Phys. Lett. Vol. 81, No. 3, pp. 439-441, 2002 K.Kumakura, et al., ”Novel Buffer Layers of ECR-doposited AlN/AlON/Al2O3 for GaN Grown on Sapphire”, Proceedings of International Workshop on Nitride Semiconductors IWN2004, pp.48K. Kumakura, et al., “Novel Buffer Layers of ECR-doposited AlN / AlON / Al2O3 for GaN Grown on Sapphire”, Proceedings of International Workshop on Nitride Semiconductors IWN2004, pp.48

図1に、サファイア基板上に成長させた窒化物半導体薄膜の断面を示す。サファイアは入手が容易で安価であり、窒化物半導体を成長させる基板として最も広く用いられている。図1は、有機金属気相成長法(MOCVD:Metalorganic Chemical Vapor Deposition)を用いて、サファイア基板上にGaNを成長させた場合の模式図である。サファイア基板11とGaN12とは、熱膨張係数および格子定数の差が大きいために、高密度の貫通転位13が発生する。   FIG. 1 shows a cross section of a nitride semiconductor thin film grown on a sapphire substrate. Sapphire is readily available and inexpensive, and is most widely used as a substrate for growing nitride semiconductors. FIG. 1 is a schematic view when GaN is grown on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). Since the sapphire substrate 11 and the GaN 12 have large differences in thermal expansion coefficient and lattice constant, high-density threading dislocations 13 are generated.

また、MOCVDの典型的な条件である1000℃程度の温度においては、サファイア基板はエッチングされてしまう。サファイア基板は、アルミニウムと酸素の化合物であるため、分解・生成された酸素が基板界面付近の窒化物半導体層に取り込まれてしまう。その結果、取り込まれた酸素がドナー不純物として働き、サファイア基板界面付近の窒化物半導体層14は、価電子制御が困難であり、特に高抵抗層を得られない、すなわち残留キャリア濃度が高いという問題があった。この問題により、例えば、窒化物半導体を用いた電界効果トランジスタの性能が制限されていた。   Further, the sapphire substrate is etched at a temperature of about 1000 ° C. which is a typical condition of MOCVD. Since the sapphire substrate is a compound of aluminum and oxygen, the decomposed / generated oxygen is taken into the nitride semiconductor layer near the substrate interface. As a result, the incorporated oxygen works as a donor impurity, and the nitride semiconductor layer 14 near the sapphire substrate interface is difficult to control valence electrons, and in particular, a high resistance layer cannot be obtained, that is, the residual carrier concentration is high. was there. Due to this problem, for example, the performance of a field effect transistor using a nitride semiconductor has been limited.

サファイア基板界面付近の窒化物半導体層の高抵抗化の方法として、アクセプターとして働く鉄を、サファイア基板界面付近の窒化物半導体層14にドープする手法(例えば、非特許文献5参照)が提案されている。しかしながら、鉄の含有量を膜厚方向に厳密に制御できないというメモリー効果の問題が存在した。   As a method for increasing the resistance of the nitride semiconductor layer near the sapphire substrate interface, a method of doping the nitride semiconductor layer 14 near the sapphire substrate interface with iron serving as an acceptor (see, for example, Non-Patent Document 5) has been proposed. Yes. However, there is a problem of the memory effect that the iron content cannot be strictly controlled in the film thickness direction.

また、上述したシリコンアンチサーファクタント法では、結晶成長中にSiをドーピングするために、残留キャリアが増加し、高抵抗の薄膜を実現することが難しい。さらに、上述したファセット制御横方向成長法では、マスクを用いた選択成長のため、マスクの開口部と、マスクにオーバーグロースした部分とでは、GaN薄膜の結晶性が異なるので、均質性を確保できないという問題があった。   Further, in the above-described silicon anti-surfactant method, since Si is doped during crystal growth, residual carriers increase and it is difficult to realize a high-resistance thin film. Furthermore, in the facet-controlled lateral growth method described above, because of selective growth using a mask, the crystallinity of the GaN thin film is different between the opening of the mask and the overgrowth portion of the mask, so that homogeneity cannot be ensured. There was a problem.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、十分に低い転位密度、広い面積にわたっての均質性、作製プロセスの簡便さ、経済性を満足し、基板界面付近が高抵抗の窒化物半導体薄膜およびその製造方法を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to satisfy a sufficiently low dislocation density, homogeneity over a wide area, simplicity of the production process, and economic efficiency, and a substrate interface. The object is to provide a nitride semiconductor thin film having high resistance and a method for manufacturing the same.

本発明は、このような目的を達成するために、請求項1に記載の窒化物半導体薄膜は、基板上に形成された、ホウ素を含む第1の窒化物半導体と、該第1の窒化物半導体上に形成され、ホウ素の組成比が、前記第1の窒化物半導体のホウ素の組成比よりも小さい第2の窒化物半導体とを備え、前記第1の窒化物半導体と前記第2の窒化物半導体との間の界面は、平均粗さが0.1ミクロン以上であることを特徴とする。
請求項2に記載の窒化物半導体薄膜は、基板上に形成された、ホウ素を含む第1の窒化物半導体と、該第1の窒化物半導体上に形成され、ホウ素の組成比が、前記第1の窒化物半導体のホウ素の組成比よりも小さい第2の窒化物半導体とを備え、前記第1の窒化物半導体は、側面ファセットを有する複数の島状の結晶が前記基板上に形成され、平均高さが0.1ミクロン以上であり、前記側面ファセットの面方位が{11−20}、{1−100}、{11−22}または{1−101}であることを特徴とする。
In order to achieve the above object, according to the present invention, a nitride semiconductor thin film according to claim 1 includes a first nitride semiconductor containing boron and a first nitride formed on a substrate. A second nitride semiconductor formed on the semiconductor and having a boron composition ratio smaller than a boron composition ratio of the first nitride semiconductor; and the first nitride semiconductor and the second nitride semiconductor. The interface between the physical semiconductor and the semiconductor has an average roughness of 0.1 microns or more .
The nitride semiconductor thin film according to claim 2 is formed on the first nitride semiconductor containing boron and the first nitride semiconductor formed on the substrate, and the composition ratio of boron is the first nitride semiconductor thin film. A first nitride semiconductor having a plurality of island-like crystals having side facets formed on the substrate. The average height is 0.1 micron or more, and the surface orientation of the side facet is {11-20}, {1-100}, {11-22} or {1-101}.

前記第1の窒化物半導体のホウ素の組成は、0.001以上0.2以下が好適である The boron composition of the first nitride semiconductor is preferably 0.001 or more and 0.2 or less .

前記第1の窒化物半導体と前記第2の窒化物半導体とを、少なくとも一組以上さらに積層することもできる。また、前記基板は、サファイア基板が好適であり、前記基板は、炭素、酸素、硫黄、セレン、テルル、珪素、ゲルマニウム、またはスズのうち、少なくとも1つ以上の元素を含むこともできる。   At least one or more sets of the first nitride semiconductor and the second nitride semiconductor may be further stacked. The substrate is preferably a sapphire substrate, and the substrate may contain at least one element of carbon, oxygen, sulfur, selenium, tellurium, silicon, germanium, or tin.

さらに、前記基板と前記第1の窒化物半導体との間に、組成AlO(0≦x≦1.5、0≦y≦1)の傾斜層を挿入することもできる。 Furthermore, an inclined layer having a composition AlO x N y (0 ≦ x ≦ 1.5, 0 ≦ y ≦ 1) may be inserted between the substrate and the first nitride semiconductor.

請求項1ないし7のいずれかに記載の窒化物半導体薄膜を製造するための窒化物半導体薄膜の製造方法であって、ホウ素を含む第1の窒化物半導体を、基板上に形成する第1の工程と、ホウ素の組成比が、前記第1の窒化物半導体のホウ素の組成比よりも小さい第2の窒化物半導体を、前記第1の窒化物半導体上に形成する第2の工程とを備えたことを特徴とする。 A claims 1 to 7 or nitride manufacturing method of a semiconductor thin film for manufacturing nitride semiconductor thin film according to the, the first nitride semiconductor containing boron, first formed on the substrate And a second step of forming a second nitride semiconductor having a boron composition ratio smaller than the boron composition ratio of the first nitride semiconductor on the first nitride semiconductor. It is characterized by that.

前記窒化物の原料として少なくともボラジン誘導体[B(C2n+1](nは整数)、デカボランのいずれかを用いることができる。 As the nitride material, at least one of borazine derivatives [B 3 (C n H 2n + 1 ) 3 N 3 H 3 ] (n is an integer) and decaborane can be used.

以上説明したように、本発明によれば、十分に低い転位密度、広い面積にわたっての均質性、作製プロセスの簡便さ、経済性を満足し、基板界面付近が高抵抗の窒化物半導体薄膜を実現することが可能となる。   As described above, according to the present invention, a nitride semiconductor thin film having a sufficiently low dislocation density, homogeneity over a wide area, simplicity of the manufacturing process, economical efficiency, and high resistance near the substrate interface is realized. It becomes possible to do.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態にかかる窒化物半導体薄膜は、基板上に窒素との結合長が異なる複数の窒化物半導体からなる混晶を形成され、この混晶とは異なる組成の窒化物半導体が、この混晶上に形成されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the nitride semiconductor thin film according to the present embodiment, a mixed crystal composed of a plurality of nitride semiconductors having different bond lengths with nitrogen is formed on a substrate, and a nitride semiconductor having a composition different from the mixed crystal is formed from the mixed crystal. Formed on top.

図2に、本発明の実施例1にかかる窒化物半導体薄膜を示す。窒化物半導体薄膜は、主方位面が(0001)面から±5度以内の面であるサファイア基板21上に、MOCVD装置を用いて形成される。サファイア基板21上に、Al1−a−b−cGaInN(0<a≦1,0≦b<1,0≦c<1)の組成を有する第1の窒化物半導体22を、島状の多数の結晶として形成する。すなわち、第1の窒化物半導体22の多数の結晶は、どのような形状であってもよいが、後述する面方位の側面ファセットを有していることが望ましく、サファイア基板21の表面全体にわたって、島のように点在させる。これら第1の窒化物半導体22の高さの平均値は、0.3ミクロンである。 FIG. 2 shows a nitride semiconductor thin film according to Example 1 of the present invention. The nitride semiconductor thin film is formed on the sapphire substrate 21 whose main orientation plane is within ± 5 degrees from the (0001) plane using an MOCVD apparatus. On the sapphire substrate 21, a first nitride semiconductor having a composition of Al 1-ab-c B a Ga b In c N (0 <a ≦ 1, 0 ≦ b <1, 0 ≦ c <1). 22 is formed as a large number of island-like crystals. That is, the many crystals of the first nitride semiconductor 22 may have any shape, but it is desirable to have side facets with a plane orientation described later, and over the entire surface of the sapphire substrate 21, It is scattered like an island. The average height of the first nitride semiconductors 22 is 0.3 microns.

図3に、サファイア基板上に成長した第1の窒化物半導体22を示す。組成Al1−a−b−cGaInN(0<a≦1,0≦b<1,0≦c<1)の島状結晶の鳥瞰電子顕微鏡写真である。それぞれの島状結晶は、ウルツ鉱型の結晶構造を有し、サファイア基板21上にエピタキシャルな関係で成長しており、(0001)面からなる上面とファセットからなる側面を有している。このファセット面は、MOCVDの成長条件によって、例えば、{11−20}、{1−100}、{11−22}、あるいは、{1−101}などの面方位を有する。 FIG. 3 shows the first nitride semiconductor 22 grown on the sapphire substrate. A bird's eye electron micrograph of the island-like crystals of the composition Al 1-a-b-c B a Ga b In c N (0 <a ≦ 1,0 ≦ b <1,0 ≦ c <1). Each island-like crystal has a wurtzite-type crystal structure, grows in an epitaxial relationship on the sapphire substrate 21, and has an upper surface composed of (0001) planes and a side surface composed of facets. This facet plane has a plane orientation of {11-20}, {1-100}, {11-22}, or {1-101} depending on the growth conditions of MOCVD.

AlN、GaN、InN、またはこれらの混晶は、ボンド結合長が比較的長く、ウルツ鉱型の結晶構造が安定相である。一方、BNは、ボンド結合長が著しく短く、グラファイト型と閃亜鉛鉱型の結晶構造が安定相である。このように結合長が異なる複数の窒化物半導体からなる混晶を、第1の窒化物半導体22として形成する。組成Al1−a−b−cGaInNの第1の窒化物半導体22は、適当な量のBを含有することによって、均一な2次元成長が阻害され3次元成長を起こし、側面ファセットを有する島状薄膜となる。このような島状薄膜の成長過程において、側面ファセットが成長するにしたがって、貫通転位24の伝播方向が捻じ曲げられる。 AlN, GaN, InN, or a mixed crystal thereof has a relatively long bond bond length and a wurtzite crystal structure is a stable phase. On the other hand, BN has a remarkably short bond bond length and has a stable crystal structure of graphite type and zinc blende type. Thus, a mixed crystal composed of a plurality of nitride semiconductors having different bond lengths is formed as the first nitride semiconductor 22. The first nitride semiconductor 22 having the composition Al 1 -a-b-c B a Ga b In c N contains a suitable amount of B, thereby inhibiting uniform two-dimensional growth and causing three-dimensional growth. An island-shaped thin film having side facets is obtained. In the growth process of such island-shaped thin films, the propagation direction of threading dislocations 24 is twisted and bent as the side facets grow.

引き続いて、Al1−d−e−fGaInN(0≦d<1,0≦e≦1,0≦f≦1,d<a)の組成を有する第2の窒化物半導体23の成長過程において、互いに逆向きのバーガーズベクトルを有する2本の転位が、ハーフループ25を形成して消滅することがある。この結果、窒化物半導体の貫通転位密度が減少する。この場合、第1の窒化物半導体22は、島状薄膜の高さの平均値は、0.1ミクロン以上であることが望ましい(図7を参照して後述する)。 Subsequently, Al 1-d-e- f B d Ga e In f N (0 ≦ d <1,0 ≦ e ≦ 1,0 ≦ f ≦ 1, d <a) second nitride having a composition of In the growth process of the semiconductor 23, two dislocations having Burgers vectors opposite to each other may form a half loop 25 and disappear. As a result, the threading dislocation density of the nitride semiconductor is reduced. In this case, the first nitride semiconductor 22 preferably has an average height of island-shaped thin films of 0.1 microns or more (described later with reference to FIG. 7).

図4に、ホウ素(B)の組成aの値と貫通転位密度との関係を示す。組成Al1−a−b−cGaInNの第1の窒化物半導体22のB組成aの値は、小さ過ぎれば3次元成長を起こしにくく、逆に、大き過ぎれば結晶性が劣化してしまう。平均の高さが0.3ミクロン、組成Al0.09Ga0.9-aIn0.01Nの第1の窒化物半導体22と、平均の厚さが2.5ミクロン、組成Al0.09Ga0.9In0.01Nの第2の窒化物半導体23とを用いて、窒化物半導体22のBの組成aの値と貫通転位密度との関係を測定した。図4に示したように、aの値は、0.001以上0.2以下の範囲において、貫通転位密度が著しく減少していることがわかる。 FIG. 4 shows the relationship between the value of the boron (B) composition a and the threading dislocation density. If the value of the B composition a of the first nitride semiconductor 22 having the composition Al 1-a-b-c B a Ga b In c N is too small, three-dimensional growth is difficult to occur. Will deteriorate. The average height is 0.3 microns, the first nitride semiconductor 22 having the composition Al 0.09 B a Ga 0.9-a In 0.01 N, an average thickness of 2.5 microns, the composition Al 0.09 Ga 0.9 In 0.01 N Using the second nitride semiconductor 23, the relationship between the value of the B composition a of the nitride semiconductor 22 and the threading dislocation density was measured. As shown in FIG. 4, it can be seen that the threading dislocation density is remarkably reduced when the value a is in the range of 0.001 to 0.2.

また、組成Al1−d−e−fGaInNの第2の窒化物半導体23は、デバイスへの応用を考えると、できるだけ均一な2次元成長をすることが必要である。従って、B組成dの値は小さい方が良く、少なくともd<aの条件を満たすことが望ましい。なお、第1の窒化物半導体22の島状薄膜は、図2に示したように、1層だけではなく2層以上繰り返し挿入することによって、転位密度をより一層低減することができる。 The composition Al 1-d-e-f B d Ga e In f the second nitride semiconductor 23 N, given the application to the device, it is necessary to make as uniform as possible two-dimensional growth. Therefore, the value of the B composition d is preferably small, and it is desirable that at least the condition of d <a is satisfied. As shown in FIG. 2, the island-shaped thin film of the first nitride semiconductor 22 can be further reduced in dislocation density by repeatedly inserting not only one layer but also two or more layers.

図5に、島状薄膜が連続的に形成された第1の窒化物半導体を示す。第1の窒化物半導体52は、必ずしも不連続な島状薄膜である必要はない。サファイア基板51上に、Al1−a−b−cGaInN(0<a≦1,0≦b<1,0≦c<1)の組成を有する第1の窒化物半導体52を、島状の多数の結晶として形成する。このとき、島状薄膜は、島状結晶同士が互いに合体した形状を有している。転位の伝播方向の捻じ曲げ、ハーフループの形成が十分に行われるためには、組成Al1−a−b−cGaInNの第1の窒化物半導体52の表面の平均粗さ、すなわち、平均自乗根粗さまたは算術平均粗さのうち、いずれかが0.1ミクロン以上であることが望ましい。言い換えると、第1の窒化物半導体52と組成Al1−d−e−fGaInNの第2の窒化物半導体53との界面の平均粗さが0.1ミクロン以上であることが望ましい。また、B組成aとdの値についても、上述した関係を有することが望ましい。 FIG. 5 shows a first nitride semiconductor in which island-shaped thin films are continuously formed. The first nitride semiconductor 52 is not necessarily a discontinuous island-shaped thin film. On a sapphire substrate 51, the first nitride semiconductor having a composition of Al 1-a-b-c B a Ga b In c N (0 <a ≦ 1,0 ≦ b <1,0 ≦ c <1) 52 are formed as a number of island-like crystals. At this time, the island-shaped thin film has a shape in which island-shaped crystals are combined with each other. In order to sufficiently perform the twist bending in the propagation direction of dislocation and the formation of the half loop, the average roughness of the surface of the first nitride semiconductor 52 of the composition Al 1-ab-cB a Ga b In c N That is, it is desirable that either the mean square root roughness or the arithmetic mean roughness is 0.1 microns or more. In other words, the average roughness of the interface between the second nitride semiconductor 53 of the composition as the first nitride semiconductor 52 Al 1-d-e- f B d Ga e In f N is 0.1 microns or more It is desirable. Further, it is desirable that the values of the B compositions a and d have the above-described relationship.

図6に、本発明の実施例2にかかる窒化物半導体薄膜を示す。窒化物半導体薄膜は、主方位面が(0001)面から±5度以内の面であるサファイア基板61上に、MOCVD装置を用いて形成される。サファイア基板61上に、B0.02Ga0.98Nの組成を有する第1の窒化物半導体62を、島状の多数の結晶として形成する。次に、GaNの組成を有する第2の窒化物半導体63を形成する。実施例1と同様の効果により、貫通転位64の一部がハーフループ65を形成して消滅し、第2の窒化物半導体63の貫通転位密度は著しく減少していた。透過型電子顕微鏡による断面観察を行った結果、第2の窒化物半導体63の貫通転位密度は、5×10cm−2であった。この値は、従来のサファイア基板上にGaN薄膜を形成した窒化物半導体(図1)より、二桁以上低い。 FIG. 6 shows a nitride semiconductor thin film according to Example 2 of the present invention. The nitride semiconductor thin film is formed using a MOCVD apparatus on the sapphire substrate 61 whose main azimuth plane is a plane within ± 5 degrees from the (0001) plane. On the sapphire substrate 61, the first nitride semiconductor 62 having a composition of B 0.02 Ga 0.98 N is formed as a large number of island-shaped crystals. Next, a second nitride semiconductor 63 having a GaN composition is formed. Due to the same effect as in Example 1, a part of the threading dislocation 64 disappeared by forming the half loop 65, and the threading dislocation density of the second nitride semiconductor 63 was significantly reduced. As a result of cross-sectional observation with a transmission electron microscope, the threading dislocation density of the second nitride semiconductor 63 was 5 × 10 7 cm −2 . This value is two orders of magnitude lower than that of a nitride semiconductor (FIG. 1) in which a GaN thin film is formed on a conventional sapphire substrate.

ここで、第1の窒化物半導体62の平均厚さは0.5ミクロン、第2の窒化物半導体63の平均厚さは2ミクロン、両者の界面の平均粗さは0.15ミクロンである。図7に、界面の平均粗さと貫通転位密度との関係を示す。界面の平均粗さを0.1ミクロン以上とすることで、貫通転位密度を二桁以上低くできることがわかる。   Here, the average thickness of the first nitride semiconductor 62 is 0.5 microns, the average thickness of the second nitride semiconductor 63 is 2 microns, and the average roughness of the interface between them is 0.15 microns. FIG. 7 shows the relationship between the average roughness of the interface and the threading dislocation density. It can be seen that the threading dislocation density can be reduced by two orders of magnitude or more by setting the average roughness of the interface to 0.1 microns or more.

さらに、図6に示した窒化物半導体薄膜に電極を形成してシート抵抗を測定したところ、室温において2.3×1010Ω/□と極めて高抵抗であった。この値は、従来のサファイア基板上にGaN薄膜を形成した窒化物半導体(図1)より、5桁も高い。これは、従来の問題点であった、MOCVD成長中にサファイア基板から混入した酸素による基板界面付近の低抵抗層が消失し、残留キャリア密度が著しく低減したためである。 Furthermore, when the electrode was formed on the nitride semiconductor thin film shown in FIG. 6 and the sheet resistance was measured, the resistance was as extremely high as 2.3 × 10 10 Ω / □ at room temperature. This value is five orders of magnitude higher than that of a nitride semiconductor (FIG. 1) in which a GaN thin film is formed on a conventional sapphire substrate. This is because the low resistance layer near the substrate interface due to oxygen mixed from the sapphire substrate disappears during MOCVD growth, which is a conventional problem, and the residual carrier density is significantly reduced.

上述したように、MOCVDの典型的な成長条件下では、BNは結晶構造として閃亜鉛鉱型とグラファイト型の両方を取りうる。閃亜鉛鉱型の結晶構造は、AlN、GaN、InN、またはこれらの混晶が取りうるウルツ鉱型の結晶構造と同様に、sp3の混成軌道を有し、B原子とN原子とが結合している。ところが、グラファイト型の結晶構造は、sp2の混成軌道を有し、B原子とN原子が結合している。組成B0.02Ga0.98Nの第1の窒化物半導体62において、大部分のB−N結合はsp3混成軌道である。ところが、ごく一部のB−N結合はsp2混成軌道であり、その結果、B0.02Ga0.98Nのバンドギャップ内にアクセプターとして働く深い準位が形成される。このため、サファイア基板61から混入した酸素によるドナーが補償され、界面付近の窒化物半導体も極めて高抵抗となる。 As mentioned above, under typical growth conditions of MOCVD, BN can take both zincblende and graphite types as crystal structures. The zinc blende type crystal structure has sp3 hybrid orbitals, like the wurtzite type crystal structure that can be taken by AlN, GaN, InN, or a mixed crystal thereof, and the B atom and the N atom are bonded to each other. ing. However, the graphite-type crystal structure has sp2 hybrid orbitals, and B atoms and N atoms are bonded. In the first nitride semiconductor 62 having the composition B 0.02 Ga 0.98 N, most BN bonds are sp3 hybrid orbitals. However, a very small part of BN bonds are sp2 hybrid orbitals, and as a result, deep levels acting as acceptors are formed in the band gap of B 0.02 Ga 0.98 N. For this reason, the donor by the oxygen mixed from the sapphire substrate 61 is compensated, and the nitride semiconductor near the interface also has an extremely high resistance.

図6に示した窒化物半導体薄膜のB組成の膜厚方向の分布を、2次イオン質量分析装置で測定した。サファイア基板61との界面から0.5ミクロンの位置までは、B組成が0.02であり、それ以上ではB組成が急激に減少し、界面から0.6ミクロンの位置におけるB組成は検出限界以下であった。従って、従来高抵抗化の手法として用いられた、アクセプターとして鉄をドーピング手法におけるメモリー効果の問題は、本実施形態により克服することができる。   The distribution in the film thickness direction of the B composition of the nitride semiconductor thin film shown in FIG. 6 was measured with a secondary ion mass spectrometer. The B composition is 0.02 from the interface with the sapphire substrate 61 to the position of 0.5 micron, and the B composition decreases sharply beyond that, and the B composition at the position of 0.6 micron from the interface is the detection limit. It was the following. Therefore, the problem of the memory effect in the technique of doping iron as an acceptor, which has been conventionally used as a technique for increasing resistance, can be overcome by this embodiment.

GaNの組成を有する第2の窒化物半導体63に、Si原子をわずかにドーピングした窒化物半導体を作製し、電極を形成した後ホール測定を行った。電子濃度は6.7×1016cm−3であり、ホール電子移動度は874cm−1−1であった。このことは、本実施形態で得られた窒化物半導体が、電気的にも極めて高品質であることを示す結果である。実施例2にかかる窒化物半導体薄膜を、3インチ径のサファイア基板を用いて作成した場合であっても、基板全面にわたって同様の結果が得られた。 A nitride semiconductor slightly doped with Si atoms was produced on the second nitride semiconductor 63 having a GaN composition, and after the electrodes were formed, hole measurement was performed. The electron concentration was 6.7 × 10 16 cm −3 and the hole electron mobility was 874 cm 2 V −1 s −1 . This is a result showing that the nitride semiconductor obtained in the present embodiment is extremely high in electrical quality. Even when the nitride semiconductor thin film according to Example 2 was formed using a 3-inch diameter sapphire substrate, similar results were obtained over the entire surface of the substrate.

実施例2においては、第1の窒化物半導体62として組成B0.02Ga0.98N、および、第2の窒化物半導体63として組成GaNの組み合わせを用いたが、実施例1のように、Al、Inを含む窒化物半導体を用いてもよい。すなわち、第1の窒化物半導体62として組成Al1−a−b−cGaInN(0<a≦1,0≦b<1,0≦c<1)、および、第2の窒化物半導体63として組成Al1−d−e−fGaInN(0≦d<1,0≦e≦1,0≦f≦1,d<a)を用いた場合でも、同様の結果が得られる。このとき、上述したように、B組成のaとdの値に関して、aの値が0.001以上0.2以下であり、かつ、d<aなる関係を満たしていることが望ましい。 In Example 2, the combination of the composition B 0.02 Ga 0.98 N as the first nitride semiconductor 62 and the composition GaN as the second nitride semiconductor 63 was used, but as in Example 1 Alternatively, a nitride semiconductor containing Al, In may be used. That is, as the first nitride semiconductor 62, the composition Al 1 -abc B a Ga b In c N (0 <a ≦ 1, 0 ≦ b <1, 0 ≦ c <1), and the second nitride composition as semiconductor 63 Al 1-d-e- f B d Ga e in f N of (0 ≦ d <1,0 ≦ e ≦ 1,0 ≦ f ≦ 1, d <a) even in the case of using the Similar results are obtained. At this time, as described above, regarding the values of a and d of the B composition, it is desirable that the value of a is 0.001 or more and 0.2 or less and that the relationship d <a is satisfied.

また、第1の窒化物半導体62の島状薄膜は、島状の多数の結晶でも島状結晶同士が互いに合体した形状でもどちらでも構わない。さらに、第1の窒化物半導体62を2層以上繰り返し用いることによって、転位密度はさらに小さくなる。基板は、サファイア基板に限るものではないが、窒化物半導体に混入することによってドナーとして電子を供給する可能性のある元素を含む基板を用いると、本実施形態にかかる効果を得ることができる。これらの元素としては、炭素、酸素、硫黄、セレン、テルル、珪素、ゲルマニウム、またはスズ等がある。   Further, the island-shaped thin film of the first nitride semiconductor 62 may be either a large number of island-shaped crystals or a shape in which the island-shaped crystals are combined with each other. Furthermore, by repeatedly using two or more layers of the first nitride semiconductor 62, the dislocation density is further reduced. The substrate is not limited to the sapphire substrate, but if a substrate containing an element that can supply electrons as a donor when mixed into a nitride semiconductor is used, the effect according to the present embodiment can be obtained. These elements include carbon, oxygen, sulfur, selenium, tellurium, silicon, germanium, or tin.

図8に、本発明の実施例3にかかる窒化物半導体薄膜を示す。窒化物半導体薄膜は、主方位面が(0001)面から±5度以内の面であるサファイア基板81上に、MOCVD装置を用いて形成される。サファイア基板81上に、AlO(0≦x≦1.5,0≦y≦1)の組成を有する傾斜層86を形成し、その上にB0.02Ga0.98Nの組成を有する第1の窒化物半導体82を、島状の多数の結晶として形成する。次に、GaNの組成を有する第2の窒化物半導体83を形成する。ここで、傾斜層86の膜厚は20nmであり、O組成のxとN組成のyは膜厚方向(基板表面に垂直な方向)に傾斜的に滑らかに変化している。サファイア基板81との界面において、x=1.5かつy=0(すなわちAlO1.5=Al)であり、膜厚が増加するにつれてxとyが線形的に変化し、膜厚が20nmにおいてx=0かつy=1(すなわちAlN)である。 FIG. 8 shows a nitride semiconductor thin film according to Example 3 of the present invention. The nitride semiconductor thin film is formed on the sapphire substrate 81 whose main orientation plane is a plane within ± 5 degrees from the (0001) plane using an MOCVD apparatus. An inclined layer 86 having a composition of AlO x N y (0 ≦ x ≦ 1.5, 0 ≦ y ≦ 1) is formed on the sapphire substrate 81, and a composition of B 0.02 Ga 0.98 N is formed thereon. The first nitride semiconductor 82 having the structure is formed as a number of island-shaped crystals. Next, a second nitride semiconductor 83 having a GaN composition is formed. Here, the thickness of the inclined layer 86 is 20 nm, and the x of the O composition and the y of the N composition change smoothly in an inclined manner in the film thickness direction (direction perpendicular to the substrate surface). At the interface with the sapphire substrate 81, x = 1.5 and y = 0 (that is, AlO 1.5 = Al 2 O 3 ), and as the film thickness increases, x and y change linearly. Is x = 0 and y = 1 (ie, AlN) at 20 nm.

傾斜層86により3つの効果が得られる。ホウ素(B)とサファイア基板81の構成元素である酸素とは、非常に反応しやすく、成長初期において組成B0.02Ga0.98Nの第1の窒化物半導体82の品質が低下する。実施例3では、組成AlOの傾斜層86の表面がAlNとなっており、酸素を含まないため、第1の効果として、このような品質低下を防ぐことができる。このように、組成AlOの傾斜層は、ホウ素(B)を含む窒化物半導体との組み合わせにおいて、従来にない顕著な効果を有する。 The gradient layer 86 provides three effects. Boron (B) and oxygen, which is a constituent element of the sapphire substrate 81, react very easily, and the quality of the first nitride semiconductor 82 having the composition B 0.02 Ga 0.98 N is deteriorated in the early stage of growth. In Example 3, since the surface of the graded layer 86 having the composition AlO x N y is AlN and does not contain oxygen, such a deterioration in quality can be prevented as a first effect. As described above, the graded layer having the composition AlO x N y has a remarkable effect that is not found in the past in combination with a nitride semiconductor containing boron (B).

第2の効果は、組成AlOの傾斜層86の表面が酸素を含まないため、組成GaNの第2の窒化物半導体83に対する酸素の混入がさらに抑制され、残留キャリア密度が減少する。第3の効果は、傾斜層86の格子定数が、サファイア基板81と同じAlの値から、窒化物半導体であるAlNの値に滑らかに変化することによって、貫通転位の発生がさらに抑制される。その結果、図7に示した窒化物半導体薄膜に電極を形成してシート抵抗を測定したところ、室温において4.4×1010Ω/□と実施例2と比較してさらに大きくなった。 The second effect is that since the surface of the graded layer 86 with the composition AlO x N y does not contain oxygen, mixing of oxygen into the second nitride semiconductor 83 with the composition GaN is further suppressed, and the residual carrier density is reduced. The third effect is that the generation of threading dislocations is further suppressed by smoothly changing the lattice constant of the inclined layer 86 from the value of Al 2 O 3 which is the same as that of the sapphire substrate 81 to the value of AlN which is a nitride semiconductor. Is done. As a result, when an electrode was formed on the nitride semiconductor thin film shown in FIG. 7 and the sheet resistance was measured, it was 4.4 × 10 10 Ω / □ at room temperature, which was larger than that in Example 2.

GaNの組成を有する第2の窒化物半導体83に、Si原子をわずかにドーピングした窒化物半導体を作製し、電極を形成した後ホール測定を行った。電子濃度は7.1×1016cm−3であり、ホール電子移動度は922cm−1−1であった。実施例2の窒化物半導体薄膜と比較すると、さらに電気的な品質が向上している。 A nitride semiconductor slightly doped with Si atoms was produced on the second nitride semiconductor 83 having a GaN composition, and after forming an electrode, hole measurement was performed. The electron concentration was 7.1 × 10 16 cm −3 and the hole electron mobility was 922 cm 2 V −1 s −1 . Compared with the nitride semiconductor thin film of Example 2, the electrical quality is further improved.

実施例3においては、傾斜層86の厚さを20nmとしたが、この厚さは1nmから100nmの間で自由に設定できる。また、第1の窒化物半導体82として組成B0.02Ga0.98N、および、第2の窒化物半導体83として組成GaNの組み合わせを用いたが、実施例1のように、Al、Inを含む窒化物半導体を用いてもよい。すなわち、第1の窒化物半導体82として組成Al1−a−b−cGaInN(0<a≦1,0≦b<1,0≦c<1)、および、第2の窒化物半導体83として組成Al1−d−e−fGaInN(0≦d<1,0≦e≦1,0≦f≦1,d<a)を用いた場合でも、同様の結果が得られる。このとき、上述したように、B組成のaとdの値に関して、aの値が0.001以上0.2以下であり、かつ、d<aなる関係を満たしていることが望ましい。 In the third embodiment, the thickness of the inclined layer 86 is 20 nm, but this thickness can be freely set between 1 nm and 100 nm. Further, the combination of the composition B 0.02 Ga 0.98 N as the first nitride semiconductor 82 and the composition GaN as the second nitride semiconductor 83 was used. As in Example 1, Al, In A nitride semiconductor containing may be used. That is, as the first nitride semiconductor 82, the composition Al 1 -abc B a Ga b In c N (0 <a ≦ 1, 0 ≦ b <1, 0 ≦ c <1), and the second nitride composition as semiconductor 83 Al 1-d-e- f B d Ga e in f N of (0 ≦ d <1,0 ≦ e ≦ 1,0 ≦ f ≦ 1, d <a) even in the case of using the Similar results are obtained. At this time, as described above, regarding the values of a and d of the B composition, it is desirable that the value of a is 0.001 or more and 0.2 or less and that the relationship d <a is satisfied.

また、第1の窒化物半導体82の島状薄膜は、島状の多数の結晶でも島状結晶同士が互いに合体した形状でもどちらでも構わない。さらに、第1の窒化物半導体82を2層以上繰り返し用いることによって、さらに転位密度はさらに小さくなる。   In addition, the island-shaped thin film of the first nitride semiconductor 82 may have either a large number of island-shaped crystals or a shape in which the island-shaped crystals are combined with each other. Furthermore, by repeatedly using two or more layers of the first nitride semiconductor 82, the dislocation density is further reduced.

本実施形態にかかる窒化物半導体薄膜の製造方法について簡単に記述する。窒化物半導体薄膜は、一般の結晶成長装置、すなわち液層成長装置または気相成長装置を用いることができる。しかし、結晶品質、薄膜の膜厚制御性、大量生産性、あるいは、大面積化への対応等を考えると、実施例1〜3に記載したように、MOCVD装置を用いるのが好適である。   A method for manufacturing a nitride semiconductor thin film according to this embodiment will be briefly described. For the nitride semiconductor thin film, a general crystal growth apparatus, that is, a liquid layer growth apparatus or a vapor phase growth apparatus can be used. However, considering crystal quality, thin film thickness controllability, mass productivity, and response to large areas, it is preferable to use an MOCVD apparatus as described in Examples 1 to 3.

窒素の原料としては、アンモニア、ジメチルヒドラジン、ボラジン誘導体[B(C2n+1](nは整数)、等を用いることができる。ホウ素の原料としては、トリメチルボロン、トリエチルボロン、ジボラン、デカボラン、ボラジン誘導体[B(C2n+1](nは整数)等を用いることができる。 As a raw material for nitrogen, ammonia, dimethylhydrazine, borazine derivative [B 3 (C n H 2n + 1 ) 3 N 3 H 3 ] (n is an integer), or the like can be used. As a raw material of boron, trimethylboron, triethylboron, diborane, decaborane, a borazine derivative [B 3 (C n H 2n + 1 ) 3 N 3 H 3 ] (n is an integer) or the like can be used.

なお、窒素原料としてアンニモアを、ホウ素原料としてジボランを用いた場合、両原料が成長基板に到達する前に、気相中で寄生反応を起こして不均一核生成が起こり、窒化物半導体の品質が損なわれてしまう。ボラジン誘導体[B(C2n+1]は、窒素とホウ素を共に含むため、気相での寄生反応を抑制できるため、特に高品質な窒化物半導体を形成できる。また、デカボランは、寄生反応を起こしにくいので、上記の窒素原料と一緒に用いるのに適している。また、蒸気圧が低いので、B組成が比較的低い窒化物半導体を製造するのに非常に適している。 When Annimore is used as the nitrogen material and diborane is used as the boron material, before both materials reach the growth substrate, a parasitic reaction occurs in the gas phase to cause heterogeneous nucleation, and the quality of the nitride semiconductor is improved. It will be damaged. Since the borazine derivative [B 3 (C n H 2n + 1 ) 3 N 3 H 3 ] contains both nitrogen and boron, a parasitic reaction in the gas phase can be suppressed, so that a particularly high-quality nitride semiconductor can be formed. In addition, decaborane is less likely to cause a parasitic reaction and is therefore suitable for use with the above nitrogen raw material. Moreover, since the vapor pressure is low, it is very suitable for producing a nitride semiconductor having a relatively low B composition.

図2に示した実施例1にかかる窒化物半導体薄膜の製造方法を説明する。(a)MOCVD装置に、サファイア基板21を挿入し、少なくとも水素を流しながら、基板のクリーニングを行う。この時の最適な圧力と基板温度は、0.01〜3気圧、800〜1200℃である。以降、圧力と温度はこれらの範囲とする。   A method for manufacturing the nitride semiconductor thin film according to Example 1 shown in FIG. 2 will be described. (A) The sapphire substrate 21 is inserted into the MOCVD apparatus, and the substrate is cleaned while flowing at least hydrogen. The optimum pressure and substrate temperature at this time are 0.01 to 3 atmospheres and 800 to 1200 ° C. Hereinafter, pressure and temperature are within these ranges.

(b)Alを含む有機金属、Gaを含む有機金属、Inを含む有機金属、上述のボラジン誘導体またはデカボラン、および、アンモニアを原料ガスとして用いる。水素と窒素をキャリアガスとして用いて、サファイア基板21上に組成Al1−a−b−cGaInN(0<a≦1,0≦b<1,0≦c<1)の島状の第1の窒化物半導体22を形成する。このとき、Alを含む有機金属、Gaを含む有機金属、Inを含む有機金属、ボラジン誘導体またはデカボランの供給量を適宜調整することにより、B組成aが0.001以上0.2以下となるようにする。また、全ての原料ガスの供給時間を適宜調整することにより、島状の第1の窒化物半導体22の平均高さが、0.1ミクロン以上になるようにする。あるいは、島状結晶同士が互いに合体した形状を有する場合は、第1の窒化物半導体22と第2の窒化物半導体23との界面の平均粗さが0.1ミクロン以上となるようにする。 (B) An organic metal containing Al, an organic metal containing Ga, an organic metal containing In, the borazine derivative or decaborane described above, and ammonia are used as a source gas. Using hydrogen and nitrogen as the carrier gas, the composition on the sapphire substrate 21 Al 1-a-b- c B a Ga b In c N (0 <a ≦ 1,0 ≦ b <1,0 ≦ c <1) The island-shaped first nitride semiconductor 22 is formed. At this time, by appropriately adjusting the supply amount of the organic metal containing Al, the organic metal containing Ga, the organic metal containing In, the borazine derivative, or decaborane, the B composition a becomes 0.001 or more and 0.2 or less. To. Further, the average height of the island-shaped first nitride semiconductor 22 is adjusted to 0.1 μm or more by appropriately adjusting the supply time of all source gases. Alternatively, in the case where the island-shaped crystals have a shape that is combined with each other, the average roughness of the interface between the first nitride semiconductor 22 and the second nitride semiconductor 23 is set to 0.1 microns or more.

(c)同様にして、第2の窒化物半導体23を形成する。Alを含む有機金属、Gaを含む有機金属、Inを含む有機金属、ボラジン誘導体またはデカボラン、および、アンモニアを原料ガスとして用いる。水素と窒素をキャリアガスとして用いて、組成Al1−d−e−fGaInN(0≦d<1,0≦e≦1,0≦f≦1,d<a)の窒化物半導体23を形成する。このとき、Alを含む有機金属、Gaを含む有機金属、Inを含む有機金属、ボラジン誘導体またはデカボランの供給量を適宜調整することにより、B組成dが第1の窒化物半導体22のB組成aよりも小さくなるようにする。 (C) Similarly, the second nitride semiconductor 23 is formed. An organic metal containing Al, an organic metal containing Ga, an organic metal containing In, a borazine derivative or decaborane, and ammonia are used as a source gas. Using hydrogen and nitrogen as the carrier gas, the composition Al 1-d-e-f B d Ga e In f N (0 ≦ d <1,0 ≦ e ≦ 1,0 ≦ f ≦ 1, d <a) of A nitride semiconductor 23 is formed. At this time, the B composition d becomes the B composition a of the first nitride semiconductor 22 by appropriately adjusting the supply amount of the organic metal containing Al, the organic metal containing Ga, the organic metal containing In, the borazine derivative, or decaborane. To be smaller.

(d)(b)と(c)の工程を繰り返すことにより、図2に示した窒化物半導体薄膜を作製することができる。   (D) By repeating the steps (b) and (c), the nitride semiconductor thin film shown in FIG. 2 can be produced.

サファイア基板上に成長させた窒化物半導体薄膜を示す断面図である。It is sectional drawing which shows the nitride semiconductor thin film grown on the sapphire substrate. 本発明の実施例1にかかる窒化物半導体薄膜を示す断面図である。It is sectional drawing which shows the nitride semiconductor thin film concerning Example 1 of this invention. サファイア基板上に成長した第1の窒化物半導体を示す鳥瞰電子顕微鏡写真である。It is a bird's-eye electron micrograph which shows the 1st nitride semiconductor grown on the sapphire substrate. ホウ素(B)の組成aの値と貫通転位密度との関係を示す図である。It is a figure which shows the relationship between the value of the composition a of boron (B), and a threading dislocation density. 島状薄膜が連続的に形成された第1の窒化物半導体を示す断面図である。It is sectional drawing which shows the 1st nitride semiconductor in which the island-like thin film was formed continuously. 本発明の実施例2にかかる窒化物半導体薄膜を示す断面図である。It is sectional drawing which shows the nitride semiconductor thin film concerning Example 2 of this invention. 界面の平均粗さと貫通転位密度との関係を示す図である。It is a figure which shows the relationship between the average roughness of an interface, and a threading dislocation density. 本発明の実施例3にかかる窒化物半導体薄膜を示す断面図である。It is sectional drawing which shows the nitride semiconductor thin film concerning Example 3 of this invention.

符号の説明Explanation of symbols

11,21,51,61,81 サファイア基板
12 GaN
13,24,64,84 貫通転位
14 界面付近の窒化物半導体層
22,52,62,82 第1の窒化物半導体
23,53,63,83 第2の窒化物半導体
25,65,85 ハーフループ
86 傾斜層
11, 21, 51, 61, 81 Sapphire substrate 12 GaN
13, 24, 64, 84 Threading dislocations 14 Nitride semiconductor layer near the interface 22, 52, 62, 82 First nitride semiconductor 23, 53, 63, 83 Second nitride semiconductor 25, 65, 85 Half loop 86 Tilting layer

Claims (9)

基板上に形成された、ホウ素を含む第1の窒化物半導体と、
該第1の窒化物半導体上に形成され、ホウ素の組成比が、前記第1の窒化物半導体のホウ素の組成比よりも小さい第2の窒化物半導体とを備え
前記第1の窒化物半導体と前記第2の窒化物半導体との間の界面は、平均粗さが0.1ミクロン以上であることを特徴とする窒化物半導体薄膜。
A first nitride semiconductor containing boron formed on the substrate;
A second nitride semiconductor formed on the first nitride semiconductor and having a boron composition ratio smaller than the boron composition ratio of the first nitride semiconductor ;
The nitride semiconductor thin film characterized in that an average roughness of an interface between the first nitride semiconductor and the second nitride semiconductor is 0.1 microns or more .
基板上に形成された、ホウ素を含む第1の窒化物半導体と、
該第1の窒化物半導体上に形成され、ホウ素の組成比が、前記第1の窒化物半導体のホウ素の組成比よりも小さい第2の窒化物半導体とを備え、
前記第1の窒化物半導体は、側面ファセットを有する複数の島状の結晶が前記基板上に形成され、平均高さが0.1ミクロン以上であり、前記側面ファセットの面方位が{11−20}、{1−100}、{11−22}または{1−101}であることを特徴とする窒化物半導体薄膜。
A first nitride semiconductor containing boron formed on the substrate;
A second nitride semiconductor formed on the first nitride semiconductor and having a boron composition ratio smaller than the boron composition ratio of the first nitride semiconductor;
The first nitride semiconductor, a plurality of island-like crystals having a side facets are formed on the substrate, the average height of Ri der than 0.1 microns, the plane orientation of the side facets {11- 20}, {1-100}, {11-22} or {1-101} der nitride compound semiconductor thin characterized Rukoto.
前記第1の窒化物半導体のホウ素の組成は、0.001以上0.2以下であることを特徴とする請求項1または2に記載の窒化物半導体薄膜。 3. The nitride semiconductor thin film according to claim 1, wherein the boron composition of the first nitride semiconductor is 0.001 or more and 0.2 or less. 前記第1の窒化物半導体と前記第2の窒化物半導体とを、少なくとも一組以上さらに積層したことを特徴とする請求項1、2または3に記載の窒化物半導体薄膜。 4. The nitride semiconductor thin film according to claim 1 , wherein at least one or more sets of the first nitride semiconductor and the second nitride semiconductor are further laminated. 5. 前記基板は、サファイア基板であることを特徴とする請求項1ないしのいずれかに記載の窒化物半導体薄膜。 The substrate, the nitride semiconductor thin film according to any one of claims 1 to 4, characterized in that a sapphire substrate. 前記基板は、炭素、酸素、硫黄、セレン、テルル、珪素、ゲルマニウム、またはスズのうち、少なくとも1つ以上の元素を含むことを特徴とする請求項1ないしのいずれかに記載の窒化物半導体薄膜。 The nitride semiconductor according to any one of claims 1 to 4 , wherein the substrate contains at least one element of carbon, oxygen, sulfur, selenium, tellurium, silicon, germanium, or tin. Thin film. 前記基板と前記第1の窒化物半導体との間に、組成AlO(0≦x≦1.5、0≦y≦1)の傾斜層が挿入されていることを特徴とする請求項またはに記載の窒化物半導体薄膜。 An inclined layer having a composition AlO x N y (0 ≦ x ≦ 1.5, 0 ≦ y ≦ 1) is inserted between the substrate and the first nitride semiconductor. 4. The nitride semiconductor thin film according to 4 or 5 . 請求項1ないし7のいずれかに記載の窒化物半導体薄膜を製造するための窒化物半導体薄膜の製造方法であって、
ホウ素を含む第1の窒化物半導体を、基板上に形成する第1の工程と、
ホウ素の組成比が、前記第1の窒化物半導体のホウ素の組成比よりも小さい第2の窒化物半導体を、前記第1の窒化物半導体上に形成する第2の工程と
を備えたことを特徴とする窒化物半導体薄膜の製造方法。
A method for producing a nitride semiconductor thin film for producing the nitride semiconductor thin film according to claim 1,
A first step of forming a first nitride semiconductor containing boron on a substrate;
A second step of forming on the first nitride semiconductor a second nitride semiconductor having a boron composition ratio smaller than the boron composition ratio of the first nitride semiconductor. A method for producing a nitride semiconductor thin film.
前記窒化物の原料として少なくともボラジン誘導体[B(C2n+1](nは整数)、デカボランのいずれかを用いることを特徴とする請求項8に記載の窒化物半導体薄膜の製造方法。 9. The nitride semiconductor according to claim 8, wherein at least one of a borazine derivative [B 3 (C n H 2n + 1 ) 3 N 3 H 3 ] (n is an integer) and decaborane are used as a material for the nitride. Thin film manufacturing method.
JP2005146974A 2005-05-19 2005-05-19 Nitride semiconductor thin film and manufacturing method thereof Active JP4535935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146974A JP4535935B2 (en) 2005-05-19 2005-05-19 Nitride semiconductor thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146974A JP4535935B2 (en) 2005-05-19 2005-05-19 Nitride semiconductor thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006324512A JP2006324512A (en) 2006-11-30
JP4535935B2 true JP4535935B2 (en) 2010-09-01

Family

ID=37543962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146974A Active JP4535935B2 (en) 2005-05-19 2005-05-19 Nitride semiconductor thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4535935B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260296A (en) * 2008-03-18 2009-11-05 Hitachi Cable Ltd Nitride semiconductor epitaxial wafer and nitride semiconductor element
EP2543507B1 (en) * 2010-03-02 2019-08-28 Sumitomo Metal Mining Co., Ltd. Laminate, method for producing same, and functional element using same
DE102011114671A1 (en) * 2011-09-30 2013-04-04 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
KR102295780B1 (en) * 2017-08-31 2021-09-01 도시바 마테리알 가부시키가이샤 Semiconductor light emitting device and manufacturing method thereof
CN113206174B (en) * 2021-04-14 2022-07-12 华中科技大学 Deep ultraviolet LED hetero-epitaxial substrate and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141495A (en) * 1988-11-21 1990-05-30 Asahi Chem Ind Co Ltd Laminated single crystal substrate having thin aluminum nitride single crystal film and production thereof
JP2000188260A (en) * 1998-12-22 2000-07-04 Samsung Electro Mech Co Ltd Nitride-based compound semiconductor element, crystal growth of the nitride-based compound semiconductor, and manufacture of the element
JP2001015496A (en) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp Heat-resistance low dielectric constant thin film, formation method therefor, semiconductor interlayer insulating film made of the heat-resistance low dielectric constant thin film, and semiconductor device using the semiconductor interlayer insulating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141495A (en) * 1988-11-21 1990-05-30 Asahi Chem Ind Co Ltd Laminated single crystal substrate having thin aluminum nitride single crystal film and production thereof
JP2000188260A (en) * 1998-12-22 2000-07-04 Samsung Electro Mech Co Ltd Nitride-based compound semiconductor element, crystal growth of the nitride-based compound semiconductor, and manufacture of the element
JP2001015496A (en) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp Heat-resistance low dielectric constant thin film, formation method therefor, semiconductor interlayer insulating film made of the heat-resistance low dielectric constant thin film, and semiconductor device using the semiconductor interlayer insulating film

Also Published As

Publication number Publication date
JP2006324512A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4249184B2 (en) Nitride semiconductor growth substrate
JP5133927B2 (en) Compound semiconductor substrate
US9362115B2 (en) Nitride semiconductor wafer, nitride semiconductor element, and method for manufacturing nitride semiconductor wafer
Jang et al. High-quality GaN/Si (1 1 1) epitaxial layers grown with various Al0. 3Ga0. 7N/GaN superlattices as intermediate layer by MOCVD
GB2485418A (en) GaN on Si device substrate with GaN layer including sub-10nm SiNx interlayers that promote crystal growth with reduced threading dislocations
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
KR20100090767A (en) Semiconductor substrate, method for producing semiconductor substrate, and electronic device
JP4860736B2 (en) Semiconductor structure and method of manufacturing the same
EP1298709B1 (en) Method for producing a iii nitride element comprising a iii nitride epitaxial substrate
JP2019110344A (en) Nitride semiconductor device and nitride semiconductor substrate
JP4535935B2 (en) Nitride semiconductor thin film and manufacturing method thereof
JP7013070B2 (en) III-N material grown on an ErAIN buffer on a silicon substrate
KR20020065892A (en) Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP3772816B2 (en) Gallium nitride crystal substrate, method for manufacturing the same, gallium nitride semiconductor device, and light emitting diode
EP0951077A2 (en) Method for growing nitride compound semiconductor
KR20100104997A (en) Nitride semiconductor substrate having dislocation blocking layer and manufacturing method thereof
KR100699739B1 (en) Iii-v compound semiconductor
JP4051311B2 (en) Nitride semiconductor crystal growth method
KR100623268B1 (en) Group ? nitride semicondoctor substrate and its manufacturing method
JP3946976B2 (en) Semiconductor device, epitaxial substrate, semiconductor device manufacturing method, and epitaxial substrate manufacturing method
JP6527667B2 (en) Method of manufacturing nitride semiconductor substrate
JP2023096845A (en) Template for producing nitride semiconductor film and method for manufacturing the same
JP2014192246A (en) Semiconductor substrate and semiconductor element using the same
KR20020070110A (en) Method for fabricating a nitride film
Lee et al. Growth and characterization of In0. 28Ga0. 72N/GaN multiple-quantum wells on Si (1 1 1)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4535935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350