JPS6114107B2 - - Google Patents

Info

Publication number
JPS6114107B2
JPS6114107B2 JP53142657A JP14265778A JPS6114107B2 JP S6114107 B2 JPS6114107 B2 JP S6114107B2 JP 53142657 A JP53142657 A JP 53142657A JP 14265778 A JP14265778 A JP 14265778A JP S6114107 B2 JPS6114107 B2 JP S6114107B2
Authority
JP
Japan
Prior art keywords
diamond
powder
sintered body
iron group
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53142657A
Other languages
Japanese (ja)
Other versions
JPS5571671A (en
Inventor
Akio Hara
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14265778A priority Critical patent/JPS5571671A/en
Priority to CA000334154A priority patent/CA1149619A/en
Priority to FR7921331A priority patent/FR2434130A1/en
Priority to GB7929649A priority patent/GB2029389B/en
Priority to SE7907095A priority patent/SE442962B/en
Priority to US06/069,575 priority patent/US4303442A/en
Priority to AU50323/79A priority patent/AU531126B2/en
Priority to DE19792934567 priority patent/DE2934567A1/en
Publication of JPS5571671A publication Critical patent/JPS5571671A/en
Publication of JPS6114107B2 publication Critical patent/JPS6114107B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

現在非鉄合金やプラスチツク、セラミツクの切
削に、ダイヤモンドが70容量%を越し結合材とし
てCoを主成分とする金属が用いられた焼結体部
が超硬合金母材上に接合された工具材が市販され
ている。この工具材は価格が高いにもかかわらず
Siを多く含むAl合金や銅合金などの切削工具とし
て一部好評を博している。 本発明者らはこの工具材についてその特性など
を種々調査した。この工具材で切削加工用のバイ
トを作成し、前記したような材料を実際に切削し
てみると、確かに耐磨耗性の点においては従来用
いられてきた超硬合金製のバイトに比較してはる
かに優れており、また衝撃に対しては天然ダイヤ
モンドの単石から加工されたバイトに比較して強
靭である特徴を有している。 しかしこのような特徴を持つ反面、例えば非鉄
合金を切削した場合の被加工面を観察すると、天
然ダイヤモンド単石工具に比較して面粗度が粗
く、鏡面と呼ばれる美麗な仕上面は得られないこ
とが判つた。 また時計部品等の小物、薄肉の被加工物を切削
加工する場合、切削抵抗が大きく加工物が変形し
たり、寸法精度が維持できないといつた問題点が
ある。この理由について検討した結果次のことが
判明した。 市販のダイヤモンド焼結体の組織を観察すると
ダイヤモンド結晶の粒度が3〜10μであり、ダイ
ヤモンド結晶は互いに接合し、スケルトン構造を
なしており、その粒子間には結合材として金属
Coが存在する。この焼結体を用いたバイトの刃
先を見ると結晶粒子の大きさにほぼ近い凹凸が見
られ、天然ダイヤモンド工具の如く鋭い刃先では
ない。このことが美麗な仕上加工面が得られ難い
一つの理由と考えられる。またダイヤモンド粒子
間に存在する金属Co結合相は被削材金属との凝
着を起すことがあり、これも鏡面のような仕上加
工面が要求される場合には問題となる。 市販のダイヤモンド焼結体工具で線引きダイス
用途のものは約30〜60μの粗粒のダイヤモンド結
晶の焼結体である。線引きダイスには従来から天
然ダイヤモンド単石を用いたダイヤモンドダイス
が使用されているが、市販の焼結体を用いたダイ
スはこれと比較すると、寿命が永い、割れ難いと
いつた特徴はあるもののやはり切削工具の場合と
同様に線引きされた線材表面に結晶粒子程度のス
ジがつくといつたような問題があり、美麗な仕上
面が要求される用途には適さない。 本発明者等はこのような従来のダイヤモンド焼
結体工具材の欠点を克服するべく研究した結果、
本発明に到達した。即ちダイヤモンド焼結体の結
晶粒度を1μ以下、好ましくは0.5μ以下の極め
て微細なものとすることによつて前記した市販ダ
イヤモンド焼結体の欠点を解消し得たものであ
る。ダイヤモンドの粉末を用いて焼結体を作成す
る方法としては例えば特公昭39−20483号に示さ
れているようにダイヤモンドの粉末とこれを高圧
高温下で溶解する鉄族金属の粉末を混合してお
き、ダイヤモンドが安定な圧力、温度条件でこの
金属を溶解せしめてこれをダイヤモンドの結合材
とする方法がある。現在市販されているダイヤモ
ンド焼結体の製法は特公昭52−12126号に述べら
れているようにWC−Co超硬合金に接してダイヤ
モンド粉末を置き、超高圧下で超硬合金中のCo
が溶解する温度以上に加熱してこのCoをダイヤ
モンド粉末層中に溶浸せしめる方法がとられてい
る。発明者等は前記した従来の市販ダイヤモンド
焼結体の欠点を解消する為に極めて微細なダイヤ
モンド結晶の緻密な焼結体を得るべく、これ等の
方法を用いて種々焼結体を試作してみたが、満足
な結果は得られなかつた。 例えば、原料ダイヤモンド粉末として約0.3μ
の微粒を用い、金属Co粉と混合してこれを容器
に詰めダイヤモンド合成に用いられる超高圧装置
で圧力55Kb、温度1450℃で焼結したところ、緻
密な焼結体は得られたが、焼結体中のダイヤモン
ド粒子は約300μの大きさに粒成長しており、目
的とした微細結晶の焼結体は得られなかつた。こ
のようにダイヤモンド結晶はダイヤモンドが安定
な高温、高圧下でこれを溶解する鉄族金属の液相
が存在する場合は溶解析出現象により粒成長す
る。原料ダイヤモンド結晶の粒度を種々変えて同
様の実験を行なつた結果、粒度が3μ以上の場合
は顕著な粒成長は生じないことが分つた。これは
現在市販されているダイヤモンド焼結体の最も微
細な粒度に相当する。 ダイヤモンドの量が容量で大幅70%以下となる
とそのダイヤモンド粒子は互に隣接しなくなり、
このようにダイヤモンドの量の少ないダイヤモン
ド焼結体はCuやAlの合金を切削するような用途
には良い特性を示すことが発明者らの先願(特願
52−51381号)でも示されているが、岩石の切削
や線引ダイスの場合などでは、矢張りダイヤモン
ド含有量の高い焼結体に比べ、その特性は劣る。
本発明はダイヤモンドの量が容量で70%を越えダ
イヤモンド粒子が互いに隣接するような組成での
粒度1μ以下、好ましくは0.5μ以下の微粒ダイ
ヤモンドの焼結体に関する。このような焼結体の
作成は容易ではない。 発明者等は目的とする1μ以下の微細結晶焼結
体を製造する方法を種々検討した結果、1μ以下
の原料ダイヤモンド粉末にWC又は(Mo,W)
Cの微細な粉末を混入すると、鉄族金属融液と共
存した状態でもダイヤモンドの粒成長が抑制され
ることを見出し、特許出願している(特願昭53−
22333)。これに引続いて種々実験を行なつた結
果、Ti,Zr,Hf,V,Nb,Ta,Crの炭化物、窒
化物、硼化物を加えた場合にも共存する鉄族金属
に対して充分その添加量が多い場合にはダイヤモ
ンドの粒成長を抑制する効果があることを確認
し、本発明に到達したものである。 その理由としては微細なダイヤモンド結晶粒子
の間にこれ等の化合物粒子が存在することによつ
てこれが結晶成長に対しては不純物として作用す
ることで成長が抑制されるか、またはこれ等の化
合物が高温下で一部鉄族金属融液に溶解し、ダイ
ヤモンド結晶表面に炭化物として析出することで
粒成長が抑制されることが考えられる。 このような作用を有するものとしては微細なダ
イヤモンド結晶粒子間に介在していることが必要
であり、これ等化合物粉末も予めダイヤモンド結
晶と同等かそれ以下の粒度まで粉砕されており、
ダイヤモンド結晶粉末と均一に混合されているこ
とが必要でである。実験の結果によると化合物と
してはTi,Zr,Hf,V,Nb,Ta,の炭化物が最
も粒成長抑制効果が顕著であつた。また焼結体の
工具としての性能からみると、これ等の化合物は
鉄族金属と共にダイヤモンド結晶の結合材として
焼結体中に残るものであり、このもの自身の強
度・耐摩耗性が優れていることが必要である。こ
の面からみても炭化物を用いた方が高強度で耐摩
耗性に優れた焼結体が得られる。 本発明の焼結体に使用するダイヤモンド原料粉
末としては1μ以下好ましくは0.5μ以下のミク
ロンパウダーである。合成ダイヤモンド、天然ダ
イヤモンドのいずれでも良い。このダイヤモンド
粉末と前記化合物粉末の1種又は2種以上及び
Fe,Co,Niの鉄族金属粉末を均一にボールミル
等の手段を用いて混合する。この鉄族金属は予め
混合せずに焼結時に溶浸せしめても良い。また発
明者等の先願特願昭52−51381号の如くボールミ
ル時のポツトとボールを混入する炭化物等の化合
物と鉄族金属の焼結体で作成しておき、ダイヤモ
ンド粉末をボールミル粉砕すると同時にポツトと
ボールから炭化物等の化合物と鉄族金属の焼結体
の微細粉末を混入せしめる方法もある。 混合した粉末を超高圧装置に入れ、第1図に示
したダイヤモンドが安定な条件下で焼結する。こ
のとき使用した鉄族金属と炭化物等の化合物間に
生じる共晶液相の出現温度以上で焼結する必要が
ある。例えば化合物としてTiCを用い、鉄族金属
としてCoを用いた場合は常圧下では約1260℃で
液相が生じる。高圧下ではこの共晶温度は数十度
℃程度上昇するものと考えられている。従つての
場合は1300℃以上の温度で焼結される。 本発明のダイヤモンド焼結体の組成はダイヤモ
ンド含有量が容量で95〜70%の範囲である。95%
以上のダイヤモンド含有量では介在する化合粉の
量が充分でなく、焼結中にダイヤモンドの粒成長
を抑制する効果がうすれる。又ダイヤモンド含有
量が70%未満ではダイヤモンド粒子は互に隣接し
なくなることにより粒成長しなくなり、本発明の
技術範囲からはずれてしまう。又工具としての耐
摩耗性が劣り、目的とする天然ダイヤモンドに匹
敵する性能は得られない。焼結体中のダイヤモン
ドの結合材となる炭化物等の化合物と鉄族金属の
割合は一義的には定められないが、少くとも焼結
時に化合物が固体として存在するだけの量は必要
であり、例えばTiCを化合物として用いCoを結合
金属とした場合はTiCとCoの量的割合は前者を重
量で7%以上含む必要がある。 本発明の焼結体の用途としては特に美麗な仕上
加工面が要求される線引きダイスやAl合金やCu
合金の虹面が要求されるような現在単結晶ダイヤ
モンド工具が使用されている切削加工用バイトな
どがある。 以下実施例により具体的に説明する。 実施例 1 粒度0.5μの合成ダイヤモンド粉末とTiC及び
Co粉末をTiC−Co超硬合金製のポツト、ボール
を用いて粉砕混合した。作成した混合粉末の組成
は次の通りである。
Currently, for cutting nonferrous alloys, plastics, and ceramics, there are tool materials in which a sintered body with a diamond content of 70% by volume and a metal whose main component is Co as a bonding material is bonded to a cemented carbide base material. It is commercially available. Although this tool material is expensive,
It has gained popularity as a cutting tool for materials such as Al alloys and copper alloys that contain a large amount of Si. The present inventors conducted various investigations into the characteristics of this tool material. When we made a cutting tool using this tool material and actually cut the materials mentioned above, it was found that it was indeed compared to the conventionally used cemented carbide tool in terms of wear resistance. It also has the characteristic of being much stronger against impact than a tool made from a single natural diamond stone. However, although it has these characteristics, when observing the workpiece surface when cutting nonferrous alloys, for example, the surface roughness is rougher than that of natural diamond single stone tools, and a beautiful finished surface called a mirror surface cannot be obtained. It turned out that. Furthermore, when cutting small or thin workpieces such as watch parts, there are problems in that the cutting resistance is large and the workpiece may be deformed and dimensional accuracy cannot be maintained. As a result of examining the reason for this, the following was found. Observing the structure of a commercially available diamond sintered body, the grain size of the diamond crystals is 3 to 10μ, and the diamond crystals are bonded to each other to form a skeleton structure, and there is metal as a binding material between the particles.
Co exists. If you look at the cutting edge of a cutting tool made from this sintered body, you will see irregularities that are almost the same size as crystal grains, and the cutting edge is not as sharp as a natural diamond tool. This is considered to be one reason why it is difficult to obtain a beautiful finished surface. In addition, the metallic Co binding phase that exists between diamond particles can cause adhesion with the metal workpiece, which also poses a problem when a mirror-like finished surface is required. Commercially available diamond sintered tools for wire drawing dies are sintered diamond crystals with coarse grains of approximately 30 to 60 microns. Diamond dies made from a single natural diamond have traditionally been used as wire drawing dies, but compared to commercially available sintered dies, they have longer lifespans and are less likely to break. As in the case of cutting tools, there are problems such as the formation of streaks on the surface of the drawn wire, which are comparable to crystal grains, and it is not suitable for applications that require a beautiful finished surface. The present inventors conducted research to overcome these drawbacks of conventional diamond sintered tool materials, and found that
We have arrived at the present invention. That is, by making the crystal grain size of the diamond sintered body extremely fine, 1 micron or less, preferably 0.5 micron or less, the above-mentioned drawbacks of the commercially available diamond sintered material can be overcome. A method of creating a sintered body using diamond powder is, for example, as shown in Japanese Patent Publication No. 39-20483, by mixing diamond powder with iron group metal powder, which is melted under high pressure and high temperature. There is a method of melting this metal under pressure and temperature conditions where the diamond is stable and using it as a bonding material for the diamond. The manufacturing method for diamond sintered bodies currently on the market is as described in Japanese Patent Publication No. 52-12126, in which diamond powder is placed in contact with WC-Co cemented carbide, and the Co in the cemented carbide is heated under ultra-high pressure.
The method used is to infiltrate this Co into the diamond powder layer by heating it above the temperature at which it melts. In order to eliminate the drawbacks of the conventional commercially available diamond sintered bodies mentioned above, the inventors have prototyped various sintered bodies using these methods in order to obtain dense sintered bodies with extremely fine diamond crystals. I tried that, but I couldn't get a satisfactory result. For example, about 0.3μ as raw diamond powder
When the fine particles were mixed with metal Co powder and packed in a container and sintered at a pressure of 55 Kb and a temperature of 1450°C in an ultra-high pressure device used for diamond synthesis, a dense sintered body was obtained, but The diamond particles in the compact had grown to a size of approximately 300μ, and the desired sintered compact with fine crystals could not be obtained. In this way, diamond crystals grow by the dissolution precipitation phenomenon when there is a liquid phase of iron group metal that dissolves diamond under high temperature and high pressure conditions at which diamond is stable. Similar experiments were conducted using various grain sizes of raw diamond crystals, and it was found that no significant grain growth occurred when the grain size was 3 μm or more. This corresponds to the finest grain size of diamond sintered bodies currently on the market. When the amount of diamond becomes significantly less than 70% by volume, the diamond particles are no longer adjacent to each other.
The inventors' previous application (patent application) showed that diamond sintered bodies with a small amount of diamond exhibit good characteristics for applications such as cutting Cu and Al alloys.
52-51381), its properties are inferior to those of a sintered body with a high diamond content in the case of rock cutting or wire drawing dies.
The present invention relates to a sintered body of fine diamond particles having a particle size of 1 μm or less, preferably 0.5 μm or less and having a composition in which the amount of diamond exceeds 70% by volume and the diamond particles are adjacent to each other. Creating such a sintered body is not easy. The inventors investigated various methods for producing the desired microcrystalline sintered body of 1μ or less, and found that WC or (Mo, W) was added to the raw material diamond powder of 1μ or less.
It was discovered that when fine powder of C is mixed in, the growth of diamond grains is suppressed even when it coexists with an iron group metal melt, and a patent application has been filed (Japanese Patent Application 1983-
22333). Subsequently, as a result of various experiments, we found that even when carbides, nitrides, and borides of Ti, Zr, Hf, V, Nb, Ta, and Cr were added, they were sufficiently effective against coexisting iron group metals. The present invention was achieved by confirming that a large addition amount has the effect of suppressing diamond grain growth. The reason for this is that the presence of these compound particles between the fine diamond crystal particles acts as an impurity on crystal growth, inhibiting the growth, or It is thought that grain growth is suppressed by partially dissolving into the iron group metal melt at high temperatures and precipitating as carbides on the diamond crystal surface. In order to have such an effect, it is necessary that the compound is present between fine diamond crystal particles, and these compound powders are also ground in advance to a particle size equal to or smaller than that of diamond crystals.
It is necessary that it is uniformly mixed with the diamond crystal powder. According to the experimental results, among the compounds, carbides of Ti, Zr, Hf, V, Nb, and Ta had the most remarkable grain growth suppressing effect. In addition, in terms of the performance of the sintered body as a tool, these compounds remain in the sintered body as binding materials for diamond crystals together with iron group metals, and these compounds themselves have excellent strength and wear resistance. It is necessary to be present. From this point of view, a sintered body with higher strength and better wear resistance can be obtained by using carbide. The diamond raw material powder used in the sintered body of the present invention is a micron powder of 1 μm or less, preferably 0.5 μm or less. Either synthetic diamond or natural diamond may be used. This diamond powder, one or more of the above compound powders, and
Iron group metal powders of Fe, Co, and Ni are uniformly mixed using a ball mill or other means. This iron group metal may be infiltrated during sintering without being mixed in advance. In addition, as disclosed in the inventor's earlier patent application No. 52-51381, the pots and balls used in ball milling are made of a sintered body of a compound such as carbide and an iron group metal, and the diamond powder is ground at the same time as the ball milling. There is also a method of mixing a compound such as a carbide with fine powder of a sintered body of an iron group metal through a pot and a ball. The mixed powder is placed in an ultra-high pressure device and sintered under conditions where the diamond shown in FIG. 1 is stable. At this time, it is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase appears between the iron group metal and the compound such as carbide used. For example, when TiC is used as the compound and Co is used as the iron group metal, a liquid phase occurs at about 1260°C under normal pressure. It is believed that this eutectic temperature increases by several tens of degrees Celsius under high pressure. In this case, it is sintered at a temperature of 1300°C or higher. The composition of the diamond sintered body of the present invention has a diamond content in the range of 95 to 70% by volume. 95%
With the above diamond content, the amount of intervening compound powder is insufficient, and the effect of suppressing diamond grain growth during sintering is diminished. Furthermore, if the diamond content is less than 70%, the diamond particles will no longer be adjacent to each other and grain growth will not occur, leaving the technical scope of the present invention. In addition, it has poor wear resistance as a tool, and cannot achieve the desired performance comparable to natural diamond. Although the ratio of compounds such as carbides and iron group metals that serve as binding materials for diamond in the sintered body cannot be unambiguously determined, it is necessary that the amount is at least sufficient for the compound to exist as a solid during sintering. For example, when TiC is used as a compound and Co is used as a binding metal, the quantitative ratio of TiC and Co must be 7% or more by weight of the former. The sintered body of the present invention is particularly suitable for wire drawing dies, Al alloys, Cu, etc., which require a beautiful finishing surface.
There are cutting tools for which single-crystal diamond tools are currently used, which require a rainbow surface of the alloy. This will be explained in detail below using examples. Example 1 Synthetic diamond powder with a particle size of 0.5 μ and TiC and
Co powder was pulverized and mixed using a pot and ball made of TiC-Co cemented carbide. The composition of the prepared mixed powder is as follows.

【表】 この混合粉末をTa製の容器に詰め超高圧装置
を用いて先ず圧力を55kb加え、引続いて1450℃
に加熱し、20分間保持して焼結した。 焼結体を取出して組織観察したところNo.A,B
のものは約300μの粗大なダイヤモンド結晶が生
成しており均一な組織の焼結体は得られなかつ
た。No.C〜Fのものはいずれも0.5μ以下のダイ
ヤモンドと1μ以下ののTiCを含む微細結晶焼結
体であつた。そして、ダイヤモンド同士はスケル
トン構造をなしていた。焼結体のビツカース硬度
は表1に示した通りである。 No.Cの焼結体を切断して切削加工用のチツプを
作成した。これを用いてAl合金の切削テストを
行なつた。被削材は直径60mmのAl合金丸棒で、
切削速度250m/分、送り0.02mm/回転、切込み
0.07mmで切削した。天然ダイヤモンド工具と同じ
切削条件で比較したが被削材の表面状態は殆んど
差がなく美麗な鏡面に近い仕上げ面が得られた。 実施例 2 実施例1のNo.Cの組成の混合粉末を用いて、内
径5mm、深さ5mm、肉厚50μのTa製容器に充て
んした。これを予め焼結したWC−10%Co合金の
外径15mm、内径5.2mm、高さ5mmのリングに装入
した。この組合せ体を超高圧装置に入れ、実施例
1と同一条件で焼結した。得られた焼結体はWC
−10%Co超硬合金製のリングにダイヤモンド焼
結体が内接した複合体となつていた。界面は50μ
厚みのTa容器が残存しており、この一部はダイ
ヤモンド又は超硬合金と反応してTaCになつてい
た。この界面の存在により焼結時に超硬合金製リ
ングよりのCo液相の浸入はなく、ダイヤモンド
焼結体は粒度0.5μ以下の極めて微細な組織を呈
していた。 この焼結体を更にステンレス製のリングに通常
の天然ダイヤモンドダイスの製法と同様の方法で
マウントし、ダイヤモンド焼結体部を孔加工して
線引きダイスを作成した。これを用いて従来天然
ダイヤモンドダイスが使用されていた直径1mmの
ステンレス線の線引きに用いたところ天然ダイヤ
モンドダイスの3倍の寿命が得られ、被加工線材
の表面も従来と変らぬ状態であつた。 実施例 3 粒度1μ以下のダイヤモンド粉末を用いて表2
の組成の混合粉末を作成した。
[Table] This mixed powder was packed in a container made of Ta and first a pressure of 55kb was applied using an ultra-high pressure device, and then the temperature was increased to 1450°C.
and held for 20 minutes to sinter. When the sintered body was taken out and the structure was observed, No.A and B were found.
In this case, coarse diamond crystals of about 300μ were formed, and a sintered body with a uniform structure could not be obtained. Nos. C to F were all microcrystalline sintered bodies containing diamond of 0.5μ or less and TiC of 1μ or less. The diamonds formed a skeleton structure. The Vickers hardness of the sintered body is shown in Table 1. A chip for cutting was made by cutting the sintered body of No. C. This was used to conduct cutting tests on Al alloys. The work material is an Al alloy round bar with a diameter of 60 mm.
Cutting speed 250m/min, feed 0.02mm/rotation, depth of cut
Cut at 0.07mm. When compared under the same cutting conditions as a natural diamond tool, there was almost no difference in the surface condition of the workpiece, and a beautiful mirror-like finished surface was obtained. Example 2 A mixed powder having the composition No. C of Example 1 was used to fill a Ta container with an inner diameter of 5 mm, a depth of 5 mm, and a wall thickness of 50 μm. This was charged into a pre-sintered WC-10% Co alloy ring with an outer diameter of 15 mm, an inner diameter of 5.2 mm, and a height of 5 mm. This combination was placed in an ultra-high pressure device and sintered under the same conditions as in Example 1. The obtained sintered body is WC
It was a composite body with a diamond sintered body inscribed in a -10% Co cemented carbide ring. The interface is 50μ
A thick Ta container remained, and some of this had reacted with diamond or cemented carbide to form TaC. Due to the existence of this interface, there was no infiltration of the Co liquid phase from the cemented carbide ring during sintering, and the diamond sintered body had an extremely fine structure with a grain size of 0.5μ or less. This sintered body was further mounted on a stainless steel ring in the same manner as a normal natural diamond die manufacturing method, and a hole was formed in the diamond sintered body to create a wire drawing die. When this was used to draw stainless steel wire with a diameter of 1 mm, which conventionally used natural diamond dies, the lifespan was three times longer than that of natural diamond dies, and the surface of the processed wire remained in the same condition as before. . Example 3 Using diamond powder with a particle size of 1μ or less, Table 2
A mixed powder with the composition was created.

【表】 焼結条件は全て実施例1と同様にして焼結体を
得た。いずれもダイヤモンドは0.5μ以下の微細
な結晶がスケルトン構造を形成する焼結体であつ
たが特にNo.J,Kの焼結体は焼結体に層状のヒビ
割れが生じており、他のものに比較して強度が劣
つていた。
[Table] A sintered body was obtained under all the same sintering conditions as in Example 1. All of the diamonds were sintered bodies in which fine crystals of 0.5μ or less formed a skeleton structure, but the sintered bodies No. J and K in particular had layered cracks in the sintered bodies; Its strength was inferior compared to that of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結体の製造条件を説明する
為のものでダイヤモンドの圧力、温度相図上での
安定域を示したものである。
FIG. 1 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the stable range on the pressure and temperature phase diagram of diamond.

Claims (1)

【特許請求の範囲】 1 1μ以下のダイヤモンドが容量で95〜70%を
占め、残部が1μ以下のTi,Zr,Hf,V,Nb,
Ta,Crの炭化物、窒化物、硼化物及びこれ等の
固溶体または混合物結晶と鉄族金属の結合材から
なる工具用微細結晶焼結体。 2 特許請求の範囲第1項記載の焼結体において
結合材がTi,Zr,Hf,V,Nb,Ta,Crの炭化物
と鉄族金属からなり、これ等炭化物と鉄属金属の
割合がその共晶組成に相当するものより炭化物含
有量が多いことを特徴とする工具用微細結晶焼結
体。 3 1μ以下のダイヤモンド粉末と1μ以下の
Ti,Zr,Hf,V,Nb,Ta,Crの炭化物、窒化
物、硼化物及びこれ等の固溶体粉末の1種又は2
種以上と鉄族金属粉末の混合粉末を作成し、これ
を粉状でもしくは型押成型し、超高圧高温装置を
用いてダイヤモンドが安定な高温、高圧下でホツ
トプレスすることを特徴とする1μ以下のダイヤ
モンドが容量で95〜70%を占め、残部が1μ以下
のTi,Zr,Hf,V,Nb,Ta,Crの炭化物、窒化
物、硼化物及びこれ等の固溶体または混合物結晶
と鉄族金属の結合材からなる工具用微細結晶焼結
体の製造方法。 4 特許請求の範囲3項記載の方法において結合
材形成粉末としてTi,Zr,Hf,V,Nb,Ta,Cr
の炭化物粉末と鉄族金属を用い、ダイヤモンド粉
末とこの結合材粉末の混合粉末をダイヤモンドが
安定な高温、高圧下で且つ結合材中の炭化物と鉄
族金属との共晶生成温度以上でダイヤモンドの粒
成長を抑制して焼結することを特徴とする工具用
微細結晶焼結体の製造方法。
[Claims] 1 Diamond with a diameter of 1μ or less occupies 95 to 70% of the capacity, and the remainder is Ti, Zr, Hf, V, Nb,
A microcrystalline sintered body for tools consisting of a binder of Ta, Cr carbides, nitrides, borides, solid solutions or mixture crystals of these, and iron group metals. 2. In the sintered body described in claim 1, the binder is made of carbides of Ti, Zr, Hf, V, Nb, Ta, and Cr and iron group metals, and the ratio of these carbides to iron group metals is the same. A microcrystalline sintered body for tools, characterized by having a higher carbide content than that corresponding to a eutectic composition. 3 Diamond powder of less than 1μ and diamond powder of less than 1μ
One or two of carbides, nitrides, borides of Ti, Zr, Hf, V, Nb, Ta, Cr, and solid solution powders of these
1μ or less, which is characterized by creating a mixed powder of a diamond or more and an iron group metal powder, molding it into a powder form or molding it by molding, and hot-pressing it under high temperature and high pressure using an ultra-high pressure and high temperature device to make the diamond stable. Carbides, nitrides, borides, solid solutions or mixtures of Ti, Zr, Hf, V, Nb, Ta, Cr, solid solutions or mixture crystals of these, and iron group metals, with diamond accounting for 95 to 70% of the volume, and the remainder being less than 1μ. A method for manufacturing a microcrystalline sintered body for tools made of a binding material. 4 Ti, Zr, Hf, V, Nb, Ta, Cr as the binder forming powder in the method described in claim 3
Using carbide powder and iron group metal, a mixed powder of diamond powder and this binder powder is heated at a high temperature and pressure at which diamond is stable, and at a temperature higher than the eutectic formation temperature of the carbide in the binder and iron group metal. A method for producing a microcrystalline sintered body for tools, characterized by sintering while suppressing grain growth.
JP14265778A 1978-08-26 1978-11-17 Fine particulate crystal sintered body for tool use and preparing same Granted JPS5571671A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14265778A JPS5571671A (en) 1978-11-17 1978-11-17 Fine particulate crystal sintered body for tool use and preparing same
CA000334154A CA1149619A (en) 1978-08-26 1979-08-21 Diamond sintered body and the method for producing the same
FR7921331A FR2434130A1 (en) 1978-08-26 1979-08-24 SINTERED DIAMOND BODY AND ITS MANUFACTURING METHOD
GB7929649A GB2029389B (en) 1978-08-26 1979-08-24 Diamond sintered body and a method for producing the same
SE7907095A SE442962B (en) 1978-08-26 1979-08-24 SINTRAD DIAMOND BODY AND PROCEDURE FOR ITS MANUFACTURING
US06/069,575 US4303442A (en) 1978-08-26 1979-08-24 Diamond sintered body and the method for producing the same
AU50323/79A AU531126B2 (en) 1978-08-26 1979-08-27 Diamond sintered bodies
DE19792934567 DE2934567A1 (en) 1978-08-26 1979-08-27 DIAMOND INTERMEDIATE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14265778A JPS5571671A (en) 1978-11-17 1978-11-17 Fine particulate crystal sintered body for tool use and preparing same

Publications (2)

Publication Number Publication Date
JPS5571671A JPS5571671A (en) 1980-05-29
JPS6114107B2 true JPS6114107B2 (en) 1986-04-17

Family

ID=15320455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14265778A Granted JPS5571671A (en) 1978-08-26 1978-11-17 Fine particulate crystal sintered body for tool use and preparing same

Country Status (1)

Country Link
JP (1) JPS5571671A (en)

Also Published As

Publication number Publication date
JPS5571671A (en) 1980-05-29

Similar Documents

Publication Publication Date Title
US4505746A (en) Diamond for a tool and a process for the production of the same
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
US7033408B2 (en) Method of producing an abrasive product containing diamond
US4343651A (en) Sintered compact for use in a tool
US4009027A (en) Alloy for metallization and brazing of abrasive materials
EP2101903B1 (en) Abrasive compacts with improved machinability
US6919040B2 (en) Method of producing an abrasive product containing cubic boron nitride
JPS5832224B2 (en) Microcrystalline sintered body for tools and its manufacturing method
JPS627149B2 (en)
JPS6114107B2 (en)
JPH0128094B2 (en)
JPS6158432B2 (en)
JPS6350401B2 (en)
JPS6246510B2 (en)
JPS6137221B2 (en)
JPS6369760A (en) Sintered body for high hardness tools and manufacture
KR840001137B1 (en) Diamond fine sintered body
KR810001998B1 (en) Method producing a sintered diamond compact
JPS6411703B2 (en)
JPS5896848A (en) High hardness sintered body for tool and its manufacture
JPS6372843A (en) Manufacture of sintered compact containing high density phase boron nitride for cutting tool
JPS5891056A (en) Diamond sintered body for tools and manufacture
JP2954996B2 (en) Sintered materials for tools
JPH0377151B2 (en)
JPH0312123B2 (en)