JPS61139064A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61139064A
JPS61139064A JP26073984A JP26073984A JPS61139064A JP S61139064 A JPS61139064 A JP S61139064A JP 26073984 A JP26073984 A JP 26073984A JP 26073984 A JP26073984 A JP 26073984A JP S61139064 A JPS61139064 A JP S61139064A
Authority
JP
Japan
Prior art keywords
electrode
layer
ohmic contact
mogexsiy
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26073984A
Other languages
Japanese (ja)
Inventor
Atsushi Kurokawa
敦 黒川
Hiromitsu Mishimagi
三島木 宏光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26073984A priority Critical patent/JPS61139064A/en
Publication of JPS61139064A publication Critical patent/JPS61139064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Abstract

PURPOSE:To improve the thermal reliability of a compound semiconductor device by using an ohmic contact electrode having heat resistance higher than an AuGe electrode. CONSTITUTION:Si ions are implanted selectively to a semi-insulating GaAs substrate 1 to form an N-type GaAs layer 2. An alloy MoGexSiy layer consisting of a high melting-point metal, such as Mo, W, Ta, etc. and Si and Ge is applied in thickness of 100nm through sputtering evaporation. The MoGexSiy layer is processed through dry etching employing CF4 gas to shape an ohmic contact electrode 3. The electrode 3 is formed in order to obtain ohmic characteristics, and the GaAs substrate 1 is thermally treated at 700-1,000 deg.C. An insulating layer 4 is shaped in thickness of approximately 600nm. The insulating layer 4 is composed of SiO2 or PSG through a CVD method. A wiring 5 by Al is formed.

Description

【発明の詳細な説明】 [技術分野] 本発明は、G a A s M E S F E T等
の化合物半導体に用いられるオーミックコンタクト電極
に適用して有効な技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technique that is effective when applied to ohmic contact electrodes used in compound semiconductors such as GaAsMESFET.

[背景技術] 従来のInP、GaAsなどのオーミックコンタクト電
極には、Au−Ge合金をベースとした合金が多く用い
られてきた。しかし、例えばN型G a A sに対す
るA u G e電極では5olid 5tateEl
ectronics、1982年、第26巻の第259
頁から第266頁に記載されているように、初期10−
5Ωd以下であった電極の接触抵抗が350°C110
時間程度の熱処理によって1.5X10−’ Ωdに劣
化する。また、400℃程度の熱処理で電極の平坦性が
悪化し、1μm程度の凹凸が発生する場合もある。この
ようにA u G a を極は熱的に信頼性が劣るとい
う欠点があった。
[Background Art] For conventional ohmic contact electrodes such as InP and GaAs, alloys based on Au-Ge alloys have often been used. However, for example, in the A u G e electrode for N-type Ga As, 5 solid 5 tate El
electronics, 1982, Volume 26, No. 259
The initial 10-
The contact resistance of the electrode was 5Ωd or less at 350°C110
It deteriorates to 1.5×10 −' Ωd by heat treatment for about an hour. In addition, heat treatment at about 400° C. may deteriorate the flatness of the electrode, resulting in unevenness of about 1 μm. As described above, the A u Ga electrode has a drawback of poor thermal reliability.

さらに、AuGaオーミックコンタクト電極は。Furthermore, the AuGa ohmic contact electrode.

一般にリフトオフ加工がなされ歩留まり低下の原因とな
る。また、上層のアルミニウム配線との間にバリア層が
必要であったり、絶縁膜との密着性が悪<、Auを用い
るのでコスト高となる等の問題も有している。
Generally, lift-off processing is performed, which causes a decrease in yield. Further, there are other problems, such as the need for a barrier layer between the upper layer aluminum wiring, poor adhesion with the insulating film, and high cost since Au is used.

[発明の目的コ 本発明の目的は、熱的に安定であり、かつ、上述の種々
の問題点を解消し得るオーミックコンタクト電極を有す
る化合物半導体装置を提供することにある。
[Object of the Invention] An object of the present invention is to provide a compound semiconductor device having an ohmic contact electrode that is thermally stable and capable of solving the various problems described above.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

[発明の概要コ 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
[Summary of the Invention A brief outline of typical inventions disclosed in this application is as follows.

M o 、W、 T aなとの高融点金属とSiとGe
とからなるオーミックコンタクト電極を用いることによ
り、耐熱性のあるMo S ix 、 WS ix 。
High melting point metals such as Mo, W, Ta, Si and Ge
By using an ohmic contact electrode consisting of Mo S ix and WS ix which have heat resistance.

T a S i xなどの金属シリサイドとGeの化合
物であるので、半導体装置の耐熱性を向上させ熱的な安
定を可能とするものである。さらに、このようにオーミ
ックコンタクト電極を用いることにより、半導体基板と
の選択比が大きくとれ、ドライエツチングプロセスの適
用が容易となり、さらに、アルミニウム配線との間のバ
リア層が不要であり、絶縁膜との密着性が良く、コスト
的にも問題がな1+’a [実施例] 以下、本発明をG a A s化合物半導体のオーミッ
クコンタクト電極に適用した場合につき、その製造プロ
セスに従って説明する。第1図はその一実施例であるG
 a A s L S Iの構造断面の一部を示す。
Since it is a compound of metal silicide such as TaSix and Ge, it improves the heat resistance of the semiconductor device and makes it thermally stable. Furthermore, by using an ohmic contact electrode in this way, a high selectivity with respect to the semiconductor substrate can be obtained, making it easy to apply a dry etching process, and furthermore, there is no need for a barrier layer between the aluminum wiring and the insulating film. 1+'a has good adhesion and causes no cost problems.Example: Hereinafter, a case where the present invention is applied to an ohmic contact electrode of a GaAs compound semiconductor will be explained according to its manufacturing process. Figure 1 shows an example of G
a Part of the structural cross section of A s L S I is shown.

半絶縁性G a A s基板1に選択的にSiイオンを
打込み、N型G a A、 s層2を形成する。この後
、M o 、W、 T a等の高融点金属とSiとGe
とからなる合金(以下MoGexSiyと略記する)層
をスパッタ蒸着により]、OOr+I11の厚さに被着
する。このMoGexSiy層をCF4ガスを用いたド
ライ二ソ・チングにより加工し、オーミックコンタクト
電極3を形成する6オーミツク特性を得るために電極3
形成後、G a A s基板1に700〜1000℃の
熱処理を加える。この後、絶縁層4を60On+m程度
の厚さに形成する。絶縁層4はCVD法による5i02
もしくはPSGとする。この後、A2による配線5を形
成する。AQ配線5の厚さは約1μmとする。なお、M
oGexSiy電極3とAQ配線5の導通のために絶縁
層4に必要に応じ導通穴を開ける。
Si ions are selectively implanted into a semi-insulating GaAs substrate 1 to form an N-type GaAs layer 2. After this, high melting point metals such as Mo, W, Ta, Si and Ge
(hereinafter abbreviated as MoGexSiy) is deposited by sputter deposition] to a thickness of OOr+I11. This MoGexSiy layer is processed by dry diode etching using CF4 gas, and the electrode 3 is processed to obtain 6-ohmic characteristics to form the ohmic contact electrode 3.
After the formation, the GaAs substrate 1 is subjected to heat treatment at 700 to 1000°C. Thereafter, the insulating layer 4 is formed to a thickness of about 60 On+m. Insulating layer 4 is made of 5i02 by CVD method.
Or PSG. After this, the wiring 5 of A2 is formed. The thickness of the AQ wiring 5 is approximately 1 μm. In addition, M
A conductive hole is made in the insulating layer 4 as necessary to establish conduction between the oGexSiy electrode 3 and the AQ wiring 5.

このようなG a A s L S Iのオーミックコ
ンタクト電極3は、350’C110時間の熱処理後も
、10−5Ωd以下の接触抵抗を示し熱的に安定である
。また、400℃、10時間の熱処理後も電極の凹凸は
LOOnm以下である。また、従来のA u G e電
極6では、第2図に示すように、AQとAuGeとの反
応を抑止するために配線はAQ層8とバリヤ層7からな
る2層構造とする必要があった。なお、第2図において
第1図と同様な構成に対しては同一符号を付して示して
いる。バリヤ層7はTiW合金またはMoが用いられて
いた。
The ohmic contact electrode 3 of such a GaAs LSI exhibits a contact resistance of 10-5 Ωd or less and is thermally stable even after heat treatment at 350'C for 110 hours. Moreover, even after heat treatment at 400° C. for 10 hours, the unevenness of the electrode is less than LOO nm. Furthermore, in the conventional A u G e electrode 6, as shown in FIG. 2, the wiring needs to have a two-layer structure consisting of the AQ layer 8 and the barrier layer 7 in order to suppress the reaction between AQ and AuGe. Ta. In FIG. 2, the same components as in FIG. 1 are designated by the same reference numerals. The barrier layer 7 was made of TiW alloy or Mo.

しかし、MoGexSiy電極3では、AQ配線5を直
接接触させることができ、素子製造上の利点がある。
However, with the MoGexSiy electrode 3, the AQ wiring 5 can be brought into direct contact, which is advantageous in terms of device manufacturing.

[効果コ 本発明によれば、A u G e電極よりも高耐熱のオ
ーミックコンタクト電極を用いることができるので、化
合物半導体装置の熱的な信頼性が向上する。
[Effects] According to the present invention, it is possible to use an ohmic contact electrode which is more heat resistant than an A.sub.G e electrode, so the thermal reliability of the compound semiconductor device is improved.

また、AuGe電極を用いる半導体装置に比べさらに次
の利点がある。
Furthermore, there are the following advantages compared to semiconductor devices using AuGe electrodes.

(1)Auを用いないため製造原価が低減できる。(1) Since Au is not used, manufacturing costs can be reduced.

(2)S i 02 、S iNxなどの絶縁膜とAu
Geは密着性が良くないため、絶縁膜上をA u G 
eで配線すると信頼性が悪化する。−力木発明によるM
oGexSiyは絶縁膜との密着性が良いので絶縁膜上
を配線できる。これは、集積回路素子に有利である。
(2) Insulating films such as Si02 and SiNx and Au
Since Ge does not have good adhesion, A u G is applied on the insulating film.
If wiring is done with e, reliability will deteriorate. - M invented by strength tree
Since oGexSiy has good adhesion to the insulating film, it is possible to conduct wiring over the insulating film. This is advantageous for integrated circuit devices.

(3)AuGe電極では、イオンミリング法を除いて、
ドライエッチプロセスが困難である。しかし、イオンミ
リング法では半導体基板とA u G e電極との選択
比が小さい問題がある。本発明の電極では、半導体基板
GaAsとの選択比が大きくとれるドライエツチングプ
ロセスの適用が容易で、電極の微細加工ができる。
(3) For AuGe electrodes, except for the ion milling method,
Dry etch process is difficult. However, the ion milling method has a problem in that the selectivity between the semiconductor substrate and the AuGe electrode is low. In the electrode of the present invention, a dry etching process that has a high etching selectivity with respect to the semiconductor substrate GaAs can be easily applied, and the electrode can be microfabricated.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが1本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. Nor.

[利用分野] 本発明はG a A s以外の化合物半導体装置、たと
えば、InPなどにも適用できる。
[Field of Application] The present invention can also be applied to compound semiconductor devices other than GaAs, such as InP.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の一実施例を示す断面図、 第2図は従来の半導体装置の断面図である。 1・・・化合物半導体基板、2・・・N型層、3・・・
MoGexSiy電極、4・・・絶縁膜、5−−−AQ
配線、6・・・A u G e電極、7・・・バリヤ層
、8・・・AQ第   1  図 第  2  図
FIG. 1 is a sectional view showing an embodiment of the semiconductor device of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor device. 1... Compound semiconductor substrate, 2... N-type layer, 3...
MoGexSiy electrode, 4...insulating film, 5---AQ
Wiring, 6... A u G e electrode, 7... Barrier layer, 8... AQ Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1、Mo、W、Taなどの高融点金属とSiとGeとか
らなる合金を用いたオーミックコンタクト電極が化合物
半導体上に形成されてなることを特徴とする半導体装置
1. A semiconductor device comprising an ohmic contact electrode formed on a compound semiconductor using an alloy of a high-melting point metal such as Mo, W, or Ta, and Si and Ge.
JP26073984A 1984-12-12 1984-12-12 Semiconductor device Pending JPS61139064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26073984A JPS61139064A (en) 1984-12-12 1984-12-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26073984A JPS61139064A (en) 1984-12-12 1984-12-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61139064A true JPS61139064A (en) 1986-06-26

Family

ID=17352074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26073984A Pending JPS61139064A (en) 1984-12-12 1984-12-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61139064A (en)

Similar Documents

Publication Publication Date Title
US5920794A (en) Electromigration resistant metallization process microcircuit interconnections with RF-reactively sputtered titanium tungsten and gold
JP2544396B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2701730B2 (en) Semiconductor device and manufacturing method thereof
US5656860A (en) Wiring structure for semiconductor device and fabrication method therefor
US4283439A (en) Method of manufacturing a semiconductor device by forming a tungsten silicide or molybdenum silicide electrode
JPH05206135A (en) Manufacture of semiconductor device
EP0644583A1 (en) Method for producing refractory metal gate electrode
IE54310B1 (en) Multilayer electrode of a semiconductor device
JPS61139064A (en) Semiconductor device
JP2663902B2 (en) Method for filling fine trench, method for manufacturing fine electrode, method for filling fine hole, and method for manufacturing fine metal wiring
JPH06177200A (en) Formation of semiconductor integrated circuit device
JP3239596B2 (en) Semiconductor device
JPS60193337A (en) Manufacture of semiconductor device
JPH0837289A (en) Semiconductor device and manufacture thereof
JP3123217B2 (en) Method of forming ohmic electrode
JPH0376031B2 (en)
JP4147441B2 (en) Compound semiconductor device
JPS5873136A (en) Method of producing semiconductor device
JPH0224030B2 (en)
JPH01166556A (en) N-type gaas ohmic electrode and formation thereof
JP2917872B2 (en) Method for manufacturing semiconductor device
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
JP2554347B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP3034348B2 (en) Semiconductor device and manufacturing method
JP2705092B2 (en) Method for manufacturing semiconductor device