JPS61138472A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS61138472A
JPS61138472A JP59259502A JP25950284A JPS61138472A JP S61138472 A JPS61138472 A JP S61138472A JP 59259502 A JP59259502 A JP 59259502A JP 25950284 A JP25950284 A JP 25950284A JP S61138472 A JPS61138472 A JP S61138472A
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
negative pole
concentration
potassium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59259502A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
真一 伊藤
Norio Suzuki
憲男 鈴木
Kentaro Yuasa
健太郎 湯浅
Seiichi Okamoto
岡本 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59259502A priority Critical patent/JPS61138472A/en
Publication of JPS61138472A publication Critical patent/JPS61138472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve large current discharge characteristic while maintaining good quick charging characteristic by employing a paste cadmium negative pole and such electrolyte as mainly composed of potassium hydroxide of specific concentration. CONSTITUTION:Paste cadmium negative pole applied with porous fluororesin layer is provided where the negative pole active substance is mainly composed of cadmium oxide and the filling density of active substance is brought to 1,100-1,400mAh/cc through pressurization prior to negative electrolysis which is executed to achieve metal cadmium of 400-600mAg/cc, while electrolyte mainly composed of potassium hydroxide having concentration of 6.5-8.0 normality is provided. Consequently, when employing metal cadmium of 400-600mAg/ cc per unit volume of negative pole, the conductivity of negative pole active substance is improved through increase of the concentration of metal cadmium while the inner resistance is reduced to improve larger current discharge characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フッ素樹脂微孔性層を設けたペースト式負極
を用いた負極ガス吸収式の密閉形アルカリ蓄電池の大電
流放電特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improving the large current discharge characteristics of a negative electrode gas absorption type sealed alkaline storage battery using a paste type negative electrode provided with a fluororesin microporous layer. be.

従来の技術 従来、この種の密閉形アルカリ蓄電池では、特開昭57
−53068号公報に記載された如く、フッ素樹脂微孔
性層を表面に設けたペースト式負極が知られており、電
解液としては濃度5.5〜7.0規定の水酸化カリウム
を主成分とするものであった。
Conventional technology Conventionally, this type of sealed alkaline storage battery was developed in Japanese Patent Application Laid-open No. 57
As described in Publication No. 53068, a paste-type negative electrode with a fluororesin microporous layer provided on the surface is known, and the electrolyte mainly contains potassium hydroxide with a concentration of 5.5 to 7.0N. It was intended to be.

発明が解決しようとする問題点 この様な従来の技術では、多孔度が高く反応面積が増加
し、さらに、フッ素樹脂微孔性層により撥水性が増加す
る事により、ガス吸収特性は著しく向上した。しかし反
面、内部抵抗の増加、大電流放電特性の低下という問題
があった。
Problems to be Solved by the Invention In such conventional technology, the reaction area is increased due to high porosity, and the gas absorption properties are significantly improved due to the increased water repellency due to the fluororesin microporous layer. . However, on the other hand, there were problems such as an increase in internal resistance and a decrease in large current discharge characteristics.

従来、高濃度の水酸化カリウムを主成分とする電解液を
用い、大電流放電特性を若干ながら改善せしめた例があ
るが、十分満足なものではなかった。即ち、電解液の電
導塵に比べ、負極における抵抗が大きいため、電解液の
電導塵の効果は少なかった。
In the past, there have been examples in which large current discharge characteristics have been slightly improved by using an electrolytic solution containing high concentration potassium hydroxide as a main component, but this has not been fully satisfactory. That is, since the resistance at the negative electrode was greater than that of the conductive dust in the electrolyte, the effect of the conductive dust in the electrolyte was small.

本発明は、このような問題点を解決するもので、負極の
ガス吸収特性を損なう事なく大電流放電特3べ− 性を向上させるものである。
The present invention solves these problems and improves the large current discharge characteristics without impairing the gas absorption characteristics of the negative electrode.

問題点を解決するための手段 この問題を解決するために本発明は、フッ素樹脂の微孔
性層を表面に設けたペースト式カドミウム負極を備え、
この負極活物質は酸化カドミウムを主体としたものであ
って、その陰電解前の加圧によッテ活物質充填密度を1
100〜1400mAh/CCとすると共に、金属カド
ミウムが400〜600mAh/ccとなる様に陰電解
したものであり、この負極と、濃度6.5〜8.0規定
の水酸化カリウムを主成分とする電解液を備えたもので
ある。
Means for Solving the Problem In order to solve this problem, the present invention includes a paste-type cadmium negative electrode having a microporous layer of fluororesin on its surface.
This negative electrode active material is mainly composed of cadmium oxide, and the packing density of the active material can be increased to 1 by pressurizing it before negative electrolysis.
100 to 1400 mAh/cc, and is electrolyzed negatively so that metal cadmium is 400 to 600 mAh/cc, and the main components are this negative electrode and potassium hydroxide with a concentration of 6.5 to 8.0 normal. It is equipped with an electrolyte.

作用 この方法によシ、負極単位体積当りの金属カドミウムを
400−600mAh/ccとした場合、従来に比べ、
金属カドミウム濃度の増加によシ、負極活物質層の電導
塵が向上し、第1図に示す如く内部抵抗を低下せしめ、
大電流放電特性を改善するものである。
Effect When using this method, when the metal cadmium per unit volume of the negative electrode is set to 400-600mAh/cc, compared to the conventional method,
As the metal cadmium concentration increases, the conductive dust in the negative electrode active material layer improves, reducing the internal resistance as shown in Figure 1.
This improves large current discharge characteristics.

陰電解後のカドミウム酸化物量を維持しながら、金属カ
ドミウム量を増加せしめるためには、陰電解前に加圧を
行い充填密度を増加する必要がある。
In order to increase the amount of metal cadmium while maintaining the amount of cadmium oxide after negative electrolysis, it is necessary to increase the packing density by applying pressure before negative electrolysis.

加圧により、多孔度が低下し、酸素ガス吸収の反応面積
は減少するが、反応物質である金属カドミウムの占める
割合が増加するため、第2図に示す如く、酸素ガス吸収
能力の劣化をまぬがれる事を見出した。
Pressurization lowers the porosity and reduces the reaction area for oxygen gas absorption, but because the proportion of metal cadmium, which is a reactant, increases, the deterioration of the oxygen gas absorption capacity is avoided, as shown in Figure 2. I found out something.

さらに、上述の負極を用いて、濃度6.5〜8.0規定
の水酸化カリウムを主成分とする電解液を備えた密閉形
アルカリ蓄電池を構成した場合、従来の負極に比べ、大
電流放電特性の向上が著しいことも見出した。
Furthermore, when using the above-mentioned negative electrode to construct a sealed alkaline storage battery equipped with an electrolyte mainly composed of potassium hydroxide with a concentration of 6.5 to 8.0 normal, compared to the conventional negative electrode, a large current discharge It was also found that the properties were significantly improved.

上述の如く相乗効果が発揮されるのは、次のような理由
と思われる。すなわち、第4図に示す如く、水酸化カリ
ウム水溶液は、濃度7.2規定付近で、電導塵が最高と
なる事が知られているが、従来の負極においては、金属
カドミウムの絶対濃度が小さいため、極板自体の内部抵
抗が大きく、このことが大電流放電時の反応律速となり
、電解液の効果は少なかった。これに比べて本発明によ
る負極においては、負極の抵抗が減少しているため、5
べ−・ 電解液の電導塵が大電流放電時の律速となり、本発明の
負極と、電導塵の高い電解液の組み合わせにおいて、相
乗効果を発揮し、大電流放電特性を向上させるものであ
る。
The reason why the synergistic effect is exhibited as described above is thought to be as follows. In other words, as shown in Figure 4, it is known that the conductive dust in potassium hydroxide aqueous solution reaches its maximum when the concentration is around 7.2N, but in the conventional negative electrode, the absolute concentration of metal cadmium is small. Therefore, the internal resistance of the electrode plate itself was large, and this became the rate-limiting reaction during large current discharge, making the electrolyte less effective. Compared to this, in the negative electrode according to the present invention, since the resistance of the negative electrode is reduced,
Conductive dust in the electrolytic solution becomes rate-determining during large current discharge, and the combination of the negative electrode of the present invention and the electrolytic solution with high conductive dust exhibits a synergistic effect and improves the large current discharge characteristics.

実施例 以下、本発明における実施例を、円筒密閉形ニッケル・
カドミウムアルカリ蓄電池(SCサイズ。
Examples In the following, examples of the present invention will be described using a cylindrical sealed nickel
Cadmium alkaline storage battery (SC size).

公称容量1200mAh)について従来例と比較しなが
ら詳述する。
The nominal capacity (1200mAh) will be explained in detail while comparing with the conventional example.

まず酸化カドミウム粉末100重量部に対して、合成樹
脂単繊維0.5重量部、エチレングリコール30重量部
にポリビニルアルコール0.75重量部を加熱溶解した
液を混練してペースト状として、これを100μの厚み
の鉄にニッケルメッキをした開孔鉄板の両側に塗布した
後、約110℃にて乾燥する。次いでこの負極を33 
X 205 mmの寸法に切断した後、水酸化カリウム
水溶液中で、金属カドミウムが250〜450mAh/
ccI!:flる様に陰電解した後、水洗、乾燥する。
First, 100 parts by weight of cadmium oxide powder, 0.5 parts by weight of synthetic resin single fibers, 0.75 parts by weight of polyvinyl alcohol dissolved in 30 parts by weight of ethylene glycol were kneaded to form a paste, and this was mixed into a paste with a thickness of 100 μm. It is applied to both sides of a perforated iron plate made of nickel plated iron with a thickness of 100°C, and then dried at about 110°C. Next, this negative electrode was
After cutting into a size of 205 mm x 205 mm, metal cadmium was heated at 250 to 450 mAh/in a potassium hydroxide aqueous solution.
ccI! : After negative electrolysis, wash with water and dry.

次に、5チのフッ素樹脂懸濁液に30分浸漬後乾燥して
フッ素樹脂微孔性層を形成する。この時の充填密度は、
900〜1200mAh/cc(多孔度約60%)であ
り、こうして得た負極を従来品とする。
Next, it is immersed in 5 layers of fluororesin suspension for 30 minutes and then dried to form a fluororesin microporous layer. The packing density at this time is
The negative electrode obtained in this way is a conventional product.

次に、前記従来品の場合と同様に、ペーストを塗布・乾
燥した後、充填密度が1100〜14oOmAh/cc
  となるように加圧成形し、次いで金属カドミウムが
400〜600mAh/cc(多孔度約40%)となる
様に陰電解し、水洗、乾燥後、表面にフッ素樹脂微孔性
層を設ける。このようにして得た負極を本発明品とする
Next, as in the case of the conventional product, after applying and drying the paste, the filling density is 1100 to 14oOmAh/cc.
It is then pressure-molded to give a metal cadmium content of 400 to 600 mAh/cc (porosity of about 40%), electrolyzed negatively, washed with water and dried, and then a fluororesin microporous layer is provided on the surface. The negative electrode thus obtained is the product of the present invention.

上記負極と焼結式正極間に、ポリアミド不織布からなる
セパレータを介在させて渦巻状に巻回し、この極板群を
電池容器に挿入後、7規定の水酸化カリウムを主体とし
た電解液を遊離の液が生じない程に量的に少なく規制し
、次いで封口をして、表1に示す様な16種類の密閉形
アルカリ蓄電池を得た。
A separator made of polyamide nonwoven fabric is interposed between the negative electrode and the sintered positive electrode, and the electrode plate is wound in a spiral shape. After inserting this electrode plate group into a battery container, an electrolyte containing 7N potassium hydroxide as its main component is released. The quantity was controlled to be so small that no liquid was produced, and then the caps were sealed to obtain 16 types of sealed alkaline storage batteries as shown in Table 1.

表   1 第1図は20′Cにおいて、120mAX15時間充電
後の金属カドミウムと内部1抗との関係を示す。第1図
において、従来負極Bは、試作/165〜8であり、本
発明負極Aは試作/1613〜16である。第1図で示
す如く、体積当りの金属カドミウムが増加するに従い、
内部抵抗は低下する。これは、金属カドミウムが導電材
となり、活物質の電導性を増すためである。金属カドミ
ウムを少くとも400mAh/ccとした場合、内部抵
抗は安定し、従来に比べ良好である。
Table 1 Figure 1 shows the relationship between metallic cadmium and internal resistor after charging at 120mAX for 15 hours at 20'C. In FIG. 1, the conventional negative electrode B is a prototype/165-8, and the negative electrode A of the present invention is a prototype/1613-16. As shown in Figure 1, as the metal cadmium per volume increases,
Internal resistance decreases. This is because metal cadmium becomes a conductive material and increases the conductivity of the active material. When the metal cadmium is at least 400 mAh/cc, the internal resistance is stable and better than the conventional one.

第2図は20°Cにおいて、1200mAx3時間充電
における電池内圧挙動を示す。第2図において、従来負
極Bは、試作/16.1〜4であり、本発明負極Aは、
試作/16.9〜12である。第2図に示す如く、  
  。
FIG. 2 shows the behavior of the internal pressure of the battery at 20° C. during charging at 1200 mA for 3 hours. In FIG. 2, the conventional negative electrode B is a prototype/16.1 to 4, and the negative electrode A of the present invention is:
Prototype/16.9-12. As shown in Figure 2,
.

体積当りの金属カドミウムを増加した本発明負極Aにお
いては、高い充填密度においても従来負極Bと同様に良
好なガス吸収特性を得ることができる。
In the negative electrode A of the present invention in which the amount of metal cadmium per volume is increased, it is possible to obtain good gas absorption characteristics similar to the conventional negative electrode B even at a high packing density.

第3図は、第2図同様20’Cにおける1 200mA
×3時間充電時の電池内圧挙動を示す。第3図において
、従来負極Bは試作A65〜8であり、本発明負極Aは
試作/163〜16である。第3図で示す如く、従来負
極B K、、;−いては、金属カドミウム量が450 
mA h/c c f 岬えた場合、水素ガスが発生す
るが、本発明負極Aにおいては、600mAh/ccを
越えた時点から水素が発生し、内圧が上昇する。
Figure 3 shows 1 200mA at 20'C as in Figure 2.
The behavior of the internal pressure of the battery during charging for ×3 hours is shown. In FIG. 3, the conventional negative electrode B is the prototype A65-8, and the negative electrode A of the present invention is the prototype A63-16. As shown in Fig. 3, in the conventional negative electrode BK, the amount of metal cadmium was 450
When mA h/cc c f exceeds 600 mAh/cc, hydrogen gas is generated, but in the negative electrode A of the present invention, hydrogen is generated and the internal pressure increases from the time when the voltage exceeds 600 mAh/cc.

本発明による負極Aにおいて、金属カドミウム量9 ・
\− が600mAh/ccまで水素が発生しないのは、陰電
解前の加圧によシ、充填密度を増加し、未充電部分を確
保しているだめである。本発明負極Aにおいては、充填
密度が1100mAh/ccよシ少ない場合、同様に水
素が発生する。
In the negative electrode A according to the present invention, the amount of metal cadmium is 9.
The reason why hydrogen is not generated until \- is 600 mAh/cc is because the pressure applied before negative electrolysis increases the packing density and secures an uncharged area. In the negative electrode A of the present invention, hydrogen is similarly generated when the packing density is less than 1100 mAh/cc.

上述の結果より、本発明による負極Aにおいて゛は、充
填密度1100〜1400mAh/cc、金属カドミウ
ム400〜600 mA hの範囲で、ガス吸収特性を
劣化させることなく、大電流放電特性が向上する。
From the above results, in the negative electrode A according to the present invention, the large current discharge characteristics are improved without deteriorating the gas absorption characteristics when the packing density is in the range of 1100 to 1400 mAh/cc and the metal cadmium is in the range of 400 to 600 mAh.

次に表2に示す如く、負極と電解液を組み合わせ8種類
の密閉形アルカリ蓄電池を構成した。
Next, as shown in Table 2, eight types of sealed alkaline storage batteries were constructed by combining negative electrodes and electrolytes.

表  2 10 ・  7 表2において、従来負極Bとしては、試作/163の負
極を用い、本発明負極Aとしては試作/1611の負極
を用いた。又、電解液に添加物として、水酸化ナトリウ
ムを0.5規定加えた。
Table 2 10/7 In Table 2, as the conventional negative electrode B, the negative electrode of Prototype/163 was used, and as the negative electrode A of the present invention, the negative electrode of Prototype/1611 was used. Moreover, 0.5 N of sodium hydroxide was added to the electrolytic solution as an additive.

第4図に、20′Cの周囲温度における、12A放電時
の放電効率(12A放電容量/ 240 mA放電容量
)を示す。第4図において、Dは試作屑イ〜二の電池で
あり、Cは試作腐ホ〜チの電池である。
FIG. 4 shows the discharge efficiency (12A discharge capacity/240 mA discharge capacity) at 12A discharge at an ambient temperature of 20'C. In FIG. 4, D indicates the prototype batteries A to II, and C indicates the prototype batteries H to F.

第4図に示す如く、放電効率は、水酸化カリウム濃度が
6.5〜7.5規定において最高値を示す。
As shown in FIG. 4, the discharge efficiency reaches its maximum value when the potassium hydroxide concentration is 6.5 to 7.5 normal.

これは、第6図に示す如く、20’Cにおける水酸化カ
リウムの電気抵抗が7.2規定付近で最少となるためで
ある。しかし、従来負極を用いた電池りにおいては、電
解液濃度による効果は5%程度であるのに比べ、本発明
負極を用いた電池Cにおいては、10%程度と著しく向
上する。これは、内部抵抗の低い本発明負極と電導塵の
高い電解液により、相乗効果を発揮するものである。上
述の効果が発揮されるのは、水酸化カリウム濃度が6.
611、、、 〜8規定の範囲である。
This is because, as shown in FIG. 6, the electrical resistance of potassium hydroxide at 20'C is the lowest near 7.2 normal. However, in batteries using conventional negative electrodes, the effect of electrolyte concentration is about 5%, whereas in Battery C using the negative electrode of the present invention, the effect is significantly improved to about 10%. This is due to the synergistic effect of the negative electrode of the present invention, which has a low internal resistance, and the electrolytic solution, which has a high conductivity. The above effect is exhibited when the potassium hydroxide concentration is 6.
The range is 611, . . . , 8 stipulations.

第6図に、20’Cの周囲温度における。1.2A急速
充電時の内圧挙動を示す。第6図においてハは従来電池
であり、トは本発明における電池である。
In Figure 6, at an ambient temperature of 20'C. The internal pressure behavior during 1.2A rapid charging is shown. In FIG. 6, C is a conventional battery, and G is a battery according to the present invention.

第7図に、20’Cの周囲温度における12A放電時の
電圧挙動を示す。第7図において、ハは従来電池であり
、トは本発明電池である。
FIG. 7 shows the voltage behavior during 12A discharge at an ambient temperature of 20'C. In FIG. 7, C is a conventional battery, and G is a battery of the present invention.

発明の効果 以上のように、本発明によれば、急速充電特性を良好に
保ちながら、大電流放電特性を向上させるという効果が
得られる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain the effect of improving large current discharge characteristics while maintaining good rapid charging characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカドミウム負極における金属カドミウム量と内
部抵抗との関係を示す図、第2図は負極活物質充填密度
と電池内圧との関係を示す図、第3図は金属カドミウム
量と電池内圧との関係を示す図、第4図は水酸化カリウ
ム濃度と放電容量比との関係を示す特性図、第5図は水
酸化カリウム濃度と電気抵抗との関係を示す図、第6図
は本発明の実施例における充電時間と電池内部圧力との
関係を示す図、第7図は本発明実施例における放電特性
を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
図 永が化力7ノウム嬶、−((L’;i>第5図
Figure 1 is a diagram showing the relationship between the amount of metallic cadmium and internal resistance in a cadmium negative electrode, Figure 2 is a diagram showing the relationship between the negative electrode active material packing density and battery internal pressure, and Figure 3 is a diagram showing the relationship between the amount of metallic cadmium and internal battery pressure. 4 is a characteristic diagram showing the relationship between potassium hydroxide concentration and discharge capacity ratio, FIG. 5 is a diagram showing the relationship between potassium hydroxide concentration and electrical resistance, and FIG. 6 is a characteristic diagram showing the relationship between potassium hydroxide concentration and electric resistance. FIG. 7 is a diagram showing the relationship between charging time and battery internal pressure in the embodiment of the present invention, and FIG. 7 is a diagram showing the discharge characteristics in the embodiment of the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
Tsunaga is 7 noumu, -((L';i>Fig.

Claims (1)

【特許請求の範囲】[Claims] フッ素樹脂の微孔性層を表面に設けたペースト式カドミ
ウム負極と、アルカリ電解液とを有し、前記負極の活物
質は酸化カドミウムを主体としたものであって、その陰
電解前の加圧により活物質充填密度を1100〜140
0mAh/ccとすると共に、金属カドミウムが400
〜600mAh/ccとなる様に陰電解し、かつアルカ
リ電解液は濃度6.5〜8.0規定の水酸化カリウムを
主成分とする水溶液であるアルカリ蓄電池。
It has a paste-type cadmium negative electrode with a microporous layer of fluororesin on its surface and an alkaline electrolyte, and the active material of the negative electrode is mainly cadmium oxide, and the pressure is applied before the negative electrolysis. The active material packing density is 1100-140.
0mAh/cc, and metal cadmium is 400mAh/cc.
An alkaline storage battery that undergoes negative electrolysis to achieve ~600 mAh/cc, and the alkaline electrolyte is an aqueous solution containing potassium hydroxide as a main component with a concentration of 6.5 to 8.0 normal.
JP59259502A 1984-12-07 1984-12-07 Alkaline battery Pending JPS61138472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259502A JPS61138472A (en) 1984-12-07 1984-12-07 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259502A JPS61138472A (en) 1984-12-07 1984-12-07 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS61138472A true JPS61138472A (en) 1986-06-25

Family

ID=17334987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259502A Pending JPS61138472A (en) 1984-12-07 1984-12-07 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS61138472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225519A (en) * 2009-03-25 2010-10-07 Sanyo Electric Co Ltd Alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225519A (en) * 2009-03-25 2010-10-07 Sanyo Electric Co Ltd Alkaline storage battery

Similar Documents

Publication Publication Date Title
EP0697746B1 (en) Sealed zinc secondary battery and zinc electrode therefor
US5460899A (en) Sealed zinc secondary battery and zinc electrode therefor
US3493434A (en) Zinc electrode
JPS61138472A (en) Alkaline battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPS58163172A (en) Alkaline zinc storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JP2861057B2 (en) Alkaline secondary battery
JPH10275619A (en) Paste type cadmium electrode
JPH0251874A (en) Alkaline zinc lead-acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JPH04162353A (en) Seal alkaline secondary battery
JPS63164165A (en) Cadmium electrode for alkaline storage battery and its manufacture
JPS58186164A (en) Manufacture of negative electrode for alkaline battery
JP3043775B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH0773047B2 (en) Negative electrode for sealed alkaline storage battery
JPS58163161A (en) Alkaline zinc storage battery
JPH0417260A (en) Cadmium negative electrode for alkaline storage battery
JPS60158552A (en) Manufacture of paste type cadmium anode
JPS59186261A (en) Method for manufacture of cadmium electrode