JPS59186261A - Method for manufacture of cadmium electrode - Google Patents

Method for manufacture of cadmium electrode

Info

Publication number
JPS59186261A
JPS59186261A JP58062427A JP6242783A JPS59186261A JP S59186261 A JPS59186261 A JP S59186261A JP 58062427 A JP58062427 A JP 58062427A JP 6242783 A JP6242783 A JP 6242783A JP S59186261 A JPS59186261 A JP S59186261A
Authority
JP
Japan
Prior art keywords
cadmium
sintered
active material
nickel powder
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58062427A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Hiroshi Kawano
川野 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58062427A priority Critical patent/JPS59186261A/en
Publication of JPS59186261A publication Critical patent/JPS59186261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a non-sintered cadmium electrode providing characteristics close to a sintered cadmium electrode under severe operating conditions while still reserving ease of manufacture, by using the active material mixture of one or both cadmium oxide and cadmium hydroxide and a specific amount of nickel powder. CONSTITUTION:An active material mixture of 70-50pts.wt., for the equivalent of cadmium oxide, of one or both of cadmium oxide and cadmium hydroxide and 30-50pts.wt. of nickel powder is spread over a core member and pressed together. As the active material, cadmium oxide having a larger apparent density and being easy for filling is more preferable, but cadmium hydroxide or mixture of both can also be used. As the nickel powder, carbonyl nickel is preferable, and as the core member, punching metal, expanded metal, net, or the like is used. As the bonding agent, hydrophilic material with low electrical resistivity such as carboxyl methyl cellulose or polyvinyl alcohol is preferable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルーカドミウム蓄電池などに用いる非
焼結式カドミウム電極の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing non-sintered cadmium electrodes for use in nickel-cadmium storage batteries and the like.

従来例の構成とその問題点 いる。この焼結式電極は、ニッケル焼結基板の微孔の中
に活物質を充てんしているので、大電流放電特性や急充
電性、さらには寿命など電池特性としては申し分ない。
Here are the configurations of conventional examples and their problems. This sintered electrode has an active material filled in the micropores of a sintered nickel substrate, so it has excellent battery characteristics such as large current discharge characteristics, rapid charging characteristics, and long life.

ところが、よく知られているように、焼結体の製法、活
物質の充てんなど製造法が複雑であるので、他の電極に
比べてかなり高価になり、大きな問題として残っていた
However, as is well known, the manufacturing method involved in manufacturing the sintered body and filling the active material is complicated, making it considerably more expensive than other electrodes, which has remained a major problem.

そこで製法を簡易化し、性能も焼結式に近づける試みが
多く進められ、非焼結式あるいは加圧式。
Therefore, many attempts have been made to simplify the manufacturing method and bring the performance closer to that of the sintered method, such as the non-sintered method or the pressurized method.

ペースト式と呼ばれる構造がその例として開発され、特
に電解液量を限定して用いる密閉形系に採用されてきた
。つまり、カドミウム極は、このような非焼結式にして
も、ニッケル極よりは、つぎの点ですぐれているので、
電極の実用化が先に可能になったのである。つまり、放
電では水酸化カドミウムになって電導性はないが、充電
で電気伝導性のよい金属カドミウムになる。さらに充電
では金属になるので、充放電の繰り返しによっても膨潤
や脱落の度合が極めて少ない。これらが実用化を可能に
した主な理由であり、これらのことが、強度低下抑制の
ために必要な結着剤の量を少なくすることを可能にし、
電圧の低下や利用率の減少をある程度抑制していること
になる。
A structure called a paste type has been developed as an example, and has been particularly adopted in a closed type system in which a limited amount of electrolyte is used. In other words, even though it is a non-sintered type, cadmium electrodes are superior to nickel electrodes in the following ways:
This made it possible to put the electrode into practical use first. In other words, when it is discharged, it becomes cadmium hydroxide, which has no electrical conductivity, but when it is charged, it becomes metallic cadmium, which has good electrical conductivity. Furthermore, since it becomes metal when charged, the degree of swelling and falling off is extremely small even after repeated charging and discharging. These are the main reasons that made it possible to put it into practical use.These things make it possible to reduce the amount of binder required to suppress the decrease in strength.
This means that voltage drops and decreases in utilization are suppressed to some extent.

しかし、それでも焼結式のカドミウム極に比べれば、と
くに過酷な条件での特性の差がでることは否定できない
。たとえば、10Cのような急放電時での電位、−5°
Cで10充電した際の電位やガス吸収能力、50″Cで
長期間保存後の充放電性能、過放電後の放電性能、50
″Cでの寿命などではやはり焼結式に比べると問題が多
いといえる。
However, it cannot be denied that compared to sintered cadmium electrodes, there are differences in characteristics, especially under harsh conditions. For example, the potential during a sudden discharge such as 10C, -5°
Potential and gas absorption capacity when charged at 10°C, charge/discharge performance after long-term storage at 50"C, discharge performance after overdischarge, 50"
It can be said that there are more problems with the lifespan of ``C'' compared to the sintered type.

これらの問題点の主な原因は、種々検討の結果、充電時
には導電性にすぐれた金属カドミウムにはなるか、やは
り焼結式のような微孔性の導電性の骨格のなかに活物質
が保持されている構造に比べて、金属カドミウム粒子間
に絶縁性の水酸化カドミウムが生成した場合に、焼結式
のような導電性のよさが失われることにあることがわか
った。
As a result of various studies, the main cause of these problems has been whether the active material becomes metallic cadmium with excellent conductivity during charging, or whether the active material is formed in a microporous conductive framework such as a sintered type. It was found that when insulating cadmium hydroxide is formed between metal cadmium particles, the good electrical conductivity of the sintered type is lost compared to a structure where the structure is maintained.

発明の目的 本発明は、このような非焼結式カドミウム極について、
製法の容易さは残しつつ、前記のような過酷な使用条件
のもとでも、焼結式カドミウム極に近い特性を有する非
焼結式カドミウム極を提供することを目的とする。
Purpose of the Invention The present invention relates to such a non-sintered cadmium electrode.
The object of the present invention is to provide a non-sintered cadmium electrode that has characteristics close to those of the sintered cadmium electrode even under the above-mentioned severe usage conditions, while maintaining the ease of production.

発明の構成 本発明は、酸化カドミウム及び水酸化カドミウムよりな
る群から選んだ少なくとも1種の酸化カドミウム換算値
70〜5o重量部に対して30〜50重量部のニッケル
粉末を含む活物質混合物を用いて電極を製造するもので
ある。
Structure of the Invention The present invention uses an active material mixture containing 30 to 50 parts by weight of nickel powder to 70 to 5 parts by weight of at least one cadmium oxide selected from the group consisting of cadmium oxide and cadmium hydroxide. The electrodes are manufactured using the same method.

非焼結式カドミウム極において、酸化カドミウム、水酸
化カドミウム等の活物質原料と導電材としてのニッケル
や黒鉛の粉末との混合物中における導電材の混合割合は
、活物質原料を酸化カドミウム量で計算した場合、従来
10〜20重量係程度を最適としていた。その理由とし
ては、これらの導電材を多量に加えることは、それだけ
活物質の量を減少させることになるので、絶対容量が不
足する懸念があったからである。
In non-sintered cadmium electrodes, the mixing ratio of the conductive material in the mixture of active material raw materials such as cadmium oxide or cadmium hydroxide and nickel or graphite powder as a conductive material is calculated based on the amount of cadmium oxide in the active material raw material. In this case, the optimum weight ratio has conventionally been about 10 to 20. The reason for this is that adding a large amount of these conductive materials would reduce the amount of active material accordingly, and there was a concern that the absolute capacity would be insufficient.

ところが、本発明者らは、ニッケルの混合割合を30〜
50重量係のような多量に加えることにより、カドミウ
ム極の利用率が大きく向上するとともに、導電性が大幅
に改良されるので、絶対容量は若干減少するが、過酷な
条件下での負極としての特性は大幅に改善され、製法の
簡易さはそのまま残して、焼結式カドミウム極に近い特
性を得ることができることを見出した。
However, the present inventors changed the mixing ratio of nickel to 30 to 30.
By adding a large amount such as 50% by weight, the utilization rate of the cadmium electrode is greatly improved and the conductivity is greatly improved, so although the absolute capacity is slightly reduced, it is suitable for use as a negative electrode under harsh conditions. It was discovered that the properties were significantly improved, and that it was possible to obtain properties close to those of sintered cadmium electrodes while maintaining the simplicity of the manufacturing method.

この場合、活物質としては、見掛密度が大きく、したが
って充てんが容易な酸化カドミウムが最も好ましく、水
酸化カドミウムも使用することができるし、両者を混合
してもよい。また、ニッケル粉末としては、公知のカー
ボニルニッケルがよく、その添加割合は、30〜50重
量係、好ましくは35〜45重量部である。また、非焼
結式として(は、粉末加圧式とペースト式とがあり、製
法が容易々のは後者であるが、本発明はそのいずれにも
適用てきる。捷た、芯材としては、パンチングメタル、
エキスバンドメタル、ネットなどが用いられる。結着剤
としては、ポリエチレン、ポリ塩化ビニル、フッ素樹脂
などを用いてもよいが、カルボキンメチルセルロースや
ポリビニルアルコールなどの親水性で電気抵抗が小さい
材料を用いることが好ましい。
In this case, the active material is most preferably cadmium oxide, which has a large apparent density and is therefore easy to fill.Cadmium hydroxide can also be used, or both may be mixed. Further, as the nickel powder, known carbonyl nickel is preferred, and its addition ratio is 30 to 50 parts by weight, preferably 35 to 45 parts by weight. In addition, there are two types of non-sintered type: a powder press type and a paste type, and although the latter is easier to manufacture, the present invention can be applied to either of them. punching metal,
Extended metal, net, etc. are used. As the binder, polyethylene, polyvinyl chloride, fluororesin, etc. may be used, but it is preferable to use a hydrophilic material with low electrical resistance such as carboquine methyl cellulose or polyvinyl alcohol.

実施例の説明 ペースト式カドミウム極の製造法を実施例とする。Description of examples A method for manufacturing a paste-type cadmium electrode will be described as an example.

まず、ペーストO材料として、1ooメッンユ通過の酸
化カドミウムにカーボニルニッケル粉末を後者の混合割
合が30 、35 、40 、45 。
First, as a paste O material, carbonyl nickel powder was mixed with cadmium oxide that had passed through 100 mm in a mixing ratio of 30, 35, 40, 45.

60重清係となるように混合した。この混合粉末1 k
7に対して、結着強度をあげるために、塩化ビニル−ア
クリロニトリル共重合体の繊維(径。、2陥、長さ平均
5111m)を5.6g加して十分混合する。
The mixture was mixed to 60% by weight. This mixed powder 1k
In order to increase the binding strength, 5.6 g of vinyl chloride-acrylonitrile copolymer fibers (diameter, 2 cavities, average length 5111 m) were added to No. 7 and thoroughly mixed.

これに、製造中での酸化カドミウムの水酸化物への変化
を防止するためにポリビニルアルコールノ2.2重量受
エチレングリコール溶液f、y) 3009加えて、約
135°Cに加熱し、溶解混合する。これを用いて厚さ
0.1mm、孔径2mm、孔間ピッチ2.5証のニッケ
ルメンキした鉄製のパンチングメタルに塗着させる。こ
れを間隙0.7 mmのスリット間を通して0.9 m
m厚さのカドミウム電極ヲ得ル。ついでローラ間を通し
て0.75mm厚さに調整する。
To this, in order to prevent the change of cadmium oxide to hydroxide during production, a 2.2 weight-weight ethylene glycol solution of polyvinyl alcohol (f, y) 3009 was added, heated to approximately 135°C, and dissolved and mixed. do. This was used to coat a nickel-plated iron punching metal with a thickness of 0.1 mm, a hole diameter of 2 mm, and a hole pitch of 2.5 mm. Pass this between slits with a gap of 0.7 mm to a length of 0.9 m.
Obtain m-thick cadmium electrode. Then, the thickness is adjusted to 0.75 mm by passing it between rollers.

さらに、苛性カリの15重量係水溶液中で、充てん容量
の20%に相当する電気量を充電する。
Furthermore, an amount of electricity corresponding to 20% of the filling capacity is charged in an aqueous solution of 15% by weight of caustic potash.

このようにして得カドミウム極を幅38謳、長さ260
 mmに裁断した。これに公知の焼結式二ソケル極(幅
38 msn 、長さ220箇、厚さ0.62 mm)
と、セパレータとしてポリアミド不織布を組合せて単2
サイズの円筒密閉形電池を構成した。容量は正極律則と
し、2200mAhを公称とする。
In this way, the obtained cadmium pole was 38 mm wide and 260 mm long.
It was cut into mm. In addition to this, a known sintered two-sokel pole (width 38 msn, length 220 pieces, thickness 0.62 mm) was used.
and a polyamide nonwoven fabric as a separator.
A cylindrical sealed battery of the same size was constructed. The capacity is based on the positive polarity rule and is nominally 2200mAh.

また、比較例として、酸化カドミウムに対するニッケル
粉末の混合割合’i25,20.15重量係にしたカド
ミウム極を用いた電池を構成した。
Further, as a comparative example, a battery was constructed using a cadmium electrode in which the mixing ratio of nickel powder to cadmium oxide was 25, 20.15% by weight.

これらの゛電池の35°Cにおける急放電特性の電圧を
平均値(はぼ放電時間の中間時での端子電圧に相当する
)で第1表に示す。なお、電池工は焼結式カドミウム極
を用いた電池である。
Table 1 shows the average value (corresponding to the terminal voltage at the middle of the discharge time) of the voltage of the rapid discharge characteristics of these batteries at 35°C. Note that the battery is a battery that uses sintered cadmium electrodes.

(以下余白) 第1表 つぎに、低温の例として、−5°Cで10充電を2時間
行ない充電完了までのピーク電圧とその際の電圧のピー
ク内圧について調べたところ、第2表のようになった。
(Leaving space below) Table 1 Next, as an example of low temperature, we performed 10 charges at -5°C for 2 hours and investigated the peak voltage until charging completion and the peak internal pressure of the voltage at that time, as shown in Table 2. Became.

第2表 その他に、高温で放置後の充放電特性や過放電ラム負極
を用いた電池は、焼結式カドミウム負極を備えた従来の
電池と同じ特性を示した。
In addition to Table 2, the charging and discharging characteristics after being left at high temperatures and the batteries using the overdischarged ram negative electrode showed the same characteristics as conventional batteries equipped with a sintered cadmium negative electrode.

発明の効果 以上のように、本発明によれば、製法の簡単さはそのi
t残して、焼結式カドミウム極の特性に匹敵する非焼結
式カドミウム負極が得られる。
Effects of the Invention As described above, according to the present invention, the simplicity of the manufacturing method is its i.
t, a non-sintered cadmium negative electrode comparable in properties to a sintered cadmium electrode is obtained.

Claims (1)

【特許請求の範囲】[Claims] 酸化カドミウム及び水酸化カドミウムよりなる群から選
んだ少なくとも1種の酸化カドミウム換算値70〜50
重量部に対して30〜5o重量部のニッケル粉末を含む
活物質混合物を芯材に塗着し、加圧する工程を有するこ
とを特徴とするカドミウム電極の製造法。
At least one type of cadmium oxide selected from the group consisting of cadmium oxide and cadmium hydroxide, equivalent to 70 to 50
A method for producing a cadmium electrode, comprising the steps of applying an active material mixture containing 30 to 5 parts by weight of nickel powder to a core material and applying pressure.
JP58062427A 1983-04-08 1983-04-08 Method for manufacture of cadmium electrode Pending JPS59186261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062427A JPS59186261A (en) 1983-04-08 1983-04-08 Method for manufacture of cadmium electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062427A JPS59186261A (en) 1983-04-08 1983-04-08 Method for manufacture of cadmium electrode

Publications (1)

Publication Number Publication Date
JPS59186261A true JPS59186261A (en) 1984-10-23

Family

ID=13199849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062427A Pending JPS59186261A (en) 1983-04-08 1983-04-08 Method for manufacture of cadmium electrode

Country Status (1)

Country Link
JP (1) JPS59186261A (en)

Similar Documents

Publication Publication Date Title
US20230101375A1 (en) Iron electrode employing a polyvinyl alcohol binder
US20230121023A1 (en) Continuous manufacture ofa nickel-iron battery
US5360687A (en) Hydrogen-occulusion electrode
JPS5937667A (en) Metal oxide-hydrogen battery
JPS59186261A (en) Method for manufacture of cadmium electrode
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JPH03179664A (en) Hydrogen storage electrode for alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2000182611A (en) Alkaline storage battery and its manufacture
JPS6097560A (en) Sealed type alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2530281B2 (en) Alkaline storage battery
JPH04284369A (en) Nickel-metal hydride storage battery
JPH1021904A (en) Alkaline storage battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JPH04262367A (en) Hydrogen storage electrode
JP3436059B2 (en) Nickel-hydrogen storage battery
JPH07130369A (en) Battery electrode
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JPS612271A (en) Negative plate for sealed cylindrical nickel-cadmium battery
JPS60151966A (en) Nonsintered cadmium negative electrode
JPS59114767A (en) Manufacture of hydrogen electrode
JPH04163861A (en) Secondary battery with non-aqueous electrolyte