JPS61136920A - 合成ルチル製造方法 - Google Patents

合成ルチル製造方法

Info

Publication number
JPS61136920A
JPS61136920A JP25577884A JP25577884A JPS61136920A JP S61136920 A JPS61136920 A JP S61136920A JP 25577884 A JP25577884 A JP 25577884A JP 25577884 A JP25577884 A JP 25577884A JP S61136920 A JPS61136920 A JP S61136920A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
leaching
ferrous
sulfuric acid
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25577884A
Other languages
English (en)
Inventor
Hideyuki Yoshikoshi
吉越 英之
Shin Yamashita
山下 申
Keisuke Nakahara
啓介 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25577884A priority Critical patent/JPS61136920A/ja
Publication of JPS61136920A publication Critical patent/JPS61136920A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はチタン鉱石から高品質の合成ルチルを得る合
成ルチル製造方法に関し、特にその製造方法として既に
提案されている酸浸出法のうち、常圧下の浸出で高品質
な合成ルチルが得られる塩酸浸出法の改良を目的とする
ものである。
(従来の技術〕 合成ルチルの製造原料としては、イルメナイト、アリシ
ナイト、リュウコクシン等のチタン鉱石が利用できるが
、主としてイルメナイト鉱石が使用される。該イルメナ
イト鉱石は下記第1表に示すように、チタンと鉄分を主
成分とするものである。
合成ルチルの製造は一般にこのイルメナイト鉱石から鉄
分を除くことにより行なわれるが、その製造方法として
Tie、品位が90〜95チ以上の合成ルチルを得る方
法として酸浸出法がある。この酸浸出法は、イルメナイ
ト鉱石を酸化・還元処理して、鉄分を酸に溶解し易い形
態に熱改質した後、鉄・マンガン等不純物を酸により浸
出して高品位なTiO2含有物を得てこれを焼成するこ
とにより、合成ルチルを得るものである。更に酸浸出法
には、浸出剤として、使用する酸の種類により、塩酸浸
出法と硫酸浸出法が提案されている。
(発明が解決しようとする問題点) 上記酸浸出法のうち鉄・マンガンなど不純物の浸出に関
しては、塩酸浸出法が硫酸浸出法に較べ優れている。塩
酸浸出法では常圧下における数時間の浸出で高品位Ti
O2含有物を得ることができるのに対し、硫酸浸出法で
は加圧下における100℃以上の浸出が必要となる。
例えば、塩酸浸出法に関して、特開昭50−51918
号の「チタン精鉱の製造方法」の実施例によれば、熱改
質したイルメナイト鉱石を常圧下105〜110℃で1
20〜150分間塩酸浸出することにより、Tie、純
度約94%のTie、含有物を得ている。一方、硫酸浸
出法に関して、特公昭49−37484号の「高品位の
粗チタン濃縮物の製造方法」の実施例によれば、130
℃で12時間の浸出で、Tie、品位は86.5%とな
り、これから低品位なものを磁選で分離することにより
Tie、品位96.0%のTi01含有物を得ている。
又本発明者等が第1表に組成を示した西オーストラリア
並イルメナイト鉱石を1000’Cで3時間空気酸化し
た後、700Cで3時間CO還元して得た鉱石を供試し
て、塩酸浸出法と硫酸浸出法について試験したところ、
下記第2表に示す結果を得た〇 第     2     表 第2表に示したようにTi1t 95 %のTi01含
有物を得るには塩酸浸出法では100℃で4時間、硫酸
浸出法では150℃で8時間が必要となり、塩酸浸出法
は硫酸浸出法に較べ、浸出性能は明らかに優れたもので
ある。ところが、塩酸浸出法では、塩酸が高価であるた
め、浸出液を酸化焙焼することにより、塩酸を回収し、
再利用する方法が採られることが多い。
それでも浸出液の酸化焙焼には美大なエネルギーを要す
ることから、合成ルチル製造コストがかなり高くなると
いう問題がある。
一方、硫酸浸出法では硫酸が安価であること及び硫酸浸
出で副産した硫酸第一鉄が、工業的利用価値が高く、大
きな副産物利益を見込めることから合成ルチル製造コス
トは塩酸浸出法の場合に較べかなり安価なものとなる。
このように塩酸浸出法は、浸出性能が優れているものの
経済性ζζ問題があり、硫酸浸出法は経済性が優れてい
るものの浸出性能に問題があった。
本発明は以上の問題を解決するためなされたもので、塩
酸浸出法の浸出性能と硫酸浸出法の経済性に着目し、こ
れらを結合し、優れた浸出性能と経済性を合せもつ新た
な酸浸出法を創案したものである。
(問題点を解決するための手段) この発明は、鉱石の浸出を浸出性能の優れた塩酸で行な
うが、系内に安価な硫酸を供給することにより、浸出後
の反応液中から塩酸を再生し、これを系内で循環利用す
ると共に、鉱石中の鉄分を硫酸第一鉄として副産する方
法であり、特に塩酸の回収に特徴がある。
以下本発明を第1図の概要フローチャートに基づいて詳
述する。
第1図中チタン鉄石から合成ルチルに至る縦のフローは
従来の塩酸浸出法と同じである。
即ち、チタン鉱石を酸化・還元処理した後、塩酸及び塩
化第一鉄を主成分とする塩酸浸出液により浸出し、高品
位なチタン含有物を得て分離乾燥し、これを焼成して合
成ルチルを得る。
本発明は塩酸浸出後生成される塩化第一鉄に硫酸を反応
させることにより、 FeC/4 十Hz 804−+ 2 HC1+FeS
O4という反応式に基づいて硫酸第一鉄と塩化水素(塩
酸)が得られ、塩酸を回収する。即ち塩酸浸出の結果生
成した塩化第一鉄を浸出液から晶析分離して、これに硫
酸を反応させ、塩化水素を発生し、これを前記晶析分離
後の残存浸出液に吸収せしめて、塩酸を回収し、再び塩
酸浸出液として循環させ、浸出処理に再利用させる。又
前記硫酸との反応により塩化水素と同時に生成さnた硫
酸第一鉄を回収する。
第1図を使って説明すれば、酸化・還元処理によって熱
改質したチタン鉱石を、塩酸及び塩化第一鉄を主成分と
する浸出液で浸出し、浸出液中の固体物を分離除去(細
粒分離を含む)した浸出液を冷却することにより、浸出
液中の塩化第一鉄を晶析する。
第2図は各温度における塩酸液中の塩化第一鉄溶解量を
示しているが、上記塩化第一鉄の晶析はこの塩化第一鉄
の溶解量の差を利用する。
この場合、晶析は晶析原液の冷却のみだけでなく、塩酸
濃度を高めても実施できる。従って後述する処理により
発生する塩化水素ガスに着目し、これを晶析原液(塩酸
浸出後晶析前の浸出液)に吸収せしめれば塩酸濃度を高
めることができるため、そのような操作と共に冷却を行
なうことが晶析処理にとってよりペターであり、冷却の
負担をより軽減することができる。
こうして晶析した塩化第一鉄を浸出液から分離し、当量
以上の硫酸を反応させ、塩化水素ガスと硫酸第一鉄を生
成する( FeCl2・4H20十H2804→FeS
O4’ H20+ 2 IfC4+ H20)。硫酸の
添加量は塩化第一鉄に対し、反応当量以上であればよい
が、経済的には1.0〜1.1倍当量が望ましい。常温
においても反応は進行するが、高反応率を得るには70
〜150℃(望ましくは100〜150℃)にすると良
い。ここで発生した塩化水素ガスは窒素カス、アルゴン
ガス等の非酸化性ガスをキャリアとして取出し、スプレ
塔、もれ柵塔、充填塔等のガス吸収装置で循環液(晶析
分離後の残存浸出液)に吸収させ、再び塩酸浸出液とし
て循環させて浸出処理に再利用する。キャリアガスは再
び塩化水素ガス発生側をこ戻し、再利用する。
尚、上述の塩化第一鉄結晶と硫酸とを効率的に反応させ
るため、本発明者等は第3図に示す塩化水素ガス発生装
置を考案した。即ち通常の攪拌型反応器では塩化第一鉄
結晶が粗粒となり硫酸と十分な接触ができない。そのた
めこの装置は内面にスパイラルフィン(1Gを有する回
転ドラム状の反応器(1)を用い、入口αηからその内
部に耐酸性の球体(2ン(例えばアルミナボール〕或い
は硫酸第一鉄の造粒物を装入し、反応器(1)をゆっく
り回転させながら、濃硫酸と塩化第一鉄結晶を供給し、
球体(2)の表面に結晶と硫酸を付着させ、これらを均
一に分布せしめることにより、高反応率を得ることがで
きるようにしたものである。この反応装置で発生した塩
化水素ガスと水蒸気は窒素ガス等をキャリアとして、前
記塩化第一鉄晶析分離の残存浸出液を吸収液(3)とし
たスプレ塔(4)等に運ばれ、該吸収液(3)に吸収さ
れ、塩酸浸出液としてもとの浸出処理を行なう系に戻す
。スプレ塔出口(40)より出たキャリアガスは再び反
応装置へ循環せしめる。一方、反応装置出口(2)より
排出された球体(2)は溶解槽(5)内lこ投入して球
体(2)の表面に付着した硫酸第一鉄結晶を槽内の温水
に溶解した後、又反応装置入口α乃へ戻す。
又塩化第一鉄結晶と硫酸との反応工程で生成した前記硫
酸第一鉄は鉱石に起因するマンガン等の不純物を含有し
ているので、精製により工業的利用価値の高い高品位硫
酸鉄として副産するのが望ましい。そこで本発明者等は
合成ルチル製造プロセスから生成した前記硫酸第一鉄の
再結晶によるマンガンの分離方法について検討した結果
、晶析時における液相中のMrl/F6と結晶中のMn
/Feの比が5:1であることを発見し、これをもとに
再結晶によるマンガン分離プロセスを確立することに成
功した。即ち、第4図に示すように前記硫酸第一鉄〔粗
硫酸鉄〕を溶解槽(50)内で溶解し、必要によりpm
した後、晶析槽(60)内で再結晶させ、この操作を繰
り返すこと(槽(51)乃至(53)及び槽(61)乃
至(63) )により高品位な硫酸第一鉄(精製硫酸鉄
)を得た。溶解の温度は硫酸第一鉄の溶解度が最も高く
なる45〜60℃付近が有利となる(各漕の浴温度を図
面内に示しておく)、西オーストラリア産イルメナイト
鉱石(Mn含有¥1.2%)を原料とした場合には鉄に
対し、4%のマンガンが硫酸第一鉄中に混入するが、こ
の場合にもマンガンは再結晶によってフェライト製造用
原料として利用できる品位(Mn含有率0.09%以下
)まで精製できる。
以下本発明の詳細な説明する。
(実施例1〕 第1表に組成を示した西オーストラリア産イルメナイト
鉱石を1000℃で1時間空気酸化した後、流動層型反
応器で水素ガスで800’CI時間還元処理した。 還
元鉱石中の全鉄分に対する第一鉄分は99%であった。
この鉱石I Kfを塩酸濃度150 f/l、塩化第一
鉄濃度420 f/lの浸出g5tで100〜105℃
で4時間浸出した。浸出液を戸別して得た浸出鉱石を水
洗した後、風乾し、900℃で30分間焼成して合成ル
チルを得た・得られた合成ルチルの分析例を第3表に示
す。
次に戸別して得た浸出液から微粒のTie、を遠心分離
器で分離し4.9tのA液を得た。A液を40℃まで冷
却し、塩化第一鉄結晶(FeCl2・4H20)を晶析
し、こnを戸別し、1363Fの結晶A(付着水分7%
)とF液であるD液(晶析分離後の残存浸出液)を得た
更に第3図に示した構造の塩化水素発生装置の反応器(
1)内にH2So、/Fe=C12(モyv比) = 
1.1となるように、先に得た結晶Aを毎時200 f
98%H2So、を毎時1031装入した。反応器(1
)内には直径1cTt1のアルミナ球の球体(2)を 
約SOO個入れ、反応装置出口α4.より連続して毎時
1000個を排出した。排出さイtた球体(2)は、溶
解槽(5)に投入され球体(2)の表面に付着した硫酸
第一鉄結晶を60℃の温水2tに溶解した。その後、球
体(2)をまた反応装置入口αη)戻した。反応装置内
温度は100℃、滞留時間は30分間とした。反応装置
で発生した塩化水素ガスと水蒸気は窒素ガスをキャリア
として、D液4.2tを吸収液(3)としたスプレ塔(
4)で吸収させた。この時吸収液(3)温度は40℃と
し、出口(40)から出たキャリアガスは再び反応装置
へ循環せしめた。
136.1’の結晶Aの装入が終わり、更に30分間経
過した時点において、スプレ塔(4)から吸収液(3)
から再び塩酸浸出液となったC液を得た。また、硫酸第
一鉄溶解槽(5)から溶解液(D液)を得た。次にD液
を15℃まで冷却し、硫酸第一鉄(7水塩)を晶析し、
これを戸別し、洗浄して13739の結晶りを得た。
この実施例におけるA−D液の重量および分析例をまと
めると第4表のようになる。
第    4    表 又結晶A及びDの重量および分析例をまとめると第5表
のようになる。
第   5   表 塩化水素発生装置における反応率(塩酸回収率)は供給
した塩化第一鉄中のCtがどれだけスプレ塔(4)の吸
収液(3)に移行したかによって計算される。A結晶中
のCt量は第5表から1363fX O,331=45
1fと算出され、吸収されたCt量は第4表からB液、
C液のC6iの差として7005fX0.273−61
87fX0.237=4462と算出される。これらの
結果よりCtの回収率は99%と算出された。
さて、最終的に得た硫酸第一鉄結晶(結晶D〕からは不
純物としてマンガンを除くシリカ、アルミニウム、チタ
ンなどは検出されなかった。マンガン濃度は0.06%
であり、これは矢に示すフェライト製造用原料として充
分に使用できるものであった。尚、フェライト用酸化鉄
(Ill)のJIS規格は@6表に示すように決められ
ており、これより算出した硫酸第一鉄結晶(7水塩)中
のMn2度は0.086%以第6表  フェライト用酸
化鉄(III)のJIS規格(実施例2) 第1図に示すフローチャートに基づいて、第1表に組成
を示す西オーストラリア産イルメナイト鉱石を原料とし
て合成ルチルを毎時IKf連続して製造した。毎時18
18rのイルメナイト鉱石を酸化炉で1000℃におい
て1時間空気酸化し、次に還元炉で800℃において1
時間水素還元した。こうして得た熱改質鉱石を浸出槽へ
供給し、105℃において滞留時間4時間で浸出した。
このとき、浸出液供給量は毎時9.1tとし、浸出液組
成がHC6150f/l 、 Fe CLz 420 
t/Lとなるよう屹した。次に浸出液と鉱石を戸別し、
浸出鉱石は水洗した後、風乾し、焼成炉で900℃にお
いて30分間処理し、TiO2濃度96%の合成ルチル
を毎時IK9得た。
一方、浸出液は微粉Tie2を 遠心分離器1分離した
後、40℃の晶析槽へ供給し、晶析槽から毎時2098
S’の結晶を得た。この結晶を第3図に示す塩化水素発
生装置へ供給すると共に毎時1086Fで98%硫酸を
供給した。
ここで、硫酸の供給量は推定されるCt量の1.05倍
当量とし、装置内温度は105℃とした。塩化水素発生
装置から発生したガスは前記晶析検出口液から結晶を分
離した残存浸出液を吸収液(3)とするスプレ塔(4)
へ窒素ガスをキャリアとして供給した。スプレ塔(4)
内の吸収液(31に35%塩酸を毎時20〜25 mA
を補給した後、再び塩酸浸出液として浸出槽へ供給した
次に塩化水素発生装置より生成物を付着したアルミナ球
の球体(2)を連続して排出し、溶解槽(5)で付着物
を溶解した。溶解槽(5)の温度は60℃とした。溶解
液は3.5℃の晶析槽ζこ供給し、結晶を得た。この結
晶を第4図に示すように更に3回の再結晶を繰り返し最
終的には19295’の硫酸第一鉄(7水塩〕結晶(付
着水5チ)を得た。この硫酸第一鉄結晶中のマンガン濃
度は0.03%であった。
(発明の効果) 以上のような本発明の合成ルチル製造方法によれば、チ
タン鉱石の浸出を浸出性能の優れた塩酸で行なうので、
簡易な条件で高品質の合成ルチルを得るこ七ができると
共に、系内に安価な硫酸を供給することにより塩酸を回
収して循環利用することができ、あわせて鉱石中の鉄分
を硫酸第一鉄として副産することができるという優れた
効果を有しており、製造コスト的にも優れたものである
【図面の簡単な説明】
第1図は本発明の工程を示すフローチャート概要因、第
2図は各温度における塩酸液中の塩化第一鉄溶解量を示
すグラフ図、第3図は塩化水素ガス発生装置の構成を示
す説明図、第4図は粗硫酸鉄からマンガンを分離するプ
ロセスを示す工程概要図である。 図中、(17は反応器、(2〕は球体、(3回才吸収液
、(4)はスプレ塔、(5X50X51)(52)(5
3)は溶解槽、(60X61X62X63)は晶析槽を
各示す。

Claims (1)

  1. 【特許請求の範囲】 チタン鉱石を酸化・還元処理して、次に これを塩酸浸出液により浸出し、高品位な チタン含有物を得てこれを焼成することに より合成ルチルを製造する合成ルチル製造 方法において、前記浸出で生成した塩化第 一鉄を晶析することにより分離し、これに 硫酸を反応させて塩化水素ガスと硫酸第一 鉄を生成し、前記塩化第一鉄晶析分離後の 残存浸出液に塩化水素ガスを吸収せしめ、 再び塩酸浸出液として循環させて浸出処理 に再利用すると共に、前記硫酸第一鉄を回 収することを特徴とする合成ルチル製造方 法。
JP25577884A 1984-12-05 1984-12-05 合成ルチル製造方法 Pending JPS61136920A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25577884A JPS61136920A (ja) 1984-12-05 1984-12-05 合成ルチル製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25577884A JPS61136920A (ja) 1984-12-05 1984-12-05 合成ルチル製造方法

Publications (1)

Publication Number Publication Date
JPS61136920A true JPS61136920A (ja) 1986-06-24

Family

ID=17283494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25577884A Pending JPS61136920A (ja) 1984-12-05 1984-12-05 合成ルチル製造方法

Country Status (1)

Country Link
JP (1) JPS61136920A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518093A (ja) * 2004-10-21 2008-05-29 アングロ オペレーションズ リミティッド 鉱石からの有価金属回収のための塩酸存在下での浸出方法
JP2009517548A (ja) * 2005-11-28 2009-04-30 アングロ オペレーションズ リミティッド 鉱石からの有価金属回収のための塩酸存在下での浸出プロセス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518093A (ja) * 2004-10-21 2008-05-29 アングロ オペレーションズ リミティッド 鉱石からの有価金属回収のための塩酸存在下での浸出方法
JP2009517548A (ja) * 2005-11-28 2009-04-30 アングロ オペレーションズ リミティッド 鉱石からの有価金属回収のための塩酸存在下での浸出プロセス

Similar Documents

Publication Publication Date Title
JP5764207B2 (ja) 無水銀アルカリマンガン電池用電解二酸化マンガンの製造法
US2576314A (en) Extracting of nickel values from nickeliferous sulfide material
JP2015510483A (ja) 赤泥を処理するプロセス
JP2013538936A5 (ja)
TW201119946A (en) Reclaiming of lead in form of high purity lead compound from recovered electrode paste slime of dismissed lead batteries and/or of lead minerals
CA3201685A1 (en) Production of lithium chemicals and metallic lithium
EP0319857B1 (en) Method for producing titanium fluoride
US3951649A (en) Process for the recovery of copper
JPH10509212A (ja) 金属及び化学的価値の回収方法
US7097816B2 (en) Method of producing ferrous sulfate heptahydrate
JPS61136920A (ja) 合成ルチル製造方法
CN101358301A (zh) 钒钛磁铁精矿直接提钒的方法
US3291599A (en) Chemical process
CN115261625A (zh) 一种黑铜泥和砷滤饼联合浸出中分步回收铜、砷的方法
US2860951A (en) Recovery of values in naturally occurring alkali metal sulfate minerals
JPS603004B2 (ja) 無水塩化マグネシウムの製造方法
JP2002508028A (ja) 廃材の流れからの鉄生成物の回収
CN105905925A (zh) 一种冶炼锰铁除尘灰和废渣综合回收有价金属的方法
JP2006509103A (ja) スラグの処理方法
CA1180902A (en) Process for recovering metals
JPH11322342A (ja) 硫酸第1鉄1水塩の製造法
US3810971A (en) Metal recovery from salt mixtures of copper and metals more electropositive than copper
CN112723311A (zh) 利用铁矿石处理人造金红石母液综合利用的方法
US1014793A (en) Process of obtaining titanic oxid.
CN111593210A (zh) 人造金红石母液的处理方法