JPS61136661A - Thick martensitic stainless steel having superior toughness - Google Patents

Thick martensitic stainless steel having superior toughness

Info

Publication number
JPS61136661A
JPS61136661A JP25631084A JP25631084A JPS61136661A JP S61136661 A JPS61136661 A JP S61136661A JP 25631084 A JP25631084 A JP 25631084A JP 25631084 A JP25631084 A JP 25631084A JP S61136661 A JPS61136661 A JP S61136661A
Authority
JP
Japan
Prior art keywords
toughness
stainless steel
thick
steel
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25631084A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Masaaki Kano
狩野 征明
Yoshihiro Kataoka
片岡 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25631084A priority Critical patent/JPS61136661A/en
Publication of JPS61136661A publication Critical patent/JPS61136661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a thick martensitic stainless steel having superior toughness by controlling N and C contents and vanishing delta-ferrite so as to prevent deterioration in quality caused by thickening. CONSTITUTION:The composition of a thick martensitic stainless steel is composed of, by weight, <0.16% C, <0.3% Si, 0.5-2% Mn, 15-17% Cr, 2-4% Ni, 0.02-0.2% N (2C%+N%=0.22-0.34%) and the balance Fe with inevitable impurities. The ductility and toughness are improved by the reduced C content and reduction in the strength caused by the reduced C content is compensated by the increased N content.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は靭性の優れた厚肉マルテンサイト系ステンレス
鋼に関し、高強度、高靭性でしかも耐食性の要求される
ス、リープ、シャフト、ピンなどの構造用厚肉鋼として
利用毛れる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to thick-walled martensitic stainless steel with excellent toughness, and is used for steels, leaps, shafts, pins, etc. that require high strength, high toughness, and corrosion resistance. Used as thick-walled structural steel.

〔従来の技術〕[Conventional technology]

高強度でかつ耐食性が要求される比較的小物の構造用鋼
材には16 ’4 Cr−rルチンサイト系ステンレス
鋼(SUS4311が採用されている。
16'4 Cr-r rutinsite stainless steel (SUS4311) is used as a relatively small structural steel material that requires high strength and corrosion resistance.

しかし5US431ステンレス鋼はCr含有量が高いt
め強度、耐食性に優れているがδフエライ)1−生成し
やすく靭性が良好でない。特に質量穴なる厚肉鋼材に5
US431ステンレス鋼を適用した場合、焼入れで十分
な焼入冷却速度が得られないため、冷却中にδフエライ
ト粒界にCr炭化物を析出し、粒界脆化を起こすため延
性、靭性が著しく低下する。
However, 5US431 stainless steel has a high Cr content.
Although it has excellent strength and corrosion resistance, it is easy to form δ ferrite and has poor toughness. Especially for thick steel materials with mass holes.
When US431 stainless steel is used, a sufficient quenching cooling rate cannot be obtained during quenching, so Cr carbide precipitates at the δ-ferrite grain boundaries during cooling, causing grain boundary embrittlement, resulting in a significant decrease in ductility and toughness. .

そのため、高靭性が要求されるもの、特に厚肉材で高靭
性が要求嘔れるものには、現状の5US431ステンレ
ス鋼を適用できない。
Therefore, the current 5US431 stainless steel cannot be applied to materials that require high toughness, especially thick-walled materials that require high toughness.

SUS 431ステンレス鋼のような高Crマルテンサ
イト系ステンレス鋼の靭性向上手段として、1’Ji 
# M’ + Wの適量添加によりδフエライトt−2
0チ以下に抑制する方法(特開昭54−53616)、
あるいは低C,Cu、W添加によりtフェライトに15
−以下に抑制する方法(特開昭55−8%57)が知ら
れている。しかしこれらの方法はいずれもδフェライト
がかなり存在しており、例えば実測例では前者は3.8
〜17.8チ、後者は8〜11チのδフエライトヲ含有
している。従って薄肉材では良好な靭性が得られるとし
ても、厚肉材では焼入冷却速度が遅くなりδフエライト
粒界に炭化物が析出し著しく脆化する次め良好な靭性が
得られない。
1'Ji is used as a means to improve the toughness of high Cr martensitic stainless steel such as SUS 431 stainless steel.
# By adding an appropriate amount of M' + W, δ ferrite t-2
Method for suppressing the temperature to below 0 (Japanese Patent Application Laid-Open No. 54-53616),
Alternatively, by adding low amounts of C, Cu, and W, 15
- A method is known (Japanese Unexamined Patent Publication No. 1983-8%57) for suppressing the amount to below. However, in all of these methods, a considerable amount of δ ferrite exists; for example, in actual measurements, the former has 3.8
~17.8 inches, the latter containing 8-11 inches of delta ferrite. Therefore, although good toughness can be obtained with thin-walled materials, good toughness cannot be obtained with thick-walled materials because the quenching cooling rate is slow and carbides precipitate at the δ-ferrite grain boundaries, resulting in significant embrittlement.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術の問題点を解決し、厚肉
材においても高性能を得るため、δフェライトの生成を
抑制し、厚肉化にともなう材質劣化を防止できる靭性の
優れた厚肉マルテンサイト系ステンレス鋼を提供するに
ある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to obtain high performance even in thick-walled materials. It is to provide meat martensitic stainless steel.

〔問題点を解決するための手段および作用〕本発明の要
旨とするところは次の如くである。
[Means and operations for solving the problems] The gist of the present invention is as follows.

すなわち、重量比にて C:0.16チ以下、   3i:0.30%以下Mn
 : 0150−λ00S、Cr : 15.00〜1
7.00%Ni:λ00〜4.00 %、 N  : 
0.02〜0.20%を含有し、かつ2%C+チN=+
0.22〜0.34)チの範囲を満足し残部がFeおよ
び不可避的不純物から成ることを特徴とする靭性の優れ
た厚肉マルテンサイト系ステンレス鋼、である。
That is, in terms of weight ratio, C: 0.16% or less, 3i: 0.30% or less Mn
: 0150-λ00S, Cr: 15.00-1
7.00%Ni: λ00~4.00%, N:
Contains 0.02-0.20%, and 2% C+CHN=+
This is a thick-walled martensitic stainless steel with excellent toughness, which satisfies the range of 0.22 to 0.34) with the remainder consisting of Fe and unavoidable impurities.

厚肉化にともなう材質劣化は、δフェライトに起因する
。し友がってδフェライト金防止すれば厚肉化にともな
う材質劣化全抑制できる。
Material deterioration due to thickening is caused by δ ferrite. If δ-ferrite gold is prevented, the material deterioration caused by thickening can be completely suppressed.

δフェライトの低減KC,N、Ni、Mn含有量の増加
、Si 、 Cr、 Mo含有量の低減が有効であり、
この中特にC,Nの影響が顕著である。
It is effective to reduce δ ferrite by increasing the KC, N, Ni, and Mn contents, and reducing the Si, Cr, and Mo contents.
Among these, the influence of C and N is particularly remarkable.

しかし、Cは粒界炭化物を促進し延性、靭性全低下させ
るので、C含有量は低目に抑え、N含有量金高めるのが
望ましい。またC含有量の低下にともなう強度低下はN
含有量の増加によシ補うことが可能である。
However, since C promotes grain boundary carbides and completely reduces ductility and toughness, it is desirable to keep the C content low and to increase the N content of gold. In addition, the decrease in strength due to the decrease in C content is due to the decrease in N
It is possible to compensate by increasing the content.

以上よりN含有量全高めδフエライ)t−防止すれば、
厚肉材においても高性能を有する高Crマルテンサイト
系ステンレス鋼が製造できることが判明した。
From the above, if the total N content is increased δ ferrei)t-prevented,
It has been found that high Cr martensitic stainless steel with high performance can be produced even in thick-walled materials.

本発明は前記の知見にもとすき、N含有量を高めδフエ
ライトヲ抑制することによシ、厚肉材においても高靭性
を有する高Crマルテンサイト系ステンレス鋼を提供す
るものである。
Based on the above findings, the present invention provides a high Cr martensitic stainless steel that has high toughness even in thick-walled materials by increasing the N content and suppressing δ ferrite.

以下に本発明の成分限定理由について説明する。The reasons for limiting the components of the present invention will be explained below.

C: Cはδフェライトの抑制に極めて有効な元素であるが、
粒界炭化物を形成し靭性全署しく劣化させる。とくにC
が0.16 % k越えると靭性の劣化が著しいのでC
は0.16 %以下に限定した。
C: C is an extremely effective element for suppressing δ ferrite, but
Grain boundary carbides are formed and the toughness deteriorates drastically. Especially C
If it exceeds 0.16%k, the toughness deteriorates significantly, so C
was limited to 0.16% or less.

Si : Siはδフェライトの生成を助長するので低い方が望ま
しい。Si0.30%以下であれば、δフェライトへの
影響も小さいのでSiは0.30 %以下に限定し友。
Si: Since Si promotes the formation of δ ferrite, a lower Si content is desirable. If Si is 0.30% or less, the effect on δ ferrite is small, so limit Si to 0.30% or less.

Mn: Mnはδフェライトの低減に有効な元素であるが、0.
50%未満ではその効果が十分発揮嘔れない。またλo
os1(越えると焼もとし脆化感受性が高まり靭性が劣
化するので、Mnは0.50〜λ00チ範囲に限定した
Mn: Mn is an effective element for reducing δ ferrite, but 0.
If it is less than 50%, its effect will not be sufficiently demonstrated. Also λo
Mn was limited to a range of 0.50 to λ00 because if it exceeds os1, the susceptibility to tempering embrittlement will increase and the toughness will deteriorate.

Cr : Crは良好な耐食性を確保する上で15.0 OS以上
が必要であるが、17.0O1’に越えるとδフェライ
トを生成しやすくなるので15.00〜17.00チの
範囲に限定し友。
Cr: Cr needs to be 15.0 OS or higher to ensure good corrosion resistance, but if it exceeds 17.0 O1', δ ferrite tends to be generated, so it is limited to a range of 15.00 to 17.00 OS. My friend.

Ni: Niはδフェライトの生成を抑え良好な靭性を確保する
友めzoos以上が必要である。しかし400 %t−
越えると軟かいオーステナイトが増加し、強度低下金ま
ねくため、Niは200〜4.00−の範囲に限定した
Ni: Ni is necessary to suppress the formation of δ ferrite and ensure good toughness. But 400%t-
Ni is limited to a range of 200 to 4.00 because if it exceeds this, soft austenite increases and strength decreases.

N: Nはδフェライトの抑制に極めて有効な元素であり、δ
フエライト1一完全に防止するには0.02−以上が必
要である。しかし0.20 % t−越えると靭性が劣
化するためNは0.02〜0.20チの範囲に限定した
。− 次に、2チC1%N=+0.22〜0.34)チの範囲
に限定した理由について説明する。上記のとおり、C,
Nはいずれもδフェライトの抑制に有効な元素であるが
、Cは特に靭性を著しく低下させ、またNも必要以上に
増加させると靭性を低下させる。
N: N is an extremely effective element for suppressing δ ferrite.
For complete prevention of ferrite 1, 0.02 or more is required. However, if it exceeds 0.20% T, the toughness deteriorates, so N was limited to a range of 0.02 to 0.20 T. - Next, the reason for limiting the range to 2C1%N=+0.22 to 0.34) will be explained. As mentioned above, C,
Although any of N is an element effective in suppressing δ ferrite, C in particular significantly reduces toughness, and when N is increased more than necessary, toughness is also reduced.

靭性に対するC、Nの適正量について調査し、C1N含
有量と衝撃試験シャルピー衝撃値UE20との関係を第
1図に示した。第1図において○卵内の数字はシャルピ
ー衝撃値UE20 (kff −m/cd )を示して
いる。第1図の斜線の領域は、2チC+4N=(0,2
2〜0.3411にて表わされ、この領域においてのみ
高靭性の得られることが判明した。従って、C2Nに関
シテは、名らI/c2 % C+1N= l O,22
〜0゜34)チを満足することを要件に加えた。
The appropriate amounts of C and N for toughness were investigated, and the relationship between the C1N content and the Charpy impact value UE20 of the impact test is shown in FIG. In FIG. 1, the numbers inside the circle indicate the Charpy impact value UE20 (kff - m/cd). The shaded area in Figure 1 is 2C+4N=(0,2
2 to 0.3411, and it was found that high toughness could be obtained only in this region. Therefore, regarding C2N, I/c2 % C+1N= l O,22
~0°34) Satisfying H is added to the requirements.

また、厚肉鋼材に限定したのは次の理由による。Furthermore, the reason for limiting the use to thick-walled steel materials is as follows.

第1表に成分を示した本発明鋼および従来の比較鋼につ
いて種々の肉厚について衝撃試験全行い、シャルピー衝
撃値UE20と肉厚との関係を第2図第2図に示す比較
鋼では厚肉化すなわち焼入冷却速度の低下に伴ない材質
低下が著しいのに対し、δフエライ)1−制御し友本発
明鋼は厚肉化にともなう材質劣化が少なく、肉厚50四
以上の厚肉材について特に優位性を発揮するからである
All impact tests were conducted for various wall thicknesses on the inventive steel whose components are shown in Table 1 and the conventional comparative steel, and the relationship between Charpy impact value UE20 and wall thickness was shown in Figure 2 In contrast, the material quality deteriorates significantly as a result of thickening, that is, a decrease in the quenching cooling rate, whereas the steel of the present invention exhibits less material quality deterioration due to thickening, and has a thick wall thickness of 504 or more. This is because it is especially superior when it comes to materials.

なお本発明の製造方法は従来どおりで、所定成分の溶鋼
にて鋼塊を製造し、熱間鍛造を行った後に焼入、焼戻し
処理をす九ばよく、特に限定の要はない。
Note that the manufacturing method of the present invention is the same as the conventional method, and there is no need for particular limitations, as it is sufficient to manufacture a steel ingot from molten steel of a predetermined composition, perform hot forging, and then perform quenching and tempering treatments.

〔実施例〕〔Example〕

5US431ステンレス鋼をペースに第2表に示す化学
成分を有するの、■、0,0.[F]、[F]鋼の発明
鋼と、■、0.■、■、■、■、■鋼の比較鋼管溶製し
、大型厚肉鍛鋼の製造条件tシミュレートして鍛造板と
した後、調質処理を施した。
Based on 5US431 stainless steel and having the chemical composition shown in Table 2, ■, 0,0. [F], [F] steel invention steel, ■, 0. Comparison of steel pipes (1), (2), (2), (2), (2) Steel pipes were melted and forged plates were made by simulating the manufacturing conditions of large thick-walled forged steel, and then tempered.

調質処理は1025℃x 5 hr保持から焼入れおよ
び680℃X 10 hrの焼もどしtした。焼入冷却
は200m厚の製品を油焼入した場合に相当する約15
℃/IwIとした。このようにして製造し几各鋼につい
て引張試験および衝撃試験全実施し、その結果と第3表
に示した。なお、第1表において本発明の条件を満足し
ない数値はアンダーラインで示した。
The refining treatment consisted of holding at 1025°C for 5 hours, quenching, and tempering at 680°C for 10 hours. Quenching cooling is approximately 15%, which is equivalent to oil quenching a 200m thick product.
It was set as °C/IwI. Tensile tests and impact tests were carried out on each of the steels manufactured in this manner, and the results are shown in Table 3. In Table 1, numerical values that do not satisfy the conditions of the present invention are underlined.

現用の5US431ステンレス鋼に相当する比較鋼Oで
はδフェライトが数多存在するのに対し、本発明の■〜
[F]鋼ではδフェライトが1チ以下と極めて少ない。
Comparative steel O, which corresponds to the current 5US431 stainless steel, has a large number of δ ferrites, whereas the present invention's ■~
[F] Steel has very little δ ferrite, less than 1 inch.

機械的性質は比較鋼0に比べ本発明のの〜[F]鋼は引
張強度に明確な差が与られないが、引張延性、衝撃靭性
が著しく優れている。
Regarding the mechanical properties, compared to Comparative Steel 0, the steel No. 2 to [F] of the present invention shows no clear difference in tensile strength, but is significantly superior in tensile ductility and impact toughness.

ま友単純にC,N含有量を増加しても■鋼のようにC含
有量が0.19 %と限定範囲より高い場合、あるいは
比較鋼■、■、[株]のように210+SNの和が0.
22〜0.34 %の限定範囲から外れる場合は、本発
明鋼に比較し引張延性、衝撃靭性が悪い。Si 、 M
n 、 Ni 、 Cr含有量が限定範囲金外れた比較
鋼O,Qも靭性が悪い。
Even if you simply increase the C and N contents, if the C content is 0.19%, which is higher than the limited range, as in ■ steel, or the sum of 210 + SN as in comparative steels, ■, ■, and [Stock]. is 0.
When the content is outside the limited range of 22 to 0.34%, the tensile ductility and impact toughness are poorer than the steel of the present invention. Si, M
Comparative steels O and Q, in which the n, Ni, and Cr contents were outside the limited range, also had poor toughness.

以上の如く、NおよびC含有量を制御し、δフエライ)
1−消滅した本発明鋼においては、厚肉化にともなう材
質劣化は防止でき厚肉材においても優れた強靭性が得ら
れることが判明した。
As described above, by controlling the N and C contents,
1-It has been found that in the steel of the present invention, which has disappeared, material deterioration due to thickening can be prevented and excellent toughness can be obtained even in thick-walled materials.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記実施例からも明らかな如く、C9Si、
Mn、Cr、Ni、N等の含有量を限定し、δフェライ
トの生成を抑制することによって厚肉鋼材においても強
度、靭性、耐食性の優れた高Crマルテンサイト系ステ
ンレスが製造できる効果をあげた。
As is clear from the above examples, the present invention provides C9Si,
By limiting the content of Mn, Cr, Ni, N, etc. and suppressing the formation of δ ferrite, we were able to produce high-Cr martensitic stainless steel with excellent strength, toughness, and corrosion resistance even in thick-walled steel materials. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は200+aa厚肉材のシャルピー衝撃値(UE
20 )におよぼすC,Nの影響を示す関係図、第2図
はシャルピー衝撃値におよぼす鋼材肉厚の影響を示す線
図である。
Figure 1 shows the Charpy impact value (UE) of 200+aa thick-walled material.
Fig. 2 is a diagram showing the influence of steel material thickness on Charpy impact value.

Claims (1)

【特許請求の範囲】[Claims] (1)重量比にて C:0.16%以下、Si:0.30%以下、Mn:0
.50〜2.00%、Cr:15.00〜17.00%
Ni:2.00〜4.00%、N:0.02〜0.20
%を含有し、かつ2%C+%N=(0.22〜0.34
)%の範囲を満足し残部がFeおよび不可避的不純物か
ら成ることを特徴とする靭性の優れた厚肉マルテンサイ
ト系ステンレス鋼。
(1) Weight ratio: C: 0.16% or less, Si: 0.30% or less, Mn: 0
.. 50-2.00%, Cr: 15.00-17.00%
Ni: 2.00-4.00%, N: 0.02-0.20
%, and 2%C+%N=(0.22-0.34
) %, with the remainder consisting of Fe and unavoidable impurities.
JP25631084A 1984-12-04 1984-12-04 Thick martensitic stainless steel having superior toughness Pending JPS61136661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25631084A JPS61136661A (en) 1984-12-04 1984-12-04 Thick martensitic stainless steel having superior toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25631084A JPS61136661A (en) 1984-12-04 1984-12-04 Thick martensitic stainless steel having superior toughness

Publications (1)

Publication Number Publication Date
JPS61136661A true JPS61136661A (en) 1986-06-24

Family

ID=17290883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25631084A Pending JPS61136661A (en) 1984-12-04 1984-12-04 Thick martensitic stainless steel having superior toughness

Country Status (1)

Country Link
JP (1) JPS61136661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064077A1 (en) 2013-10-31 2015-05-07 Jfeスチール株式会社 Ferrite-martensite two-phase stainless steel, and method for producing same
CN105177406A (en) * 2015-07-23 2015-12-23 柳州市众力金铭热处理有限公司 Machining method for high-hardness and high-tenacity 65 Mn steel rod of rod mill
KR20160078452A (en) 2013-10-31 2016-07-04 제이에프이 스틸 가부시키가이샤 Ferrite-martensite two-phase stainless steel, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064077A1 (en) 2013-10-31 2015-05-07 Jfeスチール株式会社 Ferrite-martensite two-phase stainless steel, and method for producing same
KR20160078452A (en) 2013-10-31 2016-07-04 제이에프이 스틸 가부시키가이샤 Ferrite-martensite two-phase stainless steel, and method for producing same
US10745774B2 (en) 2013-10-31 2020-08-18 Jfe Steel Corporation Ferrite-martensite dual-phase stainless steel and method of manufacturing the same
CN105177406A (en) * 2015-07-23 2015-12-23 柳州市众力金铭热处理有限公司 Machining method for high-hardness and high-tenacity 65 Mn steel rod of rod mill

Similar Documents

Publication Publication Date Title
EP0081592B1 (en) Brake discs of low-carbon martensitic stainless steel
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS6230860A (en) Free-cutting austenitic stainless steel
US2791500A (en) High strength aircraft landing gear steel alloy elements
JPS60230960A (en) Steel for cold forging
JPH0382740A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
RU2681074C1 (en) Method of manufacturing corrosion rolled product from low-alloy steel
JPS61279656A (en) Non-heattreated steel for hot forging
JPS61136661A (en) Thick martensitic stainless steel having superior toughness
JPH1088285A (en) Molybdenum-containing ferritic stainless steel excellent in oxide scale peeling resistance
JPS58224116A (en) Production of seamless steel pipe having excellent resistance to sulfide stress corrosion cracking
JPS62260042A (en) High strength unrefined tough steel
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPS59123743A (en) Carburizing steel producing slight strain due to heat treatment
JPH0382739A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JPS6121304B2 (en)
JPS63199821A (en) Manufacture of accelerated cooling-type high-tensile steel plate
JPH01176056A (en) High strength steel having excellent fatigue strength
JPS6365055A (en) High hardness stainless steel for cold forging
JPH0813093A (en) Superplastic duplex stainless steel small in deformation resistance and excellent in elongating property
JP3062275B2 (en) Steel for high strength shaft parts
JPH04333516A (en) Production of thick 80kgf/mm2 class high tensile strength steel excellent in weldability
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPH02185951A (en) High strength stainless steel for subzero treatment excellent in workability
JPH02217437A (en) Steel for cold working