JPS61136531A - Abrasion-resistant molding material - Google Patents

Abrasion-resistant molding material

Info

Publication number
JPS61136531A
JPS61136531A JP25559084A JP25559084A JPS61136531A JP S61136531 A JPS61136531 A JP S61136531A JP 25559084 A JP25559084 A JP 25559084A JP 25559084 A JP25559084 A JP 25559084A JP S61136531 A JPS61136531 A JP S61136531A
Authority
JP
Japan
Prior art keywords
silicon nitride
molding material
fine particles
abrasion
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25559084A
Other languages
Japanese (ja)
Inventor
Norisuke Kawada
川田 紀右
Yasuo Oikawa
及川 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25559084A priority Critical patent/JPS61136531A/en
Publication of JPS61136531A publication Critical patent/JPS61136531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A molding material excellent in lubricating/sliding property and abrasion resistance, obtained by adding fine silicon nitride particles to a thermosetting or thermoplastic plastic material. CONSTITUTION:An abrasion-resistant engineering plastic molding material is obtained by adding 15-50wt% fine silicon nitride particles, preferably, trigonal alpha-silicon nitride of an alpha-form content >=70% and an average particle diameter <=20mum, surface-treated with a silane coupling agent and, optionally, 5-10wt% auxiliary reinforcement (e.g., carbon fiber, and additives such as a cure accelerator and an insulating agent to a thermosetting molding material (e.g., phenolic resin) or a thermoplastic plastic material (e.g., polyether sulfone resin).

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、耐摩耗性成形材料に関して、さらに詳しくは
熱硬化性又は熱可塑性プラスチック材料に窒化けい素微
粒子を練り込んだ潤滑摺動特性に優れたエンジニアリン
グプラスチック成形材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to wear-resistant molding materials, and more specifically, to the lubricating sliding properties of thermosetting or thermoplastic plastic materials kneaded with silicon nitride fine particles. Regarding superior engineering plastic molding materials.

〔従来技術とその問題点〕[Prior art and its problems]

この種の潤滑摺動特性を有するプラスチック成形材料と
しては、カーボンファイバー又はグラファイト粉末、ふ
っ素樹脂粉末等の充填材を練り込んだ熱硬化性及び熱可
塑性成形材料が知られている。
As plastic molding materials having this type of lubricating sliding property, thermosetting and thermoplastic molding materials kneaded with fillers such as carbon fiber, graphite powder, and fluororesin powder are known.

しかしながら、カーボンファイバーやグラファイト粉末
では摺動特性が改良されるが電気絶縁特性が大幅に低下
し、電気機器用の材料としては使用範囲が限定されると
いう欠点がある。また、ふっ素樹脂粉末の場合は、熱伝
導度が小さく、添加量の割には摺動特性(特に摩耗特性
)が改良できず、さらにプラスチック成形材料に対する
分散性が悪いという欠点があった。このように、上記の
種類のプラスチック成形材料は、機械的摺動部を有する
小型リレー、電磁開閉器のような制御機器等のモールド
部品用としては接触信頼性の点でまだ充分とはいえず、
またそれらのモールド部品の成形にあたって成形機のス
クリュー、シリンダー等の摩耗が問題となるという欠点
があった。
However, although carbon fiber and graphite powder improve sliding properties, they have the disadvantage that electrical insulation properties are significantly reduced, and their range of use as materials for electrical equipment is limited. Further, in the case of fluororesin powder, the thermal conductivity is low, the sliding properties (particularly the wear properties) cannot be improved in spite of the amount added, and the dispersibility in plastic molding materials is also poor. In this way, the above-mentioned types of plastic molding materials are still not sufficient in terms of contact reliability for molded parts such as small relays with mechanical sliding parts and control devices such as electromagnetic switches. ,
In addition, there is a problem in that the screws, cylinders, etc. of the molding machine are worn out when molding these molded parts.

〔発明の目的〕[Purpose of the invention]

本発明は、充填材として絶縁性及び熱伝導性に優れた窒
化けい素微粒子を用いることにより、モールド部品の長
期使用に対して安定した潤滑摺動効果が得られ、しかも
モルト部品の成形時における成形機のスクリュー、シリ
ンダー等の摩耗が低減できる成形材料を提供することで
ある。
By using silicon nitride fine particles with excellent insulation and thermal conductivity as a filler, the present invention provides a stable lubricating and sliding effect for long-term use of molded parts. An object of the present invention is to provide a molding material that can reduce wear on screws, cylinders, etc. of a molding machine.

〔発明の要点〕[Key points of the invention]

本発明は、熱硬化性プラスチック成形材料又は熱可塑性
プラスチック材料に窒化けい素微粒子を添加配合してな
る優れた潤滑摺動特性を有するエンジニアリングプラス
チック成形材料に係る。
The present invention relates to an engineering plastic molding material having excellent lubricating and sliding properties, which is made by adding silicon nitride fine particles to a thermosetting plastic molding material or a thermoplastic plastic material.

本発明において、プラスチックd形材材の摺動特性を改
良するために添加される充填材は、窒化けい素(S i
 2 N 、−)の微粒子である。特に好ましい窒化け
い素微粒子はα化率が70%以上の三方晶α−窒化けい
素であって、平均粒径が20μ−以下の・ 。
In the present invention, the filler added to improve the sliding properties of the plastic D-shaped material is silicon nitride (S i
2N, -) fine particles. Particularly preferable silicon nitride fine particles are trigonal α-silicon nitride with an alpha conversion rate of 70% or more and an average particle size of 20 μ- or less.

微粉末状のものである。窒化けい素微粒子はプラスチッ
ク材料に対して15〜50重%の量で添加される。窒化
けい素微粒子はプラスチック材料中への分散性を良好に
するためにシランカップリング剤等で表面処理されたも
のが特に好ましい、このようなシランカフブリング剤で
表面処理された窒化 。
It is in the form of a fine powder. The silicon nitride fine particles are added in an amount of 15 to 50% by weight based on the plastic material. It is particularly preferable that the silicon nitride fine particles be surface-treated with a silane coupling agent or the like in order to improve their dispersibility in plastic materials.

けい素微粒子は市場で容易に入手することができる。Silicon fine particles are easily available on the market.

本発明に従うで窒化けい素微粒子を添加することのでき
る熱硬化性プラスチック材料としては、フェノール樹脂
、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹
脂、キシレン樹脂等があげられる。
Thermosetting plastic materials to which silicon nitride fine particles can be added according to the present invention include phenolic resins, epoxy resins, unsaturated polyester resins, melamine resins, xylene resins, and the like.

また、熱可塑性プラスチック材料としては、ポリカーボ
ネート樹脂、ポリエーテルスルホン樹脂、ポリフェニレ
ンスルフィド樹脂、ポリアミド樹脂、ポリアセタール樹
脂等があげられる。
Examples of the thermoplastic material include polycarbonate resin, polyether sulfone resin, polyphenylene sulfide resin, polyamide resin, and polyacetal resin.

本発明に従う成形材料には、機械的強度を必要とすると
きは、絶縁性を損なわない範囲で、例えば成形材料に対
して5〜10f(11%の量のカーボンファイバーのよ
うな補助補強材を添加することができる。また、成形材
料の種類に応じて、その他の添加剤、例えばその他の補
強材、硬化触媒又は促進剤、着色剤、絶縁剤、安定剤等
を添加できることはいうまでもない。
When mechanical strength is required for the molding material according to the present invention, an auxiliary reinforcing material such as carbon fiber in an amount of, for example, 5 to 10 f (11%) of the molding material may be added to the extent that the insulation properties are not impaired. It goes without saying that other additives such as other reinforcing materials, curing catalysts or accelerators, colorants, insulating agents, stabilizers, etc. can also be added depending on the type of molding material. .

〔実施例〕〔Example〕

以下、本発明を実施例によってさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

プラスチック成形材料としてポリエーテルスルホン又は
ポリフェニレンスルフィド樹脂を用い、これにa−窒化
けい素微粒子及びカーボンファイバー補強材を添加し、
充分に混練して樹脂中に均一に分散させた0次いでこの
樹脂組成物をシリンダ一温度320℃又は340℃、金
型温度100℃又は120℃の条件下で所定の形状に射
出成形し、30秒の冷却(硬化)時間の後、本発明に係
る試験片を作製した。
Using polyether sulfone or polyphenylene sulfide resin as a plastic molding material, adding a-silicon nitride fine particles and carbon fiber reinforcing material to this,
This resin composition, which was thoroughly kneaded and uniformly dispersed in the resin, was then injection molded into a predetermined shape under the conditions of a cylinder temperature of 320°C or 340°C and a mold temperature of 100°C or 120°C. After a cooling (hardening) time of seconds, test specimens according to the invention were prepared.

試験片の作成に用いられた樹脂、窒化けい素、補強材の
種類及び添加量並びに成形条件を第1表に要約する。
Table 1 summarizes the types and amounts of resin, silicon nitride, and reinforcing materials used to create the test pieces, as well as the molding conditions.

さらに、前記の樹脂を用い、そして窒化けい素微粒子を
添加しないで同様に成形を行い、参照試験片l及び2を
作製した。
Furthermore, reference test specimens 1 and 2 were produced by molding in the same manner using the resin described above but without adding silicon nitride fine particles.

岸ll&狼 前記のようにして作製した試験片のそれぞれについて耐
摩耗性を評価するための摺動摩耗試験を行った。この試
験は、第1図に示すように、同一成形材料からそれぞれ
作成された断面が円形の可動側試験Iと、V字形状に刻
まれた凹部を育する固定側試験片2とを用い、固定側試
験片2の凹部に固定側試験片lをはめ込んで両者を接触
して一定の荷重W(W−3krf)下に可動側試験片1
を60 rp−の回転数で24時間回転させ、両方の試
験片1及び2から生じる摺動摩耗量の和(mg)を求め
ることによって行った。
A sliding abrasion test was conducted to evaluate the abrasion resistance of each of the test pieces prepared as described above. As shown in FIG. 1, this test used a movable side test piece I with a circular cross section and a fixed side test piece 2 with a V-shaped recess, each made of the same molding material. The fixed side test piece 1 is fitted into the recess of the fixed side test piece 2, and the two are brought into contact with each other, and the movable side test piece 1 is placed under a constant load W (W-3krf).
was rotated at a rotational speed of 60 rpm for 24 hours, and the sum (mg) of the amount of sliding wear generated from both test pieces 1 and 2 was determined.

実施例1〜4の各試験片並びに参照試験片l及び2につ
いての摩耗試験の結果を第1図に示す。
The results of the abrasion test for each test piece of Examples 1 to 4 and reference test pieces 1 and 2 are shown in FIG.

C発明の効果〕 本発明によれば、三方晶のα−窒化けい素(α化率70
%以上)であって平均粒径が20μ−以下の微粉末にシ
ラン処理を施したものを使用したので、プラスチック材
料への分散が均一となり且つ多量に添加することができ
るようになり、成形材料の摩耗特性が大幅に向上した。
C Effect of the invention] According to the invention, trigonal α-silicon nitride (α-ization rate 70
% or more) with an average particle size of 20μ or less, which has been treated with silane, so that it can be uniformly dispersed in plastic materials and can be added in large quantities, making it suitable for molding materials. The wear characteristics have been significantly improved.

また、補助補強材料としてカーボンファイバーを採用し
たので、ガラス繊維の場合のように摩耗特性を低下させ
ることがなく、成形材料の機械的強度を向上させること
が可能となった。
In addition, since carbon fiber was used as the auxiliary reinforcing material, it was possible to improve the mechanical strength of the molding material without reducing the wear characteristics as in the case of glass fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の成形材料の耐摩耗性試験方法の概要
を示したもので、1は可動側試験片、2は固定側試験片
を示す、第2図は、実施例の成形材料の摩耗特性(総摩
耗量)を比較したグラフである。 特許出願人  富士電機株式会社 喜1a 1f 算2目 幻rprn 3に7f
Fig. 1 shows an overview of the abrasion resistance test method for molding materials of the present invention, in which 1 shows a movable side test piece, 2 shows a fixed side test piece, and Fig. 2 shows a molding material of an example. It is a graph comparing the wear characteristics (total wear amount) of Patent applicant Fuji Electric Co., Ltd. Ki 1a 1f Arithmetic 2 eyes rprn 3 to 7f

Claims (1)

【特許請求の範囲】 1)熱硬化性プラスチック材料又は熱可塑性プラスチッ
ク材料に窒化けい素微粒子を添加したことを特徴とする
耐摩耗性成形材料。 2)特許請求の範囲第1項記載の成形材料において、窒
化けい素がα化率70%以上の三方晶α−窒化けい素で
あることを特徴とする成形材料。 3)特許請求の範囲第1又は2項記載の成形材料におい
て、窒化けい素微粒子が20μm以下の平均粒径を有す
ることを特徴とする成形材料。 4)特許請求の範囲第1又は2項記載の成形材料におい
て、窒化けい素微粒子がシランカップリング剤で表面処
理されたものであることを特徴とする成形材料。 5)特許請求の範囲第1又は2項記載の成形材料におい
て、窒化けい素微粒子がプラスチック材料に対して15
〜50重量%の量で添加されることを特徴とする成形材
料。 6)特許請求の範囲第1〜5項のいずれかに記載の成形
材料において、プラスチック材料に対して5〜10重量
%のカーボンファイバーがさらに添加されるとこを特徴
とする成形材料。
[Claims] 1) A wear-resistant molding material characterized by adding silicon nitride fine particles to a thermosetting plastic material or a thermoplastic plastic material. 2) The molding material according to claim 1, wherein the silicon nitride is trigonal α-silicon nitride with a gelatinization rate of 70% or more. 3) The molding material according to claim 1 or 2, wherein the silicon nitride fine particles have an average particle size of 20 μm or less. 4) The molding material according to claim 1 or 2, wherein the silicon nitride fine particles are surface-treated with a silane coupling agent. 5) In the molding material according to claim 1 or 2, the silicon nitride fine particles are 15% of the plastic material.
Molding material, characterized in that it is added in an amount of ~50% by weight. 6) The molding material according to any one of claims 1 to 5, characterized in that 5 to 10% by weight of carbon fiber is further added to the plastic material.
JP25559084A 1984-12-05 1984-12-05 Abrasion-resistant molding material Pending JPS61136531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25559084A JPS61136531A (en) 1984-12-05 1984-12-05 Abrasion-resistant molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25559084A JPS61136531A (en) 1984-12-05 1984-12-05 Abrasion-resistant molding material

Publications (1)

Publication Number Publication Date
JPS61136531A true JPS61136531A (en) 1986-06-24

Family

ID=17280834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25559084A Pending JPS61136531A (en) 1984-12-05 1984-12-05 Abrasion-resistant molding material

Country Status (1)

Country Link
JP (1) JPS61136531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310661A (en) * 1986-07-01 1988-01-18 Denki Kagaku Kogyo Kk Polyphenylene sulfide resin composition
JPH01182357A (en) * 1988-01-14 1989-07-20 Matsushita Electric Works Ltd Epoxy resin molding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310661A (en) * 1986-07-01 1988-01-18 Denki Kagaku Kogyo Kk Polyphenylene sulfide resin composition
JPH01182357A (en) * 1988-01-14 1989-07-20 Matsushita Electric Works Ltd Epoxy resin molding material

Similar Documents

Publication Publication Date Title
JPH0391556A (en) Conductive resin composition
Zhou et al. The impact of polymer matrix blends on thermal and mechanical properties of boron nitride composites
CN100402599C (en) Fluororesin composition
JPS61236855A (en) Polyether imide resin composition
Suresha et al. Role of graphene nanoplatelets and carbon fiber on mechanical properties of PA66/thermoplastic copolyester elastomer composites
EP0159904B1 (en) Polyacetal resin composition
JP3851997B2 (en) COMPOSITE MATERIAL COMPOSITION AND COMPOSITE MATERIAL MOLDED BODY
JPH0586982B2 (en)
JPS61136531A (en) Abrasion-resistant molding material
JPH09194626A (en) Sliding material comprising resin composite
JPH0543751B2 (en)
Iyer et al. Control of coefficient of thermal expansion in elastomers using boron nitride
JPH0819334B2 (en) Thermoplastic resin composition
JPH05132618A (en) Resin composition
JPH0737570B2 (en) Antistatic resin composition
KR930008196B1 (en) Polyphenylene sulfide resin composition
JP2509090B2 (en) Polyester resin composition
JPH04279638A (en) Electrically conductive fiber-reinforced thermoplastic
JPH04264162A (en) Pitch carbon fiber-reinforced polyphenylene sulfide resin composition
JP2971895B2 (en) Resin composition
JPH03195773A (en) Melt viscosity stabilization of polyphenylene sulfide resin and iron-based molding material containing same
JP2002003698A (en) Phenol resin molding material
JPH0269509A (en) Molding material of phenolic resin
JPS59215350A (en) Phenolic resin molding material
JP3718988B2 (en) Resin composition