JPS61135379A - Brushless motor drive device - Google Patents

Brushless motor drive device

Info

Publication number
JPS61135379A
JPS61135379A JP59256003A JP25600384A JPS61135379A JP S61135379 A JPS61135379 A JP S61135379A JP 59256003 A JP59256003 A JP 59256003A JP 25600384 A JP25600384 A JP 25600384A JP S61135379 A JPS61135379 A JP S61135379A
Authority
JP
Japan
Prior art keywords
signal
phase
switching
output
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256003A
Other languages
Japanese (ja)
Inventor
Takashi Kashimoto
隆 柏本
Kenichiro Miura
三浦 賢一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59256003A priority Critical patent/JPS61135379A/en
Publication of JPS61135379A publication Critical patent/JPS61135379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To stably operate a motor even at phase difference displacing time by securing to a low voltage until switched to a signal from rotating magnetic field generating means and a signal of comparator group from starting time. CONSTITUTION:A brushless motor 3 having a magnet rotor 5 is rotated by controlling the energization of an armature winding 4 by semiconductor switching group 2. When started by starting command means 14, a period signal of the prescribed frequency is input from generating means 8 to rotating magnetic field generating means 9 to form 3-phase synchronizing signals 9-U-W phases displaced at 120 deg., and the group 2 is controlled through switching means 11 and controlling means 12. Further, the drive power source 1 of the motor 3 is secured to low voltage to forcibly rotate a magnet rotor 5. Thus, after the prescribed time is elapsed, the means 11 is switched by the means 10, the position detection signal of the rotor 5 is input from comparator group 7 to the means 12 to normally rotate the motor 3.

Description

【発明の詳細な説明】 産業上の利用分野 木@EfJはブラシレスモーフに係り、特に電機子巻線
に誘起される誘起電圧によって磁石回転子と電機子巻線
との相対的位置を検出し、簡fliな構成でFiJIJ
から安定な回転を行なうためのブラシレスモーフに関す
るものである。
[Detailed description of the invention] Industrial application field Tree @EfJ relates to brushless morphs, and in particular detects the relative position of the magnet rotor and armature winding by the induced voltage induced in the armature winding. FiJIJ with simple configuration
This relates to a brushless morph for stable rotation.

従来の技術 従来この種のブラシレスモーフ駆tBh装置は、第5図
に示すような構成となっている。この構成は特公昭59
−36519号公報特公昭59−36520号公報記載
の例であり3相構成である。
2. Description of the Related Art A conventional brushless morph drive tBh device of this type has a configuration as shown in FIG. This composition was created in the 1980s.
This is an example described in Japanese Patent Publication No. 59-36520 and has a three-phase configuration.

」ス下便宜上a相の例を用いて説明することにする口す
なわち直流電源嘗の両端に6個の半導体スイッチング素
子群2Q+〜Q6を3相ブリツジして形成した半導体コ
ミュテーク装置の出力端をモーフ本体3の電機子巻線4
0入力端に接続しである。そして磁石回転子5の回転に
よってN機子巻線4に誘起される誘起電圧信号を用いて
制御手段12が半導体コミュテータ装置中の半導体スイ
ッチング素子群2を通電、遮断する信号に変換し磁石回
転子を定常回転させる。なお、第6図に示すよう例電機
子巻線4に誘起される誘起電圧信号4−U相、4−V相
、4−W相は、半導体スイッチング素子群2のオンオフ
に伴いスパイクノイズが発生するので信号変換手段6に
よって除去し、それぞれ9−0゜位相の遅れた三角波状
の信号6−U相、6−V相、6−W相に変換し、それぞ
れ3相を抵抗で合成した仮性中性点信号と各相との大小
をそれぞれ位置検出回路である比較器群7(なお以後位
置検出回路は比較器群として説明する)で比較する。こ
の従来例においては、第6図の波形図を見るとわかるよ
うに6−V相の信号で比較器群7−U相の出力信号を、
a−W相の信号で7−V相を、6−U相の信号で7−W
相の出力信号を作成しており、それらはそれぞれ120
0位相のずれた区形波であり、それらの信号を回転子位
置検出信号として切換手段11へ入力し定常回転時には
制御手段12に出力され3相の論理レベルに基すいて半
導体スイッチング素子群の通電、遮断を制御する・この
方式であれば負荷変動に応じて、比較器群7へ入力され
る各相の信号もそれに応じて追従するので安定な運転が
持続される。ところで起動時は磁石回転子6が停止状態
にあるので各相に誘起電圧信号が発生しない。そこで起
動指令手段14の信号発生後同期信号発生手段8の出力
信号を回転磁界発生手段9に入力し1200位相のずれ
た3相同期信号9−U相、9−V相、9−W相を作成す
る口この3相同期信号を切換手段11に入力し、起動時
には制御手段12へこれらの信号が出力され電機子巻線
に回転磁界を発生させ磁石回転子を強制的に回転させる
。磁石回転子5が回転すれば電機子巻線4に誘起電圧か
発生するので切換指令手段10の信号によって切換手段
IIからの出力信号が比較器群7の出力信号7−U相、
7−V相、7−W相に切換わりモーフ3は定常回転する
つまた起動後の3相同期信号から比較器群7の3相誘起
電圧信号へ切換えるまでは同期モーフとして駆動され、
同明信号発生手段8の出力信号の周波数を。
For the sake of convenience, we will explain this using an example of phase A. In other words, the output end of a semiconductor commu- taker device formed by 3-phase bridging of six semiconductor switching element groups 2Q+ to Q6 on both ends of a DC power source is referred to as a morph. Armature winding 4 of main body 3
Connect to the 0 input terminal. Using the induced voltage signal induced in the N armature winding 4 by the rotation of the magnet rotor 5, the control means 12 converts it into a signal for energizing or cutting off the semiconductor switching element group 2 in the semiconductor commutator device. Rotate steadily. As shown in FIG. 6, spike noise occurs in the induced voltage signals 4-U phase, 4-V phase, and 4-W phase induced in the armature winding 4 as the semiconductor switching element group 2 turns on and off. Therefore, it is removed by the signal conversion means 6, and converted into triangular wave-like signals 6-U phase, 6-V phase, and 6-W phase, each with a phase delay of 9-0 degrees, and a hypothetical example in which each of the three phases is synthesized with a resistor. The magnitude of the neutral point signal and each phase is compared by a comparator group 7 which is a position detection circuit (hereinafter, the position detection circuit will be explained as a comparator group). In this conventional example, as can be seen from the waveform diagram in FIG. 6, the output signal of the comparator group 7-U phase is
7-V phase with a-W phase signal, 7-W with 6-U phase signal
I am creating phase output signals and they are each 120
These signals are input to the switching means 11 as rotor position detection signals, and are output to the control means 12 during steady rotation to control the semiconductor switching element group based on the logic levels of the three phases. Controlling energization and interruption - With this method, the signals of each phase input to the comparator group 7 follow the load fluctuations accordingly, so stable operation is maintained. By the way, at the time of startup, the magnet rotor 6 is in a stopped state, so no induced voltage signal is generated in each phase. Therefore, after generating the signal from the start command means 14, the output signal of the synchronizing signal generating means 8 is inputted to the rotating magnetic field generating means 9, and three-phase synchronizing signals 9-U phase, 9-V phase, 9-W phase with a phase shift of 1200 are generated. The three-phase synchronizing signals to be created are input to the switching means 11, and at the time of startup, these signals are output to the control means 12 to generate a rotating magnetic field in the armature winding and forcibly rotate the magnet rotor. When the magnet rotor 5 rotates, an induced voltage is generated in the armature winding 4, so the output signal from the switching means II is changed to the output signal 7-U phase of the comparator group 7 by the signal from the switching command means 10.
The morph 3 is switched to the 7-V phase and the 7-W phase, and the morph 3 is driven as a synchronous morph until the 3-phase synchronous signal after startup is switched to the 3-phase induced voltage signal of the comparator group 7.
The frequency of the output signal of the Domei signal generating means 8.

時間とともに増加しまた、それに同期した3相同期信号
の周波数も増加し磁石回転子を加速するのが一般的であ
る。これは、磁石回転子5かある慣性モーメントを持っ
ており、電機子巻線40回転磁界に追従し安定な起動回
転を行なうためである。
Generally, the frequency increases with time, and the frequency of the three-phase synchronization signal synchronized therewith also increases to accelerate the magnet rotor. This is because the magnet rotor 5 has a certain moment of inertia and follows the rotating magnetic field of the armature winding 40 to perform stable starting rotation.

そしてさらに特公昭59−36520号公報の例によれ
ば、3相同期信号9−U相、9−V相、9−W相と比較
器群7の出力信号7−U稍−17−V相、7−W相の位
相差を検出する回路13を付加し、両者の位相差が略零
になったことを検出してから切換指令手段10の切換指
令信号を出力し切換手段11の出力信号を比較器群7の
出力信号に切換えてそれらの信号を制御手段12に入力
する。
Furthermore, according to the example of Japanese Patent Publication No. 59-36520, the three-phase synchronizing signals 9-U phase, 9-V phase, 9-W phase and the output signal 7-U-17-V phase of the comparator group 7 , 7-A circuit 13 for detecting the phase difference between the W phases is added, and after detecting that the phase difference between the two has become approximately zero, a switching command signal of the switching command means 10 is outputted, and an output signal of the switching means 11 is output. is switched to the output signal of the comparator group 7, and these signals are input to the control means 12.

これは、同期モータとして回転している時け3相同期信
号9−U相、9−V相、9−W相と比較器群7の出力信
号7−U相、7−V相、7−W相の同相どおしの位相関
係が必ずしも一致せず位相ずれを起こしている。したが
って3相同期信号で半導体スイッチング素子群2のQ1
〜Q6をオンオフするタイミングと、比較器7の3相の
出力信号で半導体スイッチング素子群2のQ1〜Q6を
オンオフするタイミングか異なってしまうために切換に
失敗し脱調停止してしまうのである。また脱調しない場
合でも半導体スイッチング素子群に過大な電流か流れて
これらを損傷する。これらを防ぐために3相同明信号と
比較器群7の3相の出力信号の位相差を検出して両者の
位相差か略零になったことを検出してから切換えれば上
述のような半導体スイッチング素子群2の01〜Q6の
オンオフのタイミングのずれもなく、スムーズに切換え
がすすみモータ3の安定な運転が可能となるというもの
である0 発明が解決しようとする問題点 上記従来の構成においては、周波数を増加するための特
別な回路およびその制御が必要であり、また3相同期信
号と比較器群の位相差を検出する回路が必要でありシス
テム全体が複雑になる問題点を有していた。
When rotating as a synchronous motor, the three-phase synchronous signals 9-U phase, 9-V phase, 9-W phase and the output signals 7-U phase, 7-V phase, 7-W phase of the comparator group 7 are generated. The phase relationship between the W-phases does not necessarily match, causing a phase shift. Therefore, Q1 of semiconductor switching element group 2 is
Since the timing to turn on and off Q6 is different from the timing to turn on and off Q1 to Q6 of the semiconductor switching element group 2 based on the three-phase output signal of the comparator 7, the switching fails and the step out stops. Furthermore, even if no synchronization occurs, an excessive current flows through the semiconductor switching elements, damaging them. In order to prevent these, if the phase difference between the three-phase identical signal and the three-phase output signal of the comparator group 7 is detected, and the phase difference between the two becomes approximately zero, the switching can be performed. There is no deviation in the on/off timing of switching elements 01 to Q6 of the switching element group 2, and the switching proceeds smoothly, allowing stable operation of the motor 3. Problems to be Solved by the Invention In the above conventional configuration This method requires a special circuit and its control to increase the frequency, and also requires a circuit to detect the phase difference between the three-phase synchronization signal and the comparator group, which has the problem of complicating the entire system. was.

本発明は、かかる従来の問題点を解消するもので、上述
のような特別な回路を用いなくてもモータを起動から安
定な運転を行なうことができ、切換時にも脱調せず半導
体スイッチング素子群への過大電流も抑えたブラシレス
モータ駆動装置を提供することを目的とする。
The present invention solves these conventional problems, and allows stable operation of the motor from startup without using the special circuit as described above, and prevents step-out even when switching, using a semiconductor switching element. It is an object of the present invention to provide a brushless motor drive device that also suppresses excessive current to the motor group.

問題点を解決するための手段 上記問題点を解決するために本発明のブラシレスモータ
駆動装置は、ある一定の周波数の同期信号発生手段の信
号による回転磁界発生手段の信号と起動時から比較器群
の信号に切換えるまである低電圧に固定し、磁石回転子
を回転起動させ、また3相同期信号と比較器群の位相差
のずれがあっても安定な運転をすることができる位置検
出回路で構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the brushless motor drive device of the present invention provides a signal from the rotating magnetic field generating means based on a signal from the synchronizing signal generating means having a certain frequency and a comparator group from the time of startup. This is a position detection circuit that fixes the voltage at a certain low voltage until it switches to the signal of It is composed of

作  用 本発明は、上記構成により切換時まで電源電圧をある低
電圧に固定しているので、過大電流は流れず、また、3
相同期信号と比較器群の3つの出力信号の位相差のずれ
が一定関係以下にあり切換時には脱調せず安定にモータ
を運転することができる。
Function The present invention fixes the power supply voltage to a certain low voltage until switching due to the above configuration, so that no excessive current flows, and 3.
The phase difference between the phase synchronization signal and the three output signals of the comparator group is within a certain relationship, and the motor can be operated stably without step-out during switching.

実施例 以下、本発明の一実施例を3相巻線の例を用いて添付図
面知もとすき説明する。
Embodiment Hereinafter, one embodiment of the present invention will be explained using an example of a three-phase winding with reference to the accompanying drawings.

第1図は、本発明一実施例の概略シーケンス図、第2図
は全体構成図、?fJ3図は、1誘起電圧信号にもとす
いた比較器群7の出力信号による半導体スイッチング素
子群2のタイミング図、第4図は、同期回転中の同期信
号による半導体スイッチング素子群2のタイミング図と
比較器群7の出力信号による半導体スイッチング素子群
のタイミング図の位相関係を示したものである゛。
FIG. 1 is a schematic sequence diagram of an embodiment of the present invention, and FIG. 2 is an overall configuration diagram. Fig. fJ3 is a timing diagram of semiconductor switching element group 2 according to the output signal of comparator group 7 based on one induced voltage signal, and Fig. 4 is a timing diagram of semiconductor switching element group 2 according to a synchronous signal during synchronous rotation. This shows the phase relationship of the timing diagram of the semiconductor switching element group according to the output signal of the comparator group 7 and the output signal of the comparator group 7.

まず第1図概略シーケンス図と第2図会体構成図により
説明する・起動指令手段14の信号発生後、ある一定の
周波数を出力する同期信号発生手段8の出力信号を回転
磁界発生手段9に入力し、それぞれ120°位相のずれ
た一定周波数の3相同期信号9−U相、9−V相、9−
W相を作成する。
First, explanation will be given with reference to the schematic sequence diagram in FIG. 1 and the system configuration diagram in FIG. Three-phase synchronous signals 9-U phase, 9-V phase, 9-U phase, 9-V phase, 9-
Create W phase.

この3相同期信号を切換手段11(たとえばマルチブレ
フサ)に入力し、起動時には制御手段12へこれらの信
号が出力されそれぞれの論理レベルにもとすいて制御手
段12は半導体スイッチング素子群2の01〜Q6の通
電、遮断を制御する。そして、モータ3をFFAifJ
)Jする電源1(たとえばスイッチング電#)をある低
電圧に固定し、電機子巻線4え回転磁界を発生させ磁石
回転子を強制的に回転させる。
These three-phase synchronizing signals are input to the switching means 11 (for example, a multi-branch), and at startup, these signals are output to the control means 12, and when the respective logic levels are adjusted, the control means 12 controls the semiconductor switching element group 2 from 01 to 01. Controls energization and cutoff of Q6. Then, motor 3 is FFAifJ
) A power supply 1 (for example, a switching voltage) is fixed at a certain low voltage, and a rotating magnetic field is generated in the armature winding 4 to forcibly rotate the magnet rotor.

このようにして磁石回転子がいったん回転すれば電機子
巻線4に誘起電圧が発生するので、ある一定時間経過後
、切換指令手段10から切換指令信号を発生し、切換手
段11を切換えることにより、回転子の位置検出信号で
ある比較器群7から出力される信号7−U相、7−V相
、7−W相の信号を制御手段12へ出力し以後これらの
論理レベルにもとすいて半導体スイッチング素子群2の
Q1〜Q6を制御しモータ3を定常回転する。
Once the magnet rotor rotates in this way, an induced voltage is generated in the armature winding 4. Therefore, after a certain period of time has elapsed, a switching command signal is generated from the switching command means 10, and the switching means 11 is switched. , the signals 7-U phase, 7-V phase, and 7-W phase signals output from the comparator group 7, which are rotor position detection signals, are outputted to the control means 12 and thereafter set to these logic levels. Q1 to Q6 of the semiconductor switching element group 2 are controlled to rotate the motor 3 steadily.

次に本発明一実施例における回転子の位置検出信号であ
る比較器群7の出力信号7−U相、7−■相、7−W相
の作成方法を第3図を用いて説明する。第3図において
各電機子巻線端子の誘起電圧信号の波形は、4−U相、
4−V相、4−W相である。U相についてみるならば、
0°から60゜の区間と180°から2400の区間は
開放状態であり電源に接続されていない。また、60°
から1800までは、電源1のe側に240°から30
00までの間は電源1のe側に接続される。すなわち、
このように電機子巻線端子の誘起電圧信号の波形の振幅
が最大となる60°から180°と240°から360
゜の時にU相に電流を流すことによりモータは効率よく
回転されるものである。他のV相、W相についても同様
である。
Next, a method of creating the output signals 7-U phase, 7-■ phase, and 7-W phase of the comparator group 7, which are rotor position detection signals in one embodiment of the present invention, will be described with reference to FIG. In Fig. 3, the waveforms of the induced voltage signals at each armature winding terminal are 4-U phase,
4-V phase and 4-W phase. If we look at the U phase,
The section from 0° to 60° and the section from 180° to 2400° are open and not connected to the power source. Also, 60°
to 1800, from 240° to 30° on the e side of power supply 1.
00 is connected to the e side of the power supply 1. That is,
In this way, the amplitude of the waveform of the induced voltage signal at the armature winding terminal is maximum from 60° to 180° and from 240° to 360°.
The motor can be rotated efficiently by passing current through the U phase when the angle is .degree. The same applies to the other V-phase and W-phase.

塙で、各電機子巻線端子の誘起電圧信号4−U相、4−
V相、4−W相は、半導体スイッチング素子群2のオン
オフて伴うスパイクノイズが発生するので信号変換手段
6によって除去するが、従来例と異なるのは、その信号
変換手段6の回路の時定数を大きくとらず、単にモーフ
駆動電圧範囲内でスパイクノイズを除去せしめるもので
あり、位相けずらさないものである。したがって、第3
図で示すように4−U相からやシ波形のなめらかな6〜
U泪(実線で示す)K、4−V相から6−V泪(実線で
示す)K4−W相から6−W相(実線で示す)に変換さ
れる0そして、これら変換された信号のうち、たとえば
、第2図中比較器群7に入力される6−U相と、他の6
−V相と6−W相を抵抗で分割合成した信号(!!3図
中の1点鎖線で示す)の大小を比較した結果か7−U相
の波形である。その他、6−V相と、6−W相と6−U
相の合成した信号の大小の比較で7−V相を、a−W相
と、6−U相と6−V相を合成した信号の大小の比較で
7−W相の出力信号を得る。したがって従来例と異なる
のは、6−U相の信号で比較器群7−U相の出力信号を
、6−V相の信号で7−V相を、6−W相の信号で7−
W相の出力信号を作成する点であり、それらはそれぞれ
120゜位相のずれた区形波であり回転子位置検出信号
として切換手段+1へ入力し、定常回転時には制御手段
12へ出力されこれら1周期の3相の論理レベル(6ケ
のモード)にもとづいて半導体スイッチング素子群2の
通電、遮断を制御し磁石回転子5は回転を持続する。ま
た比較器群7へ入力する信号として、第3図中2点鎖線
で示したものは、6−U相と6−V相と6−W相の信号
をすべて抵抗で合成した仮性中性点信号であり、この信
号との大小をそれぞれ比較しても同様な比較器群7の出
力信号が得られる。そしてこれらの比較群7の出力信号
において、たとえば7−U相の信号は、■相とW相の誘
起電圧信号の情報を踏まえて作成したものであり、この
ことによってU相の位相と池の相との位相関係か正確と
なり負荷変動が生じ、各相の波形がそれに応じて変化し
ても、比較対象の波形もそれに応じて変化追従するので
安定な位置検出信号となるわけである。池の相について
も同様である。また、信号変換手段60時時定数小さく
過渡特性もよいので第3図をみるとわかるよに各相の誘
起電圧信号の波形の振幅か最大となるところで各相電機
子巻線に接続された半導体スイッチング素子群2を通電
しており、そh数句率よく安定な回転を行なうことがで
きるのである0なお定常回転中の磁石回転子の回転数を
あげるには電源冨の電圧をあげればよい。
At Hanawa, the induced voltage signal of each armature winding terminal 4-U phase, 4-
The V phase and 4-W phase generate spike noise when the semiconductor switching element group 2 turns on and off, so they are removed by the signal conversion means 6. What differs from the conventional example is the time constant of the circuit of the signal conversion means 6. It does not take a large value, but simply removes spike noise within the morph drive voltage range, and does not shift the phase. Therefore, the third
As shown in the figure, from 4-U phase to 6 to 6 with a smooth waveform.
U phase (shown as a solid line) K, 0 converted from 4-V phase to 6-V phase (shown as a solid line) K, 0 converted from 4-W phase to 6-W phase (shown as a solid line) Among them, for example, the 6-U phase input to the comparator group 7 in FIG.
This is the waveform of the 7-U phase, which is the result of comparing the magnitudes of the signals obtained by dividing and combining the -V phase and the 6-W phase using resistors (indicated by the dashed line in Figure 3). In addition, 6-V phase, 6-W phase and 6-U
A 7-V phase output signal is obtained by comparing the magnitudes of the combined signals of the phases, and a 7-W phase output signal is obtained by comparing the magnitudes of the combined signals of the a-W phase, the 6-U phase, and the 6-V phase. Therefore, the difference from the conventional example is that the output signal of the comparator group 7-U phase is determined by the 6-U phase signal, the 7-V phase is determined by the 6-V phase signal, and the 7-V phase is determined by the 6-W phase signal.
This is to create a W-phase output signal, each of which is a square wave with a phase shift of 120°, and is input to the switching means +1 as a rotor position detection signal, and during steady rotation, is output to the control means 12. The magnet rotor 5 continues to rotate by controlling the energization and cutoff of the semiconductor switching element group 2 based on the three-phase logic levels (six modes) of the cycle. In addition, as a signal input to the comparator group 7, the one shown by the two-dot chain line in Fig. 3 is a pseudo neutral point where all the signals of the 6-U phase, 6-V phase, and 6-W phase are combined with a resistor. A similar output signal from the comparator group 7 can be obtained by comparing the magnitude with this signal. Among the output signals of comparison group 7, for example, the 7-U phase signal is created based on the information of the induced voltage signals of the ■ phase and W phase, and by this, the phase of the U phase and the Even if a load fluctuation occurs and the waveform of each phase changes accordingly, the waveform to be compared will follow the change accordingly, resulting in a stable position detection signal. The same goes for the phase of the pond. In addition, since the signal conversion means 60 has a small time constant and good transient characteristics, as can be seen from Figure 3, the semiconductor connected to the armature winding of each phase is used at the point where the amplitude of the waveform of the induced voltage signal of each phase is maximum. Switching element group 2 is energized, and stable rotation can be achieved with high efficiency.To increase the rotation speed of the magnet rotor during steady rotation, simply increase the voltage of the power supply. .

次に同期信号による回転からある時間経過後、切換指令
手段10の信号が発生され、比較器群7の出力信号に切
換わるわけであるが、本発明一実施例におりては、同期
信号発生手段の信号(タロツク)をカウントし、適当な
カクント飲を&えたら切換指令の信号を発生する構成と
している。なお、この切換指令の構成は、タイマもしく
は別個の制御手段からの切換スイッチによる指令でもよ
く本発明一実施例の限定されるものではな−。
Next, after a certain period of time has elapsed from the rotation caused by the synchronization signal, a signal from the switching command means 10 is generated, and the signal is switched to the output signal from the comparator group 7. In one embodiment of the present invention, the synchronization signal generation It is configured to count the signals (tallock) of the means and generate a switching command signal when an appropriate count is reached. Note that the structure of this switching command is not limited to the one embodiment of the present invention, and may be a command from a timer or a changeover switch from a separate control means.

次に、制御手段12へ出力する信号を切換える段階で、
脱調せずに安定に切換わる理由を第4図を用いて説明す
る。第4図において、切換える曲の同期回転中の3相同
期信号(図中斜線で示した)9−U相、9−V相、9−
W相にもとすく半導体スイッチング素子群2の通電、(
図中針°線で示した)遮断の制御を9−01相から9−
Q6相に示す。
Next, at the stage of switching the signal output to the control means 12,
The reason for stable switching without step-out will be explained with reference to FIG. In Fig. 4, three-phase synchronous signals (indicated by diagonal lines in the figure) during synchronous rotation of the song to be switched: 9-U phase, 9-V phase, 9-
The semiconductor switching element group 2 is energized in the W phase (
The shutoff control (indicated by the needle ° line in the figure) is changed from phase 9-01 to phase 9-
It is shown in Q6 phase.

その同期回転中における位置検出信号である比較器群7
の出力信号?−U相、7−V相、7−W相は、3相同期
信号9−U相、9−V相、9−W相よりも位相進みの状
態にあるのが普通である。そして比較器群7の出力信号
にもとすく半導体スイッチング素子群2の通電(図中太
線で示した)遮断の制御を7−〇1相から7−〇、相に
示す。たとえば第4図のように3相同期信号より比較器
群7の出力(信号が最大60°の位相進み(磁石の着磁
と電機子巻線との相対位置よりそのようになる)の時に
、この−周期中どの時点において切換指令を出しても変
化する半導体スイッチング素子群2はただの1つだけで
ある。つまり、0°〜60°中においてはQ3から01
へと変化がおきるが、同期信号にくる制御であれば9−
Q1相がオフで比較器群7の出力信号にもとず<7−0
1相がオン、また9−Q3相がオンで7−Q、相がオフ
の状態である。そして同期信号の60°から120°に
おいては、9−01では同じである。すなわち磁石回転
子を回転させようとする方向は同一でありこの状態をく
ずさずに切換えた瞬間に磁石回転子5を回転方向へ60
0シフトし回転させることに池ならない。すなわち脱調
停止することは起こりえない。また、比較器群7からの
出力信号は、それぞれ120°位相のずれた信号であり
、それらは負荷変動に追従しうる信号であるからしたか
って切換えた瞬間も切換えた後も安定に回転を続けるこ
とができるのである。
Comparator group 7 which is a position detection signal during the synchronous rotation
output signal? The -U phase, 7-V phase, and 7-W phase are usually in a phase-advanced state than the three-phase synchronous signals 9-U phase, 9-V phase, and 9-W phase. The output signal of the comparator group 7 is used to control the energization (indicated by a bold line in the figure) and cutoff of the semiconductor switching element group 2 from phase 7-01 to phase 7-0. For example, as shown in Fig. 4, when the output of the comparator group 7 (signal has a maximum phase lead of 60 degrees (this is caused by the relative position between the magnetization of the magnet and the armature winding) than the three-phase synchronous signal, No matter what switching command is issued during this period, only one semiconductor switching element group 2 changes.In other words, from 0° to 60°, from Q3 to 01
However, if the control comes from the synchronization signal, it will change to 9-
Based on the output signal of comparator group 7 when Q1 phase is off, <7-0
Phase 1 is on, phase 9-Q3 is on, and phase 7-Q is off. And from 60° to 120° of the synchronization signal, it is the same for 9-01. In other words, the direction in which the magnet rotor is to be rotated is the same, and the instant the switch is made without changing this state, the magnet rotor 5 is rotated 60 degrees in the rotation direction.
There is no need to shift it to 0 and rotate it. In other words, it is impossible for the motor to step out and stop. In addition, the output signals from the comparator group 7 are signals with a phase shift of 120 degrees, and since these are signals that can follow load fluctuations, they continue to rotate stably both at the moment of switching and after switching. It is possible.

発明の効果 以上のように本発明のブラシレスモーフ駆動装置によれ
ば次の効果が得られる。
Effects of the Invention As described above, the brushless morph drive device of the present invention provides the following effects.

(1)起動時における同期回転中は、電圧をある低電圧
に固定しであるので半導体スイッチング素子群等に過電
流が流れず素子の劣化を防ぐ効果がある0 (2)起UJから定常回転への切換時の同期信号と回転
子の位置検出信号の位相差を検出する回路もいらずその
位相差も常に一定関係以下に保たれるのできわめて簡単
な回路構成で起動から定常回転までスムーズに行なうこ
とができ安価に構成できる。
(1) During synchronous rotation at startup, the voltage is fixed at a certain low voltage, so no overcurrent flows to the semiconductor switching elements, etc., which has the effect of preventing element deterioration. (2) Steady rotation from startup UJ There is no need for a circuit to detect the phase difference between the synchronization signal and the rotor position detection signal when switching to the rotor, and the phase difference is always kept below a certain relationship, so the circuit configuration is extremely simple and smooth from startup to steady rotation. It can be implemented at low cost.

(3)従来同期信号を増加しながら回転子を加速する構
成は、その周期を変化させる制御が複雑であるが、本発
明によればその同期信号の周波数は一定でよく、かつ起
動時の電圧も一定でよいので、電源の電圧制御も非’a
 Ic fm単となり全体構成やシーケンスも簡略なも
のとなる。
(3) In the conventional configuration in which the rotor is accelerated while increasing the synchronization signal, the control to change the period is complicated, but according to the present invention, the frequency of the synchronization signal can be kept constant, and the voltage at startup is Since the voltage may be kept constant, the voltage control of the power supply is also non-a
Ic fm becomes simple, and the overall configuration and sequence are also simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明一実施例の概略シーケンス図、第2図
は同全体構成図、第3図は同誘起電圧信号にもとすく各
部の波形図、第4図は同期回転中の3相同期信号と位置
検出回路の出力信号にもとすく半導体スイッチング素子
のタイミングチャート、第5図は従来例の全体構成図、
第6図は同誘起電圧信号にもとすく各部波形図である。 1・・・・・・電源、2・・・・・・半導体スイッチン
グ素子群、3・・・・・・モーフ、4・・・・・・電機
子巻線、5・・・・・・磁石回転子、6・・・・・・信
号変換手段、7・・・・・・位置検出回路(比較器群)
、8・・・・・・同期信号発生手段、9・・・・・・回
転磁界発生手段、10・・・・・・切換指令手段、+1
・・・・・・切換手段、12・・・・・・制御手段、1
4・・・・・・起動指令手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第 5 図
Fig. 1 is a schematic sequence diagram of an embodiment of the present invention, Fig. 2 is an overall configuration diagram of the same, Fig. 3 is a waveform diagram of each part of the same induced voltage signal, and Fig. 4 is a three-dimensional diagram during synchronous rotation. A timing chart of the semiconductor switching element for the phase synchronization signal and the output signal of the position detection circuit, FIG. 5 is an overall configuration diagram of the conventional example,
FIG. 6 is a waveform diagram of each part of the induced voltage signal. 1... Power supply, 2... Semiconductor switching element group, 3... Morph, 4... Armature winding, 5... Magnet Rotor, 6... Signal conversion means, 7... Position detection circuit (comparator group)
, 8... Synchronous signal generating means, 9... Rotating magnetic field generating means, 10... Switching command means, +1
......Switching means, 12...Control means, 1
4...Start command means. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)複数相を中性点非接地に結線し、それぞれn個(
nは1以上)に分割した電機子巻線と、前記電機子巻線
への電流を通電、遮断する半導体スイッチング素子群と
、2m極(mは1以上)に分割着磁した磁石回転子を有
するモータと、前記モータを駆動する電源と、起動指令
手段と、ある一定の周波数を出力する同期信号発生手段
と、前記信号発生手段より出力される信号を用いて前記
電機子巻線に回転磁界を発生させる回転磁界発生手段と
、前記電機子巻線に誘起される電圧信号によって前記電
機子巻線と前記磁石回転子の相対的位置を検出する位置
検出回路と、前記回転磁界発生手段の出力信号と前記位
置検出回路の出力信号を選択し、切換えて出力する切換
手段と、前記切換手段に切換指令を与える切換指令手段
と、前記切換手段の出力信号を用いて前記スイッチング
素子群を制御する制御手段とからなり、前記起動指令手
段の信号発生後の同期回転中は前記電源の電圧をある低
電圧に固定し、前記磁石回転子を起動するとともに、前
記切換指令手段は、タイマもしくはカウンタもしくは別
個の切換スイッチで構成し、ある時間経過後、前記切換
指令手段の信号により前記位置検出回路の出力信号に切
換えて前記磁石回転子を定常回転させる構成としたブラ
シレスモータ駆動装置。
(1) Connect multiple phases to an ungrounded neutral point, and connect n pieces (
An armature winding divided into 2 m poles (m is 1 or more), a group of semiconductor switching elements that conduct or cut off current to the armature winding, and a magnet rotor divided into 2m poles (m is 1 or more). a motor having a motor, a power supply for driving the motor, a start command means, a synchronization signal generation means for outputting a certain frequency, and a rotating magnetic field applied to the armature winding using the signal output from the signal generation means. a position detection circuit that detects the relative position of the armature winding and the magnet rotor based on a voltage signal induced in the armature winding; and an output of the rotating magnetic field generation means. a switching means for selecting, switching and outputting a signal and an output signal of the position detection circuit; a switching command means for giving a switching command to the switching means; and controlling the switching element group using the output signal of the switching means. During the synchronous rotation after the signal from the start command means is generated, the voltage of the power source is fixed at a certain low voltage, and the magnet rotor is started. A brushless motor drive device comprising a separate changeover switch, and after a certain period of time has elapsed, a signal from the changeover command means is used to switch to an output signal from the position detection circuit to steadily rotate the magnet rotor.
(2)位置検出回路は、前記複数相の電機子巻線に誘起
される信号を適宜適当な信号に変換する信号変換手段と
、前記信号変換手段後の複数相すべての出力信号を合成
した仮性中性点信号と、前記複数相の任意の出力信号の
大小をそれぞれ比較するか、もしくは、ある任意の相の
出力信号と他の相の出力信号を合成した信号の大小をそ
れぞれ比較する比較器群で構成した特許請求の範囲第1
項記載のブラシレスモータ駆動装置。
(2) The position detection circuit includes a signal conversion means for appropriately converting the signals induced in the armature windings of the plurality of phases into appropriate signals, and a virtual circuit that combines the output signals of all the plurality of phases after the signal conversion means. A comparator that compares the magnitude of the neutral point signal and arbitrary output signals of the plurality of phases, or compares the magnitude of a signal obtained by combining the output signal of a certain arbitrary phase and the output signal of other phases. Claim 1 consisting of a group
The brushless motor drive device described in Section 1.
JP59256003A 1984-12-04 1984-12-04 Brushless motor drive device Pending JPS61135379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256003A JPS61135379A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256003A JPS61135379A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Publications (1)

Publication Number Publication Date
JPS61135379A true JPS61135379A (en) 1986-06-23

Family

ID=17286550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256003A Pending JPS61135379A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Country Status (1)

Country Link
JP (1) JPS61135379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888533A (en) * 1986-04-25 1989-12-19 Matsushita Electric Ind Co Ltd Brushless DC motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280414A (en) * 1975-12-26 1977-07-06 Hitachi Ltd Brushless motor
JPS57183281A (en) * 1981-05-06 1982-11-11 Nec Corp Controlling circuit for number of revolution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280414A (en) * 1975-12-26 1977-07-06 Hitachi Ltd Brushless motor
JPS57183281A (en) * 1981-05-06 1982-11-11 Nec Corp Controlling circuit for number of revolution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888533A (en) * 1986-04-25 1989-12-19 Matsushita Electric Ind Co Ltd Brushless DC motor

Similar Documents

Publication Publication Date Title
US5572097A (en) Method and apparatus for starting polyphase dc motor
EP0881761B1 (en) A controller for a brushless DC motor without a position sensor
US6847183B2 (en) Electronic power supply for a synchronous motor with permanent-magnet rotor having two pairs of poles
JPS61244291A (en) Brushless motor drive device
JPS61135379A (en) Brushless motor drive device
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
JPS61135387A (en) Brushless motor drive device
JPS61135389A (en) Brushless motor drive device
JPS61135383A (en) Brushless motor drive device
JPS61135382A (en) Brushless motor drive device
JP2722750B2 (en) Drive device for brushless motor
JPS61135378A (en) Brushless motor drive device
JPS61135386A (en) Brushless motor drive device
JPS61135384A (en) Brushless motor drive device
JPS61135388A (en) Brushless motor drive device
JPS61135385A (en) Brushless motor drive device
JP2887320B2 (en) Starting method and starting device for brushless motor
JPS61135381A (en) Brushless motor drive device
JPH03235695A (en) Method and apparatus for starting brushless motor
JPH03107394A (en) Method and device for starting brushless motor
JPS61135380A (en) Brushless motor drive device
JP2738110B2 (en) Driving device for brushless motor
JP4079385B2 (en) Brushless DC motor drive device
JPH0670578A (en) Brushless motor control circuit
JP4269920B2 (en) Brushless motor drive device