JP4269920B2 - Brushless motor drive device - Google Patents

Brushless motor drive device Download PDF

Info

Publication number
JP4269920B2
JP4269920B2 JP2003410459A JP2003410459A JP4269920B2 JP 4269920 B2 JP4269920 B2 JP 4269920B2 JP 2003410459 A JP2003410459 A JP 2003410459A JP 2003410459 A JP2003410459 A JP 2003410459A JP 4269920 B2 JP4269920 B2 JP 4269920B2
Authority
JP
Japan
Prior art keywords
switching
brushless
phase
frequency
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003410459A
Other languages
Japanese (ja)
Other versions
JP2005176452A (en
Inventor
幸彦 岡村
健二 阪本
直 有村
博 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003410459A priority Critical patent/JP4269920B2/en
Publication of JP2005176452A publication Critical patent/JP2005176452A/en
Application granted granted Critical
Publication of JP4269920B2 publication Critical patent/JP4269920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、ブラシレスモータを駆動する駆動装置に関するものである。   The present invention relates to a drive device that drives a brushless motor.

従来より、永久磁石を有する回転子と三相巻線からなる固定子巻線を有したブラシレスモータが様々な機器で利用されているが、この種のブラシレスモータには、回転子の回転によって開放相(通電されていない相)の固定子巻線に発生する誘起電圧(端子電圧)を基準電圧と比較することで回転子の回転位置を検出する位置検出手段を有するものがある。また、ブラシレスモータを始動する始動方法として、回転子が停止しているとき、位置検出手段の検出結果に関わらず、各々同時に通電する固定子巻線の組み合わせを異ならせた複数の通電パターンをその切換周波数を徐々に増加しながら順次切り換える同期運転を行うことで回転子を起動し、切換周波数が所定周波数に達したら、位置検出手段の検出結果に基づいて前記複数の通電パターンを順次切り換えるブラシレス運転に切り換える、という方法がある。以下、図8を参照して上記始動方法について簡単に説明する。   Conventionally, a brushless motor having a rotor having a permanent magnet and a stator winding composed of a three-phase winding has been used in various devices, but this kind of brushless motor is opened by the rotation of the rotor. Some have position detection means for detecting the rotational position of the rotor by comparing the induced voltage (terminal voltage) generated in the stator winding of the phase (phase not energized) with the reference voltage. Also, as a starting method for starting the brushless motor, when the rotor is stopped, a plurality of energization patterns with different combinations of stator windings that are energized at the same time are used regardless of the detection result of the position detecting means. Brushless operation that starts the rotor by performing a synchronous operation that sequentially switches while gradually increasing the switching frequency, and sequentially switches the plurality of energization patterns based on the detection result of the position detection means when the switching frequency reaches a predetermined frequency. There is a method of switching to. Hereinafter, the starting method will be briefly described with reference to FIG.

図8は回転子50の外側に三相(U相、V相、W相)の固定子巻線51が配設されて構成されるブラシレスモータに対して、同時に通電する2つの相の固定子巻線51の組み合わせである6通りの通電パターンP1〜P6と、各通電パターンP1〜P6における転流直前の固定子巻線51による磁極の状態(N極、S極)と回転子50の位置を示している。すなわち、通電パターンP1ではW相とU相に通電してW相をS極、U相をN極とし、通電パターンP2ではU相とV相に通電してU相をN極、V相をS極とし、通電パターンP3ではV相とW相に通電してV相をS極、W相をN極とし、通電パターンP4ではW相とU相に通電してW相をN極、U相をS極とし、通電パターンP5ではU相とV相に通電してU相をS極、V相をN極とし、通電パターンP6ではV相とW相に通電してV相をN極、W相をS極としている。ここで、図8(a)は負荷が無い状態での同期運転時、同図(b)は負荷が有る状態での同期運転時、同図(c)はブラシレス運転時をそれぞれ示しており、負荷が無い状態での同期運転時には発生トルクがゼロであり、負荷が有る状態での同期運転時並びにブラシレス運転時には負荷が無い時に比較して回転子50が回転角(負荷角)θLだけ遅れて転流(通電パターンP1〜P6を切り換えること)している。なお、同図(c)に示すようにブラシレス運転時には位置検出手段の検出結果に基づいて転流しており、負荷の状態に関わらず負荷角θLが常に60度(電気角)となっている。   FIG. 8 shows two-phase stators that are energized simultaneously to a brushless motor having three-phase (U-phase, V-phase, and W-phase) stator windings 51 arranged outside the rotor 50. Six energization patterns P1 to P6 that are combinations of the windings 51, the state of magnetic poles (N pole, S pole) by the stator winding 51 immediately before commutation in each energization pattern P1 to P6, and the position of the rotor 50 Is shown. That is, in the energization pattern P1, the W phase and the U phase are energized and the W phase is the S pole and the U phase is the N pole. In the energization pattern P2, the U phase and the V phase are energized and the U phase is the N pole and the V phase is In the energization pattern P3, the V phase and the W phase are energized, the V phase is the S pole, and the W phase is the N pole. In the energization pattern P4, the W phase and the U phase are energized, and the W phase is the N pole. In the energization pattern P5, the U phase and the V phase are energized, the U phase is the S pole, and the V phase is the N pole. In the energization pattern P6, the V phase and the W phase are energized, and the V phase is the N pole. The W phase is the S pole. Here, FIG. 8 (a) shows a synchronous operation without load, FIG. 8 (b) shows a synchronous operation with load, and FIG. 8 (c) shows a brushless operation. The generated torque is zero during synchronous operation with no load, and the rotor 50 is delayed by the rotation angle (load angle) θL compared to when there is no load during synchronous operation with a load and during brushless operation. Commutation (switching between the energization patterns P1 to P6) is performed. In addition, as shown in FIG. 5C, commutation is performed based on the detection result of the position detection means during the brushless operation, and the load angle θL is always 60 degrees (electrical angle) regardless of the load state.

一方、同期運転からブラシレス運転への移行前後におけるトルク、誘起電圧、位置検出手段の検出結果(位置検出信号)の様子を図9に示す。なお、図9において、通電する相を固定した状態で回転子50を回転させたときに発生するトルク(静トルク)は点線、実際に通電されることで発生するトルクは実線、回転子50を回転させたときに固定子巻線51に発生する誘起電圧は点線、開放相の固定子巻線51に発生する誘起電圧は実線、にてそれぞれ示している。また、位置検出手段は開放相の固定子巻線51に発生する誘起電圧(実線)がゼロクロスするタイミングで回転子50の位置を検出している。   On the other hand, FIG. 9 shows the state of torque, induced voltage, and detection result (position detection signal) of the position detection means before and after transition from synchronous operation to brushless operation. In FIG. 9, the torque (static torque) generated when the rotor 50 is rotated with the phase to be energized fixed is a dotted line, the torque generated by the actual energization is the solid line, and the rotor 50 is The induced voltage generated in the stator winding 51 when rotated is indicated by a dotted line, and the induced voltage generated in the open-phase stator winding 51 is indicated by a solid line. Further, the position detecting means detects the position of the rotor 50 at the timing when the induced voltage (solid line) generated in the open-phase stator winding 51 crosses zero.

負荷が無い状態では、図9(a)に示すように同期運転時の負荷が無いから負荷角θLもゼロとなり、同期運転からブラシレス運転への移行時に開放相(U相)の誘起電圧がゼロクロスせず、位置検出手段による回転子50の位置検出ができない。一方、負荷が有る状態、例えば、負荷角θLが30度の場合には、図9(b)に示すように電気角に対してトルクの位相が30度進んでいるため、ブラシレス運転への移行直後に開放相(V相)の誘起電圧がゼロクロスして回転子50の位置が検出できる。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約50%となる。また、負荷角θLが60度の場合、図9(c)に示すように電気角に対してトルクの位相が60度進んでいるため、同期運転からブラシレス運転へ移行して電気角が30度進んでから(回転子50が回転してから)、開放相(V相)の誘起電圧がゼロクロスして回転子50の位置が検出できる。   When there is no load, the load angle θL is zero because there is no load during synchronous operation as shown in FIG. 9A, and the induced voltage of the open phase (U phase) is zero crossed when shifting from synchronous operation to brushless operation. Without being able to detect the position of the rotor 50 by the position detecting means. On the other hand, when there is a load, for example, when the load angle θL is 30 degrees, the phase of the torque is advanced by 30 degrees with respect to the electrical angle as shown in FIG. Immediately after, the induced voltage of the open phase (V phase) is zero-crossed, and the position of the rotor 50 can be detected. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 50% of the maximum torque. Further, when the load angle θL is 60 degrees, as shown in FIG. 9C, the torque phase is advanced by 60 degrees with respect to the electrical angle, so the operation shifts from the synchronous operation to the brushless operation and the electrical angle is 30 degrees. After proceeding (after the rotor 50 rotates), the induced voltage of the open phase (V phase) crosses zero, and the position of the rotor 50 can be detected.

上述のように同期運転時に無負荷状態の場合、同期運転からブラシレス運転への移行時に位置検出手段で回転子の位置を検出することができないために転流できず、回転子50の回転が停止してしまうことがあったが、これを解決する駆動装置が特許文献1及び特許文献2に開示されている。   As described above, when there is no load at the time of synchronous operation, the rotor cannot be commutated because the position detection means cannot detect the position of the rotor at the time of transition from synchronous operation to brushless operation, and the rotation of the rotor 50 is stopped. However, Patent Literature 1 and Patent Literature 2 disclose a driving device that solves this problem.

まず、特許文献1に開示された駆動装置では、同期運転により回転子を起動した後、同期運転からブラシレス運転へ移行する際に通電パターンをスキップしており、同期運転からブラシレス運転への移行前後におけるトルク、誘起電圧、位置検出信号の様子を図10に示す。なお、図10において、静トルクは点線、実際に通電されることで発生するトルクは実線、回転子を回転させたときに固定子巻線に発生する誘起電圧は点線、開放相の固定子巻線に発生する誘起電圧は実線にてそれぞれ示している。   First, in the drive device disclosed in Patent Document 1, after starting the rotor by synchronous operation, the energization pattern is skipped when shifting from synchronous operation to brushless operation, and before and after the transition from synchronous operation to brushless operation. FIG. 10 shows the state of the torque, induced voltage, and position detection signal. In FIG. 10, the static torque is a dotted line, the torque generated by actual energization is the solid line, the induced voltage generated in the stator winding when the rotor is rotated is the dotted line, and the open-phase stator winding The induced voltages generated in the lines are indicated by solid lines.

而して、負荷が無い状態においても、図10(a)に示すように同期運転からブラシレス運転へ移行して電気角が30度進んでから、開放相(V相)の誘起電圧がゼロクロスして回転子の位置が検出できる。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約87%となる。また、負荷が有る状態、例えば、負荷角θLが30度の場合には、図10(b)に示すように電気角に対してトルクの位相が30度進んでいるため、同期運転からブラシレス運転へ移行して電気角が60度進んでから、開放相(W相)の誘起電圧がゼロクロスして回転子の位置が検出できる。同様に負荷角θLが60度の場合、図10(c)に示すように電気角に対してトルクの位相が60度進んでいるため、同期運転からブラシレス運転へ移行して電気角が90度進んでから、開放相(W相)の誘起電圧がゼロクロスして回転子の位置が検出できる。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約87%となる。   Thus, even in the absence of a load, as shown in FIG. 10A, after the transition from the synchronous operation to the brushless operation and the electrical angle advances by 30 degrees, the induced voltage in the open phase (V phase) crosses zero. The position of the rotor can be detected. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 87% of the maximum torque. Further, when there is a load, for example, when the load angle θL is 30 degrees, the phase of torque is advanced by 30 degrees with respect to the electrical angle as shown in FIG. When the electrical angle advances by 60 degrees and the electrical angle advances by 60 degrees, the induced voltage of the open phase (W phase) is zero-crossed, and the rotor position can be detected. Similarly, when the load angle θL is 60 degrees, as shown in FIG. 10C, the torque phase is advanced by 60 degrees with respect to the electrical angle, so that the operation shifts from synchronous operation to brushless operation and the electrical angle is 90 degrees. After proceeding, the induced voltage of the open phase (W phase) is zero-crossed and the rotor position can be detected. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 87% of the maximum torque.

上述のように特許文献1に開示された駆動装置では、同期運転からブラシレス運転へ移行する際に通電パターンをスキップしているため、ブラシレス運転への移行後に開放相の誘起電圧を検出することができ、同期運転終了後の最初の回転子の位置検出を確実に行うことができる。   As described above, in the drive device disclosed in Patent Document 1, the energization pattern is skipped when shifting from the synchronous operation to the brushless operation. Therefore, the induced voltage of the open phase can be detected after the shift to the brushless operation. It is possible to reliably detect the position of the first rotor after completion of the synchronous operation.

一方、特許文献2に開示された駆動装置は、同期運転時における通電パターンの切換周波数(転流周波数)又は固定子巻線への印加電圧の増加率を変化させることで負荷角を大きくしてからブラシレス運転へ移行させるものであって、特許文献1に開示された駆動装置と同様に、ブラシレス運転への移行後に開放相の誘起電圧を検出することができ、同期運転終了後の最初の回転子の位置検出を確実に行うことができる。
特許第3326256号公報 特開2001−178184号公報
On the other hand, the drive device disclosed in Patent Document 2 increases the load angle by changing the switching frequency (commutation frequency) of the energization pattern or the increase rate of the voltage applied to the stator winding during synchronous operation. In the same way as the driving device disclosed in Patent Document 1, it is possible to detect the induced voltage in the open phase after the transition to the brushless operation, and to perform the first rotation after the end of the synchronous operation. The child position can be reliably detected.
Japanese Patent No. 3326256 JP 2001-178184 A

しかしながら、特許文献1及び特許文献2に開示された上述の駆動装置には、それぞれ以下のような問題があった。すなわち、特許文献1に開示された駆動装置では、同期運転からブラシレス運転への移行時に通電パターンをスキップしているため、移行前後におけるトルクが不連続に変化してしまい、ブラシレスモータが振動したり、急加速するという問題があった。一方、特許文献2に開示された駆動装置では、転流周波数又は印加電圧の増加率変化に時間を要するため、短時間(例えば、数十ミリ秒)でブラシレスモータを起動して同期運転からブラシレス運転へ移行させることができないという問題があった。   However, the above-described driving devices disclosed in Patent Document 1 and Patent Document 2 have the following problems. That is, in the drive device disclosed in Patent Document 1, since the energization pattern is skipped during the transition from the synchronous operation to the brushless operation, the torque before and after the transition changes discontinuously, and the brushless motor vibrates. There was a problem of rapid acceleration. On the other hand, in the drive device disclosed in Patent Document 2, since it takes time to change the increase rate of the commutation frequency or the applied voltage, the brushless motor is started in a short time (for example, several tens of milliseconds) and the brushless motor is started from the synchronous operation. There was a problem that it was not possible to shift to driving.

本発明は上記問題に鑑みて為されたものであり、その目的は、同期運転からブラシレス運転へ短時間で移行可能であるとともに同期運転からブラシレス運転への移行時におけるトルク変動が少ないブラシレスモータの駆動装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a brushless motor that can shift from synchronous operation to brushless operation in a short time and has less torque fluctuation at the time of transition from synchronous operation to brushless operation. It is to provide a driving device.

請求項1の発明は、上記目的を達成するために、永久磁石を有する回転子と三相巻線からなる固定子巻線を有したブラシレスモータを駆動する駆動装置において、開放相の固定子巻線の端子電圧を基準電圧と比較することで回転子の回転位置を検出する位置検出手段と、電源から供給される直流電圧をスイッチングすることで固定子巻線の各相への通電状態を切り換える通電切換手段と、通電切換手段を制御して各々同時に通電する固定子巻線の組み合わせを異ならせた複数の通電パターンを順次切り換える制御手段と、電源から通電切換手段を介してブラシレスモータに供給される電流を検出する電流検出手段とを備え、制御手段は、位置検出手段の検出結果に関わらず前記複数の通電パターンを順次切り換える同期運転制御と、位置検出手段の検出結果に基づいて前記複数の通電パターンを順次切り換えるブラシレス運転制御とを行い、回転子が停止状態にあるときに複数の通電パターンの切換周波数を徐々に増加しながら同期運転制御を行うことで回転子を起動し、切換周波数が所定周波数に達した後に当該所定周波数よりも大きな周波数で通電パターンを一度切り換えてからブラシレス運転制御に移行するとともに、同期運転制御からブラシレス運転制御への移行時に所定周波数よりも大きくする周波数を、電流検出手段で検出する電流のレベルに応じて変化させることを特徴とする。 In order to achieve the above object, a first aspect of the present invention provides a driving apparatus for driving a brushless motor having a rotor having a permanent magnet and a stator winding composed of a three-phase winding. The position detection means for detecting the rotational position of the rotor by comparing the terminal voltage of the wire with the reference voltage, and switching the energization state to each phase of the stator winding by switching the DC voltage supplied from the power source The energization switching means, the control means for controlling the energization switching means to sequentially switch a plurality of energization patterns with different combinations of stator windings that are energized at the same time, and the power supply is supplied to the brushless motor via the energization switching means. and a current detecting means for detecting a current that, the control means includes a sequentially switched synchronous operation control of the plurality of energization patterns regardless of the detection result of the position detection means, position detection The brushless operation control for sequentially switching the plurality of energization patterns based on the detection result of the stage is performed, and the synchronous operation control is performed while gradually increasing the switching frequency of the plurality of energization patterns when the rotor is stopped. When the rotor is started, and after the switching frequency reaches the predetermined frequency, the energization pattern is switched once at a frequency larger than the predetermined frequency , and then the brushless operation control is performed, and at the time of transition from the synchronous operation control to the brushless operation control. The frequency higher than the predetermined frequency is changed according to the level of the current detected by the current detection means .

この発明によれば、同期運転からブラシレス運転へ短時間で移行可能であるとともに同期運転からブラシレス運転への移行時におけるトルク変動を少なくすることができる。しかも、例えば、電流検出手段で検出する電流が小さければ周波数を大きくする率を高くし、電流が大きければその率を小さくすることにより、負荷の大きさに影響されずにブラシレス運転移行時におけるブラシレスモータの振動及び急加速が防止できる。 According to the present invention, it is possible to make a transition from synchronous operation to brushless operation in a short time, and to reduce torque fluctuation at the time of transition from synchronous operation to brushless operation. Moreover, for example, if the current detected by the current detection means is small, the rate of increasing the frequency is increased, and if the current is large, the rate is decreased, so that the brushless operation is not affected by the size of the load. Motor vibration and sudden acceleration can be prevented.

請求項2の発明は、請求項1の発明において、制御手段は、同期運転制御からブラシレス運転制御への移行時に所定周波数の1倍よりも大きく且つ6倍以下の周波数で通電パターンを一度切り換えることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the control means switches the energization pattern once at a frequency that is greater than one time and less than six times the predetermined frequency when shifting from synchronous operation control to brushless operation control. It is characterized by.

この発明によれば、同期運転時の負荷状態に対応してブラシレス運転への移行時におけるトルク変動を減少させることができ、ブラシレスモータの振動や急加速を抑制することが可能となる。   According to the present invention, it is possible to reduce the torque fluctuation at the time of shifting to the brushless operation corresponding to the load state at the time of the synchronous operation, and it is possible to suppress the vibration and sudden acceleration of the brushless motor.

請求項3の発明は、請求項1又は2の発明において、制御手段は、所定周波数に達した後、同期運転制御からブラシレス運転制御への移行前に所定時間だけ切換周波数を所定周波数に固定して同期運転制御を行うことを特徴とする。   According to a third aspect of the invention, in the first or second aspect of the invention, the control means fixes the switching frequency to the predetermined frequency for a predetermined time after the predetermined frequency is reached and before the transition from the synchronous operation control to the brushless operation control. And synchronous operation control.

この発明によれば、ブラシレスモータの回転力を負荷へ伝える物の慣性による負荷への影響を無くすることができてブラシレス運転移行時の振動及び急加速が抑制できる。   According to the present invention, it is possible to eliminate the influence on the load due to the inertia of an object that transmits the rotational force of the brushless motor to the load, and it is possible to suppress vibration and sudden acceleration during the transition to the brushless operation.

本発明によれば、同期運転からブラシレス運転へ短時間で移行可能であるとともに同期運転からブラシレス運転への移行時におけるトルク変動を少なくすることができるという効果がある。また、例えば、電流検出手段で検出する電流が小さければ周波数を大きくする率を高くし、電流が大きければその率を小さくすることにより、負荷の大きさに影響されずにブラシレス運転移行時におけるブラシレスモータの振動及び急加速が防止できるという効果もある。 According to the present invention, there is an effect that it is possible to shift from synchronous operation to brushless operation in a short time and to reduce torque fluctuation at the time of transition from synchronous operation to brushless operation. Also, for example, if the current detected by the current detection means is small, the rate of increasing the frequency is increased, and if the current is large, the rate is decreased, so that the brushless operation is not affected by the size of the load. There is also an effect that vibration and sudden acceleration of the motor can be prevented.

以下、本発明の実施形態を図面を参照して詳細に説明する。なお、本発明に係る駆動装置は、ブラシレスモータを動力源とする種々の電気機器(例えば、電動工具など)に好適なものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the drive device according to the present invention is suitable for various electric devices (for example, electric tools) using a brushless motor as a power source.

ここで、本発明の実施形態を説明する前に、本発明の実施形態と基本構成が共通である基本例について説明する。
図1(a)に示すように、ブラシレスモータMは永久磁石を有する回転子50と三相巻線からなる固定子巻線51を有しており、U相、V相、W相の固定子巻線51がスター結線されるとともに駆動装置Aのインバータ回路1に接続されている。インバータ回路1は、各々ダイオードが逆並列に接続された2つのスイッチング素子2aと2d、2bと2e、2cと2fをそれぞれ直列接続した直列回路を、直流電源Eの両端に互いに並列に接続してなるスイッチング素子群と、これら6つのスイッチング素子2a〜2fをスイッチングするドライブ部3とで構成され、スイッチング素子群における各直列回路の中点(直列接続された2つのスイッチング素子2a、2b、…の接続点)にブラシレスモータMの3つの固定子巻線51が接続されている。すなわち、制御部4から与えられる指令に基づいてドライブ部3が6つのスイッチング素子2a〜2fを個別にスイッチングすることで転流が行われる。また位置検出部5は、固定子巻線51におけるU相とV相、V相とW相、W相とU相の各端子間電圧を基準電圧と比較することで誘起電圧のゼロクロス(回転子50の位置)を検出して位置検出信号を制御部4に出力する。
Here, before describing the embodiment of the present invention, a basic example having the same basic configuration as the embodiment of the present invention will be described.
As shown in FIG. 1A, the brushless motor M has a rotor 50 having a permanent magnet and a stator winding 51 composed of a three-phase winding, and a U-phase, V-phase, and W-phase stator. The winding 51 is star-connected and connected to the inverter circuit 1 of the driving device A. The inverter circuit 1 has a series circuit in which two switching elements 2a and 2d, 2b and 2e, 2c and 2f, each having a diode connected in antiparallel, are connected in parallel to both ends of a DC power supply E. And a drive unit 3 for switching the six switching elements 2a to 2f, and the middle point of each series circuit in the switching element group (two switching elements 2a, 2b,. The three stator windings 51 of the brushless motor M are connected to the connection point). That is, commutation is performed by the drive unit 3 individually switching the six switching elements 2a to 2f based on a command given from the control unit 4. Further, the position detection unit 5 compares the voltages between the terminals of the U phase and the V phase, the V phase and the W phase, and the W phase and the U phase in the stator winding 51 with the reference voltage, thereby generating a zero cross of the induced voltage (rotor 50 position) is detected and a position detection signal is output to the control unit 4.

制御部4は、図1(b)に示す構成を有する。速度設定回路41は、操作部Bの操作量(例えば、可変抵抗器の抵抗値)に応じた指令速度を求めて速度制御回路42に出力する。速度検出回路43は、位置検出部5から位置検出信号が出力される時間間隔に基づいて回転子50の回転速度を演算して速度制御回路42に出力する。速度制御回路42は、速度検出回路43から入力される回転子50の回転速度が速度設定回路41から入力される指令速度に一致するように、回転速度と指令速度の差分に応じて決まる固定子巻線51への印加電圧の指令値を演算してブラシレス通電パターン回路44に出力する。ブラシレス通電パターン回路44は、従来技術で説明した固定子巻線51の通電パターン毎に、速度制御回路42から入力される指令値で決まる印加電圧を固定子巻線51に印加するために必要な条件、すなわち、ドライブ部3で各スイッチング素子をスイッチングするために出力される駆動パルスのオンデューティ比を求めるとともに、オンデューティ比を含めた通電パターンの指令値を位置検出信号の入力時点から所定の電気角後に切換回路45へ出力する。   The control unit 4 has a configuration shown in FIG. The speed setting circuit 41 obtains a command speed corresponding to the operation amount of the operation unit B (for example, the resistance value of the variable resistor) and outputs it to the speed control circuit 42. The speed detection circuit 43 calculates the rotation speed of the rotor 50 based on the time interval at which the position detection signal is output from the position detection unit 5 and outputs it to the speed control circuit 42. The speed control circuit 42 is a stator that is determined according to the difference between the rotation speed and the command speed so that the rotation speed of the rotor 50 input from the speed detection circuit 43 matches the command speed input from the speed setting circuit 41. The command value of the voltage applied to the winding 51 is calculated and output to the brushless energization pattern circuit 44. The brushless energization pattern circuit 44 is necessary for applying to the stator winding 51 an applied voltage determined by a command value input from the speed control circuit 42 for each energization pattern of the stator winding 51 described in the prior art. The condition, that is, the on-duty ratio of the drive pulse output for switching each switching element in the drive unit 3 is obtained, and the command value of the energization pattern including the on-duty ratio is set to a predetermined value from the input time of the position detection signal. It outputs to the switching circuit 45 after an electrical angle.

また、指令速度は同期制御回路46にも出力されており、同期制御回路46では指令速度がゼロから変化したことを確認すると、同期運転に切り換えるための制御信号を切換回路45に出力するとともに、通電パターンを切り換える切換周波数(転流周波数)fを初期値f0から所定値fsまで徐々に増加させながら同期通電パターン回路47に出力し、転流周波数fが所定値fsに達すれば、同期運転からブラシレス運転への移行を指示する制御信号を切換回路45に出力する。同期通電パターン回路47は、固定子巻線51の通電パターン毎に、速度の指令値に対応した印加電圧を得るために必要な駆動パルスのオンデューティ比を求めるとともに、オンデューティ比を含めた通電パターンの指令値を転流周波数fによって決まるタイミングで切換回路45へ出力する。切換回路45では、制御信号により同期運転に切り換えられている間は同期通電パターン回路47から入力される指令値をインバータ回路1のドライブ部3に出力し、制御信号によりブラシレス運転に切り換えられている間はブラシレス通電パターン回路44から入力される指令値をインバータ回路1のドライブ部3に出力する。そして、ドライブ部3では、制御部4から入力される指令値に基づいて通電パターンを切り換えるとともに駆動パルスのオンデューティ比を変化させて固定子巻線51への印加電圧を調整する、いわゆるPWM(パルス幅変調)制御が行われる。   The command speed is also output to the synchronous control circuit 46. When the synchronous control circuit 46 confirms that the command speed has changed from zero, it outputs a control signal for switching to synchronous operation to the switching circuit 45, and The switching frequency (commutation frequency) f for switching the energization pattern is output to the synchronous energization pattern circuit 47 while gradually increasing from the initial value f0 to the predetermined value fs. When the commutation frequency f reaches the predetermined value fs, the synchronous operation is started. A control signal for instructing the shift to the brushless operation is output to the switching circuit 45. The synchronous energization pattern circuit 47 obtains an on-duty ratio of a drive pulse necessary for obtaining an applied voltage corresponding to a speed command value for each energization pattern of the stator winding 51 and energization including the on-duty ratio. The pattern command value is output to the switching circuit 45 at a timing determined by the commutation frequency f. The switching circuit 45 outputs the command value input from the synchronous energization pattern circuit 47 to the drive unit 3 of the inverter circuit 1 while being switched to the synchronous operation by the control signal, and is switched to the brushless operation by the control signal. During this time, the command value input from the brushless energization pattern circuit 44 is output to the drive unit 3 of the inverter circuit 1. The drive unit 3 switches the energization pattern based on the command value input from the control unit 4 and changes the on-duty ratio of the drive pulse to adjust the applied voltage to the stator winding 51, so-called PWM ( (Pulse width modulation) control is performed.

次に、図2のフローチャート並びに図3のタイミングチャートを参照して、ブラシレスモータの始動時における動作をさらに詳細に説明する。   Next, with reference to the flowchart of FIG. 2 and the timing chart of FIG. 3, the operation at the start of the brushless motor will be described in more detail.

まず、同期制御回路46では、上述のように指令速度がゼロから変化したことで起動を確認すると、転流周波数fを初期値f0に設定し、同期運転の経過時間tを初期値(ゼロ)に設定するとともに、制御信号を同期運転に切り換えるためにLレベルに設定し(ステップ1)、転流周波数fを初期値f0から所定値fsまで一定の増加率で増加させる(ステップ2,3)。さらに、同期制御回路46は、転流周波数fが所定値fsに達した後、経過時間tが所定時間t2に至るまで転流周波数fをfsに固定して同期運転を継続し(ステップ4)、経過時間tが所定時間t2に至った時点で転流周波数fを所定値fsよりも大きい周波数fs×a(a=2〜6)に増加し(ステップ5)、増加した転流周波数f(=fs×a)で転流して(通電パターンを一度切り換えて)から制御信号をHレベルに設定して同期運転からブラシレス運転に移行させる(ステップ6,7)。なお、増加した転流周波数f(=fs×a)で一度だけ電流させるのに要する時間tsは、およそ1/(fs×a)となる。   First, in the synchronous control circuit 46, when the activation is confirmed by the command speed changing from zero as described above, the commutation frequency f is set to the initial value f0, and the elapsed time t of the synchronous operation is set to the initial value (zero). And the control signal is set to L level to switch to synchronous operation (step 1), and the commutation frequency f is increased from the initial value f0 to the predetermined value fs at a constant increase rate (steps 2 and 3). . Further, after the commutation frequency f reaches the predetermined value fs, the synchronous control circuit 46 fixes the commutation frequency f to fs until the elapsed time t reaches the predetermined time t2, and continues the synchronous operation (step 4). When the elapsed time t reaches the predetermined time t2, the commutation frequency f is increased to a frequency fs × a (a = 2 to 6) larger than the predetermined value fs (step 5), and the increased commutation frequency f ( = Fs × a) (switch the energization pattern once) and then set the control signal to H level to shift from synchronous operation to brushless operation (steps 6 and 7). Note that the time ts required to cause current to flow once at the increased commutation frequency f (= fs × a) is approximately 1 / (fs × a).

ここで、同期運転からブラシレス運転への移行前に転流周波数fを増加する倍率aが2倍のときと6倍のときとで、同期運転からブラシレス運転への移行前後におけるトルク、誘起電圧、位置検出信号の様子を調べた結果を図4及び図5にそれぞれ示す。なお、各図において、静トルクは点線、実際に通電されることで発生するトルクは実線、回転子50を回転させたときに固定子巻線51に発生する誘起電圧は点線、開放相の固定子巻線51に発生する誘起電圧は実線、にてそれぞれ示している。   Here, the torque, the induced voltage before and after the transition from the synchronous operation to the brushless operation, when the magnification a for increasing the commutation frequency f before the transition from the synchronous operation to the brushless operation is 2 times or 6 times, The results of examining the state of the position detection signal are shown in FIGS. 4 and 5, respectively. In each figure, the static torque is a dotted line, the torque generated by actual energization is the solid line, the induced voltage generated in the stator winding 51 when the rotor 50 is rotated is the dotted line, and the open phase is fixed. The induced voltage generated in the child winding 51 is indicated by a solid line.

まず、倍率aを2倍とした場合について説明する。負荷が無い状態(負荷角θLがゼロの状態)で同期運転している場合において、図4(a)に示すようにW相及びV相に通電する通電パターンからts(=1/(fs×2))間だけW相とU相に通電する通電パターンに切り換える(転流する)と、回転子50が電気角で30度(=60度/a)しか回転しないので負荷角θLが30度となり、その後にブラシレス運転へ移行すると、移行直後におけるV相の誘起電圧のゼロクロスから回転子50の位置が検出可能であることが判る。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約50%となる。また、負荷角θLが30度の状態で同期運転している場合において、図4(b)に示すようにW相及びV相に通電する通電パターンからts間だけW相とU相に通電する通電パターンに切り換える(転流する)ことで負荷角θLが60度となり、その後にブラシレス運転へ移行すると、ブラシレス運転へ移行して電気角が30度進んだ後W相の誘起電圧のゼロクロスから回転子50の位置が検出可能であることが判る。このときも、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約50%となる。さらに、負荷角θLが60度の状態で同期運転している場合において、図4(c)に示すようにW相及びV相に通電する通電パターンからts間だけW相とU相に通電する通電パターンに切り換える(転流する)ことで負荷角θLが90度となり、その後にブラシレス運転へ移行すると、ブラシレス運転へ移行して電気角が60度進んだ後W相の誘起電圧のゼロクロスから回転子50の位置が検出可能であることが判る。このときも、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約50%となる。   First, the case where the magnification a is set to 2 will be described. When synchronous operation is performed with no load (the load angle θL is zero), as shown in FIG. 4A, ts (= 1 / (fs × 2)) When switching to an energization pattern for energizing the W-phase and U-phase (commutation) only during that time, the rotor 50 rotates only 30 degrees (= 60 degrees / a) in electrical angle, so the load angle θL is 30 degrees. Then, when shifting to brushless operation, it can be seen that the position of the rotor 50 can be detected from the zero cross of the induced voltage of the V phase immediately after the transition. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 50% of the maximum torque. Further, in the case of synchronous operation with the load angle θL being 30 degrees, the W phase and the U phase are energized only for ts from the energization pattern for energizing the W phase and the V phase as shown in FIG. 4B. By switching (commutating) to the energization pattern, the load angle θL becomes 60 degrees, and after that, when transitioning to brushless operation, the transition is made to brushless operation and the electrical angle advances by 30 degrees, and then rotation starts from the zero cross of the W-phase induced voltage. It can be seen that the position of the child 50 can be detected. Also at this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 50% of the maximum torque. Further, when the synchronous operation is performed with the load angle θL being 60 degrees, the W phase and the U phase are energized for ts from the energization pattern for energizing the W phase and the V phase as shown in FIG. By switching to the energization pattern (commutation), the load angle θL becomes 90 degrees, and then when switching to brushless operation, the operation proceeds to brushless operation and the electrical angle advances by 60 degrees, and then rotates from the zero cross of the induced voltage of the W phase. It can be seen that the position of the child 50 can be detected. Also at this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 50% of the maximum torque.

一方、倍率aを6倍とした場合について説明する。負荷が無い状態(負荷角θLがゼロの状態)で同期運転している場合において、図5(a)に示すようにW相及びV相に通電する通電パターンからts(=1/(fs×6))間だけW相とU相に通電する通電パターンに切り換える(転流する)と、回転子50が電気角で10度(=60度/a)しか回転しないので負荷角θLが50度となり、その後にブラシレス運転へ移行すると、ブラシレス運転へ移行して電気角が20度進んだ後V相の誘起電圧のゼロクロスから回転子50の位置が検出可能であることが判る。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約17%となる。また、負荷角θLが30度の状態で同期運転している場合において、図5(b)に示すようにW相及びV相に通電する通電パターンからts間だけW相とU相に通電する通電パターンに切り換える(転流する)ことで負荷角θLが80度となり、その後にブラシレス運転へ移行すると、ブラシレス運転へ移行して電気角が50度進んだ後W相の誘起電圧のゼロクロスから回転子50の位置が検出可能であることが判る。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約34%となる。さらに、負荷角θLが60度の状態で同期運転している場合において、図5(c)に示すようにW相及びV相に通電する通電パターンからts間だけW相とU相に通電する通電パターンに切り換える(転流する)ことで負荷角θLが110度となり、その後にブラシレス運転へ移行すると、ブラシレス運転へ移行して電気角が80度進んだ後W相の誘起電圧のゼロクロスから回転子50の位置が検出可能であることが判る。このとき、同期運転からブラシレス運転に移行したときのトルク変化ΔTは最大トルクの約76%となる。   On the other hand, the case where the magnification a is 6 will be described. In the case of synchronous operation with no load (the load angle θL is zero), as shown in FIG. 5 (a), ts (= 1 / (fs × 6)) When switching to an energization pattern for energizing the W-phase and U-phase (commutation) only during this period, the rotor 50 rotates only 10 degrees (= 60 degrees / a) in electrical angle, so the load angle θL is 50 degrees. Then, when the operation proceeds to the brushless operation, it can be seen that the position of the rotor 50 can be detected from the zero cross of the induced voltage of the V phase after the operation proceeds to the brushless operation and the electrical angle advances 20 degrees. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 17% of the maximum torque. In addition, when synchronous operation is performed with the load angle θL being 30 degrees, the W phase and the U phase are energized only for ts from the energization pattern for energizing the W phase and the V phase as shown in FIG. 5B. By switching (commutating) to the energization pattern, the load angle θL becomes 80 degrees, and after that, when shifting to the brushless operation, the operation proceeds to the brushless operation and the electrical angle advances by 50 degrees, and then the rotation starts from the zero cross of the induced voltage of the W phase. It can be seen that the position of the child 50 can be detected. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 34% of the maximum torque. Further, when the synchronous operation is performed with the load angle θL being 60 degrees, the W phase and the U phase are energized only for ts from the energization pattern for energizing the W phase and the V phase as shown in FIG. 5C. By switching (commutating) to the energization pattern, the load angle θL becomes 110 degrees, and after that, when shifting to the brushless operation, the operation proceeds to the brushless operation and the electrical angle advances by 80 degrees and then rotates from the zero cross of the induced voltage of the W phase. It can be seen that the position of the child 50 can be detected. At this time, the torque change ΔT when shifting from the synchronous operation to the brushless operation is about 76% of the maximum torque.

而して、本基本例では、転流周波数fを初期値f0から所定値fsまで徐々に増加させながら同期運転を行った後、転流周波数fを所定値fsよりも大きい周波数fs×aに増加させて通電パターンを一度切り換えて(転流して)からブラシレス運転へ移行させることにより、ブラシレス運転への移行後に開放相の誘起電圧が確実に検出可能であり、同期運転終了後の最初の回転子50の位置検出を確実に行うことができるだけでなく、特許文献1に記載のものと比較して同期運転からブラシレス運転に移行する際のトルク変動(トルク変化ΔT)を少なくすることができ、しかも、特許文献2に開示されたもののように同期運転時における転流周波数又は固定子巻線への印加電圧の増加率を変化させることで負荷角を大きくしてからブラシレス運転へ移行させる場合に比較して、短時間(例えば、数十ミリ秒)でブラシレスモータを起動して同期運転からブラシレス運転へ移行させることができるという利点がある。また、同期運転からブラシレス運転へ移行する際に転流周波数fを大きくする倍率a(=2〜6)に応じて、同期運転からブラシレス運転に移行したときの負荷角θLの増加量を10度から50度までの範囲で調整すれば、同期運転時の負荷状態(負荷角θL)に対応してトルク変動ΔTを減少させることができ、ブラシレスモータMの振動や急加速を抑制することが可能である。したがって、同期運転時の負荷が小さい場合は倍率aを大きくし、負荷が大きい場合は倍率aを小さくすることが望ましい。 Thus, in this basic example , after performing the synchronous operation while gradually increasing the commutation frequency f from the initial value f0 to the predetermined value fs, the commutation frequency f is set to a frequency fs × a larger than the predetermined value fs. By switching to a brushless operation after switching the energization pattern once (commutating), the induced voltage in the open phase can be reliably detected after the transition to the brushless operation, and the first rotation after the end of the synchronous operation Not only can the position of the child 50 be detected reliably, but torque fluctuation (torque change ΔT) when shifting from synchronous operation to brushless operation can be reduced as compared with that described in Patent Document 1. Moreover, as disclosed in Patent Document 2, the brush angle is increased after increasing the load angle by changing the commutation frequency during synchronous operation or the rate of increase of the voltage applied to the stator winding. There is an advantage that the brushless motor can be started in a short time (for example, several tens of milliseconds) and shifted from the synchronous operation to the brushless operation, compared with the case where the operation is shifted to the service operation. Further, according to the magnification a (= 2 to 6) that increases the commutation frequency f when shifting from the synchronous operation to the brushless operation, the increase amount of the load angle θL when shifting from the synchronous operation to the brushless operation is 10 degrees. If the adjustment is made within a range from 50 degrees to 50 degrees, it is possible to reduce the torque fluctuation ΔT corresponding to the load state (load angle θL) during the synchronous operation, and it is possible to suppress the vibration and sudden acceleration of the brushless motor M. It is. Therefore, it is desirable to increase the magnification a when the load during the synchronous operation is small, and decrease the magnification a when the load is large.

また、本基本例では転流周波数fが所定値fsに達した後、同期運転からブラシレス運転への移行前に所定時間(t=t2〜t3)だけ転流周波数fを所定値fsに固定して同期運転を行っているから、回転対象(例えば、電動工具におけるビットなど)の慣性による負荷への影響を無くすることができ、回転対象によるブラシレス運転移行時の振動及び急加速が抑制できるという利点がある。 In this basic example , after the commutation frequency f reaches the predetermined value fs, the commutation frequency f is fixed to the predetermined value fs for a predetermined time (t = t2 to t3) before the transition from the synchronous operation to the brushless operation. Since the synchronous operation is performed, the influence on the load due to the inertia of the rotating object (for example, the bit in the electric tool) can be eliminated, and the vibration and sudden acceleration at the time of the transition to the brushless operation by the rotating object can be suppressed. There are advantages.

(実施形態
本実施形態は、図6に示すように直流電源Eからインバータ回路1を介してブラシレスモータMに供給される電流を検出する電流検出回路6を備え、制御部4が、同期運転制御からブラシレス運転制御への移行時に転流周波数fを所定値fsよりも大きくする倍率aを、電流検出回路6で検出する電流のレベルに応じて変化させる点に特徴がある。但し、これ以外の構成及び基本的な動作については基本例と共通であるから、共通の構成要素には同一の符号を付して説明を省略する。
(Embodiment )
As shown in FIG. 6, the present embodiment includes a current detection circuit 6 that detects a current supplied from the DC power source E to the brushless motor M via the inverter circuit 1, and the control unit 4 performs the brushless operation from the synchronous operation control. It is characterized in that the magnification a that makes the commutation frequency f larger than the predetermined value fs is changed according to the level of the current detected by the current detection circuit 6 at the time of transition to control. However, since other configurations and basic operations are the same as those in the basic example , common constituent elements are denoted by the same reference numerals and description thereof is omitted.

電流検出回路6は、例えば抵抗の電圧降下を利用して直流電源EからブラシレスモータMに供給される電流の大きさに応じた電圧レベルの検出信号を制御部4の同期制御回路46に出力している(図6(b)参照)。そして、同期制御回路46は転流周波数fが所定値fsに達した後、経過時間tが所定時間t2に至るまで転流周波数fをfsに固定して同期運転を継続し、経過時間tが所定時間t2に至った時点で転流周波数fを所定値fsよりも大きい周波数fs×a(a=2〜6)に増加するが、このとき、電流検出回路6から入力される検出信号に基づき、図7に示すように直流電源EからブラシレスモータMに供給される電流Iの大きさに比例(但し、比例定数は負の値とする)させて倍率aを決定する。すなわち、同期制御回路46では電流Iが小さければ倍率aを大きくし、電流Iが大きければ倍率aを小さくすることにより、負荷の大きさ(電流Iの大きさ)に応じて倍率aを適当な大きさに調整するため、負荷の大きさに影響されずにブラシレス運転移行時におけるブラシレスモータMの振動及び急加速が防止できる。   The current detection circuit 6 outputs a detection signal having a voltage level corresponding to the magnitude of the current supplied from the DC power supply E to the brushless motor M to the synchronization control circuit 46 of the control unit 4 by using, for example, a voltage drop of a resistor. (See FIG. 6B). Then, after the commutation frequency f reaches the predetermined value fs, the synchronous control circuit 46 fixes the commutation frequency f to fs until the elapsed time t reaches the predetermined time t2, and continues the synchronous operation. When the predetermined time t2 is reached, the commutation frequency f is increased to a frequency fs × a (a = 2 to 6) larger than the predetermined value fs. At this time, based on the detection signal input from the current detection circuit 6. As shown in FIG. 7, the magnification a is determined in proportion to the magnitude of the current I supplied from the DC power source E to the brushless motor M (however, the proportionality constant is a negative value). That is, in the synchronous control circuit 46, the magnification a is increased when the current I is small, and the magnification a is decreased when the current I is large, so that the magnification a is appropriately set according to the size of the load (the magnitude of the current I). Since the size is adjusted, vibration and sudden acceleration of the brushless motor M during the transition to the brushless operation can be prevented without being affected by the size of the load.

本発明の基本例を示し、(a)は全体の概略構成図、(b)は制御部のブロック図である。 The basic example of this invention is shown, (a) is a whole schematic block diagram, (b) is a block diagram of a control part. 同上の動作説明用のフローチャートである。It is a flowchart for operation | movement description same as the above. 同上の動作説明用のタイミングチャートである。It is a timing chart for operation | movement description same as the above. (a)〜(c)は同上の動作説明用の波形図である。(A)-(c) is a wave form diagram for operation explanation same as the above. (a)〜(c)は同上の動作説明用の波形図である。(A)-(c) is a wave form diagram for operation explanation same as the above. 本発明の実施形態を示し、(a)は全体の概略構成図、(b)は制御部のブロック図である。 1 shows an embodiment of the present invention , (a) is a schematic configuration diagram of the whole, (b) is a block diagram of a control unit. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. ブラシレスモータの駆動原理を説明する説明図である。It is explanatory drawing explaining the drive principle of a brushless motor. (a)〜(c)は同上の動作説明用の波形図である。(A)-(c) is a wave form diagram for operation explanation same as the above. (a)〜(c)は同上の動作説明用の波形図である。(A)-(c) is a wave form diagram for operation explanation same as the above.

符号の説明Explanation of symbols

1 インバータ回路
4 制御部
45 切換回路
46 同期制御回路
47 同期通電パターン回路
DESCRIPTION OF SYMBOLS 1 Inverter circuit 4 Control part 45 Switching circuit 46 Synchronous control circuit 47 Synchronous energization pattern circuit

Claims (3)

永久磁石を有する回転子と三相巻線からなる固定子巻線を有したブラシレスモータを駆動する駆動装置において、開放相の固定子巻線の端子電圧を基準電圧と比較することで回転子の回転位置を検出する位置検出手段と、電源から供給される直流電圧をスイッチングすることで固定子巻線の各相への通電状態を切り換える通電切換手段と、通電切換手段を制御して各々同時に通電する固定子巻線の組み合わせを異ならせた複数の通電パターンを順次切り換える制御手段と、電源から通電切換手段を介してブラシレスモータに供給される電流を検出する電流検出手段とを備え、制御手段は、位置検出手段の検出結果に関わらず前記複数の通電パターンを順次切り換える同期運転制御と、位置検出手段の検出結果に基づいて前記複数の通電パターンを順次切り換えるブラシレス運転制御とを行い、回転子が停止状態にあるときに複数の通電パターンの切換周波数を徐々に増加しながら同期運転制御を行うことで回転子を起動し、切換周波数が所定周波数に達した後に当該所定周波数よりも大きな周波数で通電パターンを一度切り換えてからブラシレス運転制御に移行するとともに、同期運転制御からブラシレス運転制御への移行時に所定周波数よりも大きくする周波数を、電流検出手段で検出する電流のレベルに応じて変化させることを特徴とするブラシレスモータの駆動装置。 In a driving device for driving a brushless motor having a rotor having a permanent magnet and a stator winding composed of a three-phase winding, the terminal voltage of the stator winding of the open phase is compared with a reference voltage to thereby compare the rotor Position detection means for detecting the rotational position, energization switching means for switching the energization state of each phase of the stator winding by switching the DC voltage supplied from the power source, and energization switching means for controlling the energization switching means simultaneously. A control means for sequentially switching a plurality of energization patterns with different combinations of stator windings, and a current detection means for detecting a current supplied from the power source to the brushless motor via the energization switching means. Synchronous operation control for sequentially switching the plurality of energization patterns irrespective of the detection result of the position detection means, and the plurality of energization patterns based on the detection result of the position detection means When the rotor is in a stopped state, the rotor is started by performing synchronous operation control while gradually increasing the switching frequency of a plurality of energization patterns, and the switching frequency is a predetermined frequency. After switching to the brushless operation control after switching the energization pattern once at a frequency higher than the predetermined frequency after reaching the frequency, the current detection means sets the frequency to be larger than the predetermined frequency when shifting from the synchronous operation control to the brushless operation control. The brushless motor drive device is characterized in that it is changed according to the level of the current detected by the motor. 制御手段は、同期運転制御からブラシレス運転制御への移行時に所定周波数の1倍よりも大きく且つ6倍以下の周波数で通電パターンを一度切り換えることを特徴とする請求項1記載のブラシレスモータの駆動装置。   2. The brushless motor drive device according to claim 1, wherein the control means switches the energization pattern once at a frequency greater than 1 and less than 6 times the predetermined frequency when shifting from the synchronous operation control to the brushless operation control. . 制御手段は、所定周波数に達した後、同期運転制御からブラシレス運転制御への移行前に所定時間だけ切換周波数を所定周波数に固定して同期運転制御を行うことを特徴とする請求項1又は2記載のブラシレスモータの駆動装置 The control means performs the synchronous operation control by fixing the switching frequency to the predetermined frequency for a predetermined time after shifting to the brushless operation control from the synchronous operation control after reaching the predetermined frequency. The brushless motor drive device described .
JP2003410459A 2003-12-09 2003-12-09 Brushless motor drive device Expired - Fee Related JP4269920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410459A JP4269920B2 (en) 2003-12-09 2003-12-09 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410459A JP4269920B2 (en) 2003-12-09 2003-12-09 Brushless motor drive device

Publications (2)

Publication Number Publication Date
JP2005176452A JP2005176452A (en) 2005-06-30
JP4269920B2 true JP4269920B2 (en) 2009-05-27

Family

ID=34731553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410459A Expired - Fee Related JP4269920B2 (en) 2003-12-09 2003-12-09 Brushless motor drive device

Country Status (1)

Country Link
JP (1) JP4269920B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367680B1 (en) 2012-10-29 2014-03-12 삼성전기주식회사 Apparatus for generating control signal for driving a motor

Also Published As

Publication number Publication date
JP2005176452A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4386815B2 (en) Motor driving apparatus and driving method
US6160367A (en) Apparatus and method for driving motor
JP4959460B2 (en) Motor starting device and motor starting method
JP2001286172A (en) Single phase srm (switched reluctance motor) drive unit and its method
JP4269921B2 (en) Brushless motor drive device
JP4269920B2 (en) Brushless motor drive device
JP2011030385A (en) Motor drive and method of determining relative position of rotor equipped in motor
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
JP2008220035A (en) Brushless motor starter
JP6643968B2 (en) SR motor control system and SR motor control method
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
JP2020156166A (en) Switched reluctance motor control device and switched reluctance motor control method
JP4291976B2 (en) Starting method of brushless / sensorless DC motor
JP2005312145A (en) Driver of brushless motor
JPH03235695A (en) Method and apparatus for starting brushless motor
JP4312115B2 (en) Motor drive device
JPH02197291A (en) Method and device for starting brushless motor
JP4078964B2 (en) DC motor driving method and DC motor driving apparatus
JP2019216499A (en) Control metho and controller of brushless dc motor
JP2005192286A (en) Drive controller for dc motor
JP2002119089A (en) Control device of step motor
JP2005333753A (en) Control device of three-phase brushless motor
CN117595739A (en) Motor control device
JP3124397B2 (en) How to start a sensorless multi-phase DC motor
JP2005224048A (en) Brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees