JPH03235695A - Method and apparatus for starting brushless motor - Google Patents

Method and apparatus for starting brushless motor

Info

Publication number
JPH03235695A
JPH03235695A JP2027516A JP2751690A JPH03235695A JP H03235695 A JPH03235695 A JP H03235695A JP 2027516 A JP2027516 A JP 2027516A JP 2751690 A JP2751690 A JP 2751690A JP H03235695 A JPH03235695 A JP H03235695A
Authority
JP
Japan
Prior art keywords
signal
brushless motor
duty ratio
switching
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2027516A
Other languages
Japanese (ja)
Inventor
Mitsuhisa Nakai
中井 満久
Shiro Maeda
志朗 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2027516A priority Critical patent/JPH03235695A/en
Publication of JPH03235695A publication Critical patent/JPH03235695A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To smoothly start by suitably increasing the frequency of a revolving magnetic field generated in an armature winding and a duty ratio as time goes. CONSTITUTION:After a start command means 12 generates a command, the frequency and a duty ratio of the output signal of a synchronizing signal generation means 10 are simultaneously increased along a rectilinear line of a predetermined slope as time goes to rotatably start a magnet rotor 5 before the start of the motor 3 is established. After the start is established, a change-over means 7 is converted to drive the motor 3 based on the output signal of a position detection means 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブラシレスモータに係り、特に電機子巻線に誘
起される誘起電圧によって磁石回転子と電機子巻線との
相対的位置を検出し 起動から安定な回転を行なうため
のブラシレスモータの起動に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a brushless motor, and in particular detects the relative position between a magnet rotor and an armature winding by an induced voltage induced in the armature winding. This relates to starting a brushless motor for stable rotation.

従来の技術 通常ブラシレスモータに(戴 その回転子の磁極位置を
検出するための検出器が必要である戯 例えばこのブラ
シ1ノスモータを空調器のコンプレ・ンサに用いようと
する場合、高温高圧条件下で前記検出器の信頼性が保証
できないたべ これらの検出器を用いることができなt
〜 従ってこのような応用において1表 磁極位置検出
器を用いず、電機子巻線に誘起される電圧信号を検出し
 それに基づいてモータの転流信号を生成する方法が用
いられていも しかし電機子巻線に電圧信号が誘起され
るのは回転子が回転している場合だけで、停止している
場合は磁極位置情報が得られなし−つまり、起動時はこ
の電圧信号が使えないわけである。
Conventional technology Normally, a brushless motor requires a detector to detect the magnetic pole position of its rotor. Therefore, the reliability of the detectors cannot be guaranteed, and these detectors cannot be used.
~ Therefore, in such applications, Table 1 shows that although a method is used that detects the voltage signal induced in the armature winding and generates the motor commutation signal based on it without using a magnetic pole position detector, the armature A voltage signal is induced in the windings only when the rotor is rotating; when the rotor is stopped, magnetic pole position information cannot be obtained - in other words, this voltage signal cannot be used at startup. .

従って起動時には回転子の磁極位置にかかわらず電機子
巻線に回転磁界が発生するような特定の信号を与えて、
回転子を強制回転させることとなムところ力丈 この特
定の信号は回転子の磁場位置を無視して与えているため
結果として起動時に大きな始動電流が流れることになム
 そしてこの始動電流力丈 電機子巻線への電流を通電
 遮断する半導体スイッチング素子群の許容電流値を越
える場合は起動不可能ということになる。この問題点を
解決するため&へ 従来はモータに電流を供給する直流
電源の電圧を起動時のみ低下させ、よって始動電流を減
少させる方法が考案されている(例えば特開昭61−1
35385号公報)。
Therefore, at startup, a specific signal is given that generates a rotating magnetic field in the armature winding regardless of the rotor's magnetic pole position.
This particular signal ignores the magnetic field position of the rotor, and as a result, a large starting current flows during startup. If the allowable current value of the semiconductor switching element group, which cuts off the current to the armature winding, is exceeded, startup is impossible. In order to solve this problem, a method has been devised in the past to reduce the voltage of the DC power supply that supplies current to the motor only at the time of starting, thereby reducing the starting current (for example, JP-A-61-1
35385).

発明が解決しようとする課題 しかし 例えば空調機のコンプレッサ駆動用のような大
型のブラシレスモータの場合、その電源容量も数kVA
という大型のものとなるた臥 通常このような応用にお
いては電源電圧は一定にしておき、電圧信号のパルスの
デユーティ比を制御することによって電圧を制御すゑ 
いわゆるノ<ルス幅変調を用いる。これは電圧可変型電
源を構成することによる装置の大型化とコストア・ツブ
をさけるためであム 従って前記のような大型機器の応
用においては従来例に示したような起動方法を用いるこ
とができないという課題を有してい九本発明(飄 上記
従来の課題に鑑へノクルス幅変調により電圧制御する場
合でもモータ起動時の始動電流と振動を抑制し スムー
ズな起動を可能とするブラシレスモータの起動方法及び
起動装置を提供するものであム 課題を解決するための手段 上記課題を解決するために本発明は、 モータの起動確
定以前は、 ブラシレスレータの電機子巻線に発生させ
る回転磁界の周波数と、モータ印可電圧の制御手段とし
てのデユーティ比を同時に時間とともに一定の傾きの直
線に沿って増加させ、定時間経過後は電機子巻線に誘起
される電圧信号を変換して得られる信号に基づいて前記
ブラシレスモータを駆動する構成を備えたものであもま
た 回転磁界の周波数とデユーティ比の少なくとも一方
は時間とともにその微分係数が減少する曲線に沿って増
加させ、他方は時間とともに一定の傾きの直線に沿って
増加させる構成を備えている。
Problems to be Solved by the Invention However, in the case of large brushless motors, such as those used to drive the compressor of air conditioners, the power supply capacity is several kVA.
Normally, in such applications, the power supply voltage is kept constant, and the voltage is controlled by controlling the duty ratio of the voltage signal pulse.
So-called Norse width modulation is used. This is to avoid increasing the size of the device and cost savings due to the configuration of a variable voltage power supply. Therefore, the starting method shown in the conventional example cannot be used in the application of large equipment as described above. In view of the above-mentioned conventional problems, a method for starting a brushless motor suppresses starting current and vibration at the time of starting the motor and enables smooth starting even when voltage is controlled by Noculus width modulation. Means for Solving the Problems In order to solve the above problems, the present invention provides: Before the start of the motor is determined, the frequency of the rotating magnetic field generated in the armature winding of the brushless generator is , the duty ratio as a means of controlling the motor applied voltage is simultaneously increased along a straight line with a constant slope over time, and after a certain period of time has passed, the voltage signal induced in the armature winding is converted based on the signal obtained. At least one of the frequency and duty ratio of the rotating magnetic field increases along a curve whose differential coefficient decreases over time, and the other increases along a curve with a constant slope over time. It has a configuration that increases along a straight line.

さら(二 回転磁界の周波数とデユーティ比の少なくと
も一方は時間とともにその傾きが減少する複数の直線に
沿って増加させ、他方は時間とともにその微分係数が減
少する曲撤 あるいは一定の傾きの直線に沿って増加さ
せる構成を備えている。
Furthermore, at least one of the frequency and duty ratio of the rotating magnetic field is increased along a plurality of straight lines whose slope decreases with time, and the other is set along a straight line whose differential coefficient decreases with time or along a straight line with a constant slope. It is equipped with a configuration to increase the amount of data.

まf:、、中性点非接地に結線された3相電機子巻線と
、直流電源と、前記電機子巻線への電流を通電遮断する
半導体スイッチング素子群と、磁石回転子を有するブラ
シレスモータと、起動指令手段と、前記起動指令手段の
指令により同期信号を出力する同期信号発生手段と、前
記同期信号発生手段より出力される信号を用いて前記電
機子巻線に回転磁界を発生させる回転磁界発生手段と、
前記電機子巻線に誘起される電圧信号によって前記電機
子巻線と前記磁石回転子の相対的位置を検出する位置検
出手段と、前記回転磁界発生手段の出力信号と前記位置
検出手段の出力信号を選択し 切り換えて出力する切換
手段と、前記切換手段に切換指令を与える切換指令手段
と、前記切換手段の出力信号を用いて前記スイッチング
素子群の駆動信号を生成する駆動信号発生手段ど、デユ
ーティ比指令手段と、前記駆動信号発生手段の出力信号
に前記デユーティ比指令手段の指令に基づいてパルス幅
変調をかけるパルス幅変調手段を備先 前記起動指令手
段の指令発生後モータの起動確定以前は前記同期信号発
生手段の出力信号の周波数と、前記デユーティ比を同時
に時間とともに一定の傾きの直線に沿って増加させ、前
記磁石回転子を回転起動し 起動確定後は、 前記切換
手段を切り換えて前記位置検出手段の出力信号に基づい
てモータを駆動する構成を備えたものであム また 同
期信号発生手段の出力信号の周波数と、デユーティ比の
少なくとも一方は時間とともにその微分係数が減少する
曲線に沿って増加させ、他方は時間とともに一定の傾き
の直線に沿って増加させる構成を備えていも さらく 
同期信号発生手段の出力信号の周波数と、デユーティ比
の少なくとも一方は時間とともにその傾きが減少する複
数の直線に沿って増加させ、他方は時間とともにその微
分係数が減少する曲線 あるいは一定の傾きの直線に沿
って増加させる構成を備えている。
A brushless motor having a three-phase armature winding connected to an ungrounded neutral point, a DC power supply, a group of semiconductor switching elements for cutting off current to the armature winding, and a magnet rotor. A motor, a start command means, a synchronization signal generation means for outputting a synchronization signal in response to a command from the start command means, and a rotating magnetic field is generated in the armature winding using the signal output from the synchronization signal generation means. A rotating magnetic field generating means,
position detection means for detecting the relative position of the armature winding and the magnet rotor based on a voltage signal induced in the armature winding; an output signal of the rotating magnetic field generation means; and an output signal of the position detection means. a switching means for selecting and outputting a switch; a switching command means for giving a switching command to the switching means; and a drive signal generating means for generating a drive signal for the switching element group using an output signal of the switching means. and a pulse width modulation means for applying pulse width modulation to the output signal of the drive signal generation means based on the command of the duty ratio command means. The frequency of the output signal of the synchronizing signal generating means and the duty ratio are simultaneously increased along a straight line with a constant slope over time, and the magnet rotor is started to rotate. After the start is confirmed, the switching means is switched to The motor is configured to drive the motor based on the output signal of the position detecting means, and at least one of the frequency of the output signal of the synchronizing signal generating means and the duty ratio follows a curve whose differential coefficient decreases with time. It is also possible to have a configuration in which one increases along a straight line with a constant slope over time, and the other increases along a straight line with a constant slope over time.
At least one of the frequency of the output signal of the synchronization signal generating means and the duty ratio is increased along a plurality of straight lines whose slope decreases with time, and the other is a curve whose differential coefficient decreases with time, or a straight line with a constant slope. It has a configuration that increases along the line.

作用 本発明は上記した構成によって、電機子巻線に発生させ
る回転磁界の周波数とデユーティ比を時間とともに適切
に増加させることにより、モータ起動時の始動電流と振
動を抑制し スムーズな起動を実現することとなる。
Effect: With the above-described configuration, the present invention appropriately increases the frequency and duty ratio of the rotating magnetic field generated in the armature winding over time, thereby suppressing the starting current and vibration when starting the motor, and realizing smooth starting. That will happen.

実施例 以下、本発明の第1の実施例について図面を参考に説明
すも 第4図は本発明の第1の実施例におけるブラシレ
スモータの起動装置のブロック図であム %4図におい
て、 1は直流電# 2は半導体スイッチング素子群で
Q1〜Q6の6個のトランジスタとそれぞれに逆並列接
続された6個のダイオードからなも 3はブラシレスモ
ータで3相結線された電機子巻線4と磁石回転子5から
なる。6は位置検出手段、 7は切換手北 8は駆動信
号発生手段 9はパルス幅変調手段10は同期信号発生
手i  11は回転磁界発生手段12は起動指令手!、
13は切換指令手段、14はデユーティ比指令手段であ
る。以上の構成により、起動時は回転磁界発生手段11
の出力信号を切換手段7によって駆動信号発生手段8に
伝え その出力信号にパルス幅変調をかけて半導体スイ
ッチング素子群2のトランジスタを駆動しブラシレスモ
ータ3を起動す4 そしてブラシレスモータ3が回転し
始めると、電機子巻線4に発生する誘起電圧より位置検
出手段6で磁石回転子5の磁極位置を検出しその信号を
切換手段7によって駆動信号発生手段8に伝え それに
パルス幅変調をかけて半導体スイッチング素子群2のト
ランジスタを駆動し ブラシレスモータ3を制御するも
のである。第5図1上 第4図のブロック図をより具体
的に構成したもので、第4図と同一のちへ もしくは同
一の働きをするものには同一の符号を付している。同図
において、 1〜5は第4図と全く同様であa6は位置
検出回路で3つのフィルタ61〜63とコンパレータ群
64からなる。 7は切換同胞 8は駆動信号発生回路
 9はパルス幅変調同区10は同期信号発生回路11は
回転磁界発生回路13は切換指令回路15はマイクロコ
ンピュータで第4図の起動指令手段1& デユーティ比
指令手段14に相当し同期信号発生回路10に起動指令
信号151を、パルス幅変調回路9にデユーティ比指令
信号153をそれぞれ出力する。以上のように構成され
たブラシレスモータの起動装置の実施例について、その
動作を説明すも まず、マイクロコンピュータ15から
起動指令信号151、切換信号15人 デユーティ比指
令信号153が同時に出力されも 起動指令信号151
を受けた同期信号発生回路10C&  第6図に示すよ
うな同期信号100を出力すム この同期信号100に
基づいて回転磁界発生回路11が第6図に示す信号11
1〜113を出力すa 切換回路7は駆動信号発生回路
8の入力信号87〜89を、位置検出回路6の出力信号
とする力\ 回転磁界発生回路11の出力信号とするか
を切り換える回路で、起動時は前記切換信号152によ
り回転磁界発生回路11の出力信号側に切り換えられて
いも この回転磁界発生回路11の出力信号111〜1
13は駆動信号発生回路8に取り込まれ 同回路から第
6図に示す81〜86の出力信号を出力する。これら出
カイ言分のう板81〜83はさらにパルス幅変調回路9
に入力され 前記デユーティ比指令信号153に基づい
てパルス幅変調が行なわれ それぞれ半導体スイッチン
グ素子群2のトランジスタQ1〜Q3のドライブ信号と
なる。−刃駆動信号発生回路8の出力信号84〜86(
主  そのまま半導体スイッチング素子群2のトランジ
スタQ4〜Q6のドライブ信号となa これらのドライ
ブ信号により半導体スイッチング素子群2の6個のトラ
ンジスタがスイッチングされ その結果電機子巻線4に
回転磁界が発生し 磁石回転子5が回転してブラシレス
モータ3が起動することとなム ここで、前記同期信号
100は第1図に示すようへ 起動指令信号151の立
ち上がりと同時にその周波数が時間とともに一定の傾き
の直線に沿って増加するよう出力される。また デユー
ティ比指令信号153も第1図に示すようく 起動指令
信号151の立ち上がりと同時にデユーティ比が時間と
ともに一定の傾きの直線に沿って増加するよう出力され
る。そして、同期信号100の周波数とデユーティ比力
丈 ブラシレスモータ3の安定した回転を維持できるよ
うな値に達したべ これらの増加を停止し その一定値
を保つようにすも 起動喪 切換指令回路13(飄  
ブラシレスモータ3の起動が確定したことを、位置検出
回路6の出力信号641〜643をもとに判断して切換
信号152を出力し 切換回路7を位置検出回路6側に
切り換えも これにより、駆動信号発生回路8の入力信
号87〜89は位置検出回路6の出力信号641〜64
3となり、以降電機子巻線4に発生する誘起電圧信号4
10〜430によりブラシレスモータ3を駆動すること
となも 切換信号152の立ち下げに続いて起動指令信
号151を解除じ一連の起動動作手順を初期状態にリセ
ットすムな抵 デユーティ比指令信号1531友  起
動確定後もブラシレスモータ3の速度制御のための印加
電圧制御指令として、マイクロコンピュータ15から出
力されも 以上の動作により、パルス幅変調により電圧
制御する場合でモータ起動時の始動電流と振動を抑制し
 スムーズな起動を可能としていも次に 第2図により
、本発明の第2の実施例について説明すも 装置の構成
は第1の実施例と同一のたべ 説明を省略する。第1の
実施例において、同期信号100とデユーティ比指令信
号153の変化のさせ方を、第2図に示すよう圏 同期
信号100の周波数とデユーティ比が時間とともにその
微分係数が減少する曲線に沿って増加するように変化さ
せも これら以外の動作は第1の実施例と同様であ4 
以上の動作により、パルス幅変調により電圧制御する場
合でもモータ起動時の始動電流と振動を抑制し よりス
ムーズな起動を可能にしていもさらは 起動信号100
の周波数とデユーティ比を時間とともに第2図に示すよ
うな曲線に沿って増加させることにより、起動時間の短
縮が図れ 起動に伴う大電流と振動の持続時間を短縮す
ることができる。次は 第3図により、本発明の第3の
実施例について説明すも 装置の構成は第1の実施例と
同一のたべ 説明を省略すも 第1の実施例において、
同期信号100とデユーティ比指令信号153の変化の
させ方を、第3図に示すように 同期信号1000周波
数とデユーティ比が時間とともにその傾きが減少する3
つの直線に沿って増加するように変化させる。これら以
外の動作は第1の実施例と同様であも 以上の動作によ
り、パルス幅変調により電圧制御する場合でもモータ起
動時の始動電流と振動を抑制し よりスムーズな起動を
可能にしている。さら番ミ  同期信号100の周波数
とデユーティ比を時間とともに第3図に示すような3つ
の直線に沿って増加させることにより、起動時間の短縮
が図れ 起動に伴う大電流と振動の持続時間を短縮する
ことができも さらに 同期信号100の周波数とデユ
ーティ比の変化を直線化することにより、それらの変化
パターンの生成が簡単な比例式の演算により行なえ 同
期信号100とデユーティ比指令信号153の生成が容
易になも な抵 第1〜第3の実施例において同期信号
発生回路1代回転磁界発生回路11及び指令回路13は
それぞれ単独の回路とした力曳 これらの回路機能の一
部または全てをマイクロコンピュータ15に行なわせて
もよt〜 発明の効果 以上のように本発明1戴 中性点非接地に結線された3
相電機子巻線と、直流電源と、前記電機子巻線への電流
を通電 遮断する半導体スイッチング素子群と、磁石回
転子を有するブラシレスモータと、起動指令手段と、前
記起動指令手段の指令により同期信号を出力する同期信
号発生手段と、前記同期信号発生手段より出力される信
号を用いて前記電機子巻線に回転磁界を発生させる回転
磁界発生手段と、前記電機子巻線に誘起させる電圧信号
によって前屈電圧巻線と前記磁石回転子の相対的位置を
検出する位置検出手段と、前記回転磁界発生手段の出力
信号と前記位置検出手段の出力信号を選択し 切り換え
て出力する切換手段と、前記切換手段に切換指令を与え
る切換指令手段と、前記切換手段の出力信号を用いて前
記スイッチング素子群の駆動信号を生成する駆動信号発
生手段と、デユーティ比指令手段と、前記駆動信号発生
手段の出力信号に前記デユーティ比指令手段の指令に基
づいてパルス幅変調をかけるパルス幅変調手段を設け、
前記同期信号発生手段の出力信号の周波数と、前記デユ
ーティ比を同時に時間とともに一定の傾きの直線に沿っ
て増加させることにより、パルス幅変調により電圧制御
する場合でもモータ起動時の始動電流と振動を抑制し 
スムーズな起動を可能としている。まt二  前記同期
信号発生手段の出力信号の周波数と、デユーティ比の少
なくとも一方は時間とともにその微分係数が減少する曲
線に沿って増加させ、他方は時間とともに一定の傾きの
直線に沿って増加させることにより、起動時間の短縮が
図れ 起動に伴う大電流と振動の持続時間を短縮するこ
とができも さら番へ  前記同期信号発生手段の出力
信号の周波数と、デユーティ比の少なくとも一方は時間
とともにその傾きが減少する複数の直線に沿って増加さ
せ、他方は時間とともにその微分係数が減少する曲線 
あるいは一定の傾きの直線に沿って増加させることによ
り、起動時間の短縮が図れ 起動に伴う大電流と起動の
持続時間を短縮することができるとともE、  容易に
起動パターンの生成を行なうことができも
EXAMPLE Hereinafter, the first example of the present invention will be explained with reference to the drawings. Figure 4 is a block diagram of a brushless motor starting device in the first example of the present invention. 2 is a semiconductor switching element group consisting of 6 transistors Q1 to Q6 and 6 diodes connected in antiparallel to each of them. 3 is a brushless motor with armature winding 4 and magnets connected in 3 phases. It consists of a rotor 5. 6 is a position detection means, 7 is a switch north, 8 is a drive signal generation means, 9 is a pulse width modulation means 10 is a synchronization signal generation hand i, 11 is a rotating magnetic field generation means 12 is a start command hand! ,
13 is a switching command means, and 14 is a duty ratio command means. With the above configuration, at the time of startup, the rotating magnetic field generating means 11
The output signal is transmitted to the drive signal generation means 8 by the switching means 7, and the output signal is subjected to pulse width modulation to drive the transistor of the semiconductor switching element group 2 and start the brushless motor 34.Then, the brushless motor 3 starts rotating. Then, the position detecting means 6 detects the magnetic pole position of the magnet rotor 5 from the induced voltage generated in the armature winding 4, and the signal is transmitted to the drive signal generating means 8 by the switching means 7, which applies pulse width modulation to the semiconductor. It drives the transistors of the switching element group 2 and controls the brushless motor 3. FIG. 5 (top) This is a more concrete configuration of the block diagram in FIG. 4, and the same parts or functions as those in FIG. 4 are given the same reference numerals. In the figure, 1 to 5 are exactly the same as in FIG. 4, and a6 is a position detection circuit consisting of three filters 61 to 63 and a comparator group 64. 7 is a switching circuit; 8 is a drive signal generation circuit; 9 is a pulse width modulation circuit; 10 is a synchronization signal generation circuit; 11 is a rotating magnetic field generation circuit; and 13 is a switching command circuit; 15 is a microcomputer; It corresponds to the means 14 and outputs a start command signal 151 to the synchronization signal generation circuit 10 and a duty ratio command signal 153 to the pulse width modulation circuit 9, respectively. The operation of the embodiment of the brushless motor starting device configured as described above will be explained. First, even if the microcomputer 15 outputs the starting command signal 151 and the switching signal 15 duty ratio command signal 153 simultaneously, signal 151
The synchronous signal generating circuit 10C receives the synchronous signal and outputs the synchronous signal 100 as shown in FIG.
The switching circuit 7 is a circuit that switches whether the input signals 87 to 89 of the drive signal generation circuit 8 are used as the output signals of the position detection circuit 6 or the output signals of the rotating magnetic field generation circuit 11. , even if the switching signal 152 switches to the output signal side of the rotating magnetic field generating circuit 11 at startup, the output signals 111 to 1 of the rotating magnetic field generating circuit 11
13 is taken into the drive signal generation circuit 8, and output signals 81 to 86 shown in FIG. 6 are outputted from the same circuit. These output proof boards 81 to 83 are further connected to a pulse width modulation circuit 9.
Pulse width modulation is performed based on the duty ratio command signal 153, and each becomes a drive signal for the transistors Q1 to Q3 of the semiconductor switching element group 2. -Output signals 84 to 86 of the blade drive signal generation circuit 8 (
These drive signals serve as drive signals for the transistors Q4 to Q6 of the semiconductor switching element group 2.A These drive signals switch the six transistors of the semiconductor switching element group 2, and as a result, a rotating magnetic field is generated in the armature winding 4, and the magnet The rotor 5 rotates and the brushless motor 3 starts. Here, the synchronization signal 100 is as shown in FIG. The output is increased along the line. Further, as shown in FIG. 1, the duty ratio command signal 153 is also output at the same time as the start command signal 151 rises so that the duty ratio increases along a straight line with a constant slope over time. When the frequency and duty ratio of the synchronizing signal 100 reach values that can maintain stable rotation of the brushless motor 3, they stop increasing and maintain their constant values. air
Based on the output signals 641 to 643 of the position detection circuit 6, it is determined that the brushless motor 3 has started, and the switching signal 152 is output, and the switching circuit 7 is switched to the position detection circuit 6 side. The input signals 87 to 89 of the signal generation circuit 8 are the output signals 641 to 64 of the position detection circuit 6.
3, and thereafter the induced voltage signal 4 generated in the armature winding 4
The brushless motor 3 is driven by the switching signal 152, and the starting command signal 151 is canceled and the series of starting operation procedures is reset to the initial state. Even after startup is confirmed, the microcomputer 15 outputs the applied voltage control command for speed control of the brushless motor 3. The above operation suppresses the starting current and vibration when starting the motor when voltage is controlled by pulse width modulation. Although smooth start-up is possible, the second embodiment of the present invention will now be described with reference to FIG. In the first embodiment, the synchronization signal 100 and the duty ratio command signal 153 are changed in a range as shown in FIG. However, the operations other than these are the same as in the first embodiment.
The above operation suppresses the starting current and vibration when starting the motor even when voltage is controlled by pulse width modulation, and enables smoother starting.
By increasing the frequency and duty ratio over time along the curve shown in Figure 2, the startup time can be shortened, and the duration of the large current and vibration associated with startup can be shortened. Next, a third embodiment of the present invention will be explained with reference to FIG. 3.The configuration of the device is the same as that of the first embodiment.
The synchronization signal 100 and the duty ratio command signal 153 are changed as shown in Fig. 3.The frequency and duty ratio of the synchronization signal 1000 decrease with time.
increase along two straight lines. The operations other than these are the same as those in the first embodiment. The above operations suppress the starting current and vibrations when starting the motor, making smoother starting even when voltage is controlled by pulse width modulation. By increasing the frequency and duty ratio of the Sarabanmi synchronization signal 100 over time along three straight lines as shown in Figure 3, the startup time can be shortened, and the duration of the large current and vibration associated with startup can be shortened. Furthermore, by linearizing the changes in the frequency and duty ratio of the synchronization signal 100, the generation of those change patterns can be performed by simple proportional equation calculations, and the generation of the synchronization signal 100 and duty ratio command signal 153 can be performed. In the first to third embodiments, the synchronizing signal generating circuit, the first rotating magnetic field generating circuit 11, and the command circuit 13 are each made into independent circuits. You can have the computer 15 do it.The effects of the invention are as follows.
a phase armature winding, a DC power supply, a group of semiconductor switching elements for supplying or interrupting current to the armature winding, a brushless motor having a magnet rotor, a start command means, and a command from the start command means. synchronous signal generating means for outputting a synchronous signal; rotating magnetic field generating means for generating a rotating magnetic field in the armature winding using the signal output from the synchronous signal generating means; and a voltage induced in the armature winding. a position detecting means for detecting the relative position of the forward bending voltage winding and the magnet rotor based on a signal; and a switching means for selecting and outputting an output signal of the rotating magnetic field generating means and an output signal of the position detecting means. , a switching command means for giving a switching command to the switching means, a drive signal generation means for generating a drive signal for the switching element group using an output signal of the switching means, a duty ratio command means, and the drive signal generation means. a pulse width modulation means for applying pulse width modulation to the output signal based on a command from the duty ratio command means;
By simultaneously increasing the frequency of the output signal of the synchronizing signal generating means and the duty ratio along a straight line with a constant slope over time, it is possible to reduce the starting current and vibration when starting the motor even when voltage control is performed by pulse width modulation. suppress
This enables smooth startup. (2) At least one of the frequency of the output signal of the synchronizing signal generating means and the duty ratio is increased along a curve whose differential coefficient decreases over time, and the other is increased along a straight line with a constant slope over time. By doing so, the startup time can be shortened, and the duration of the large current and vibration associated with startup can be shortened. A curve whose slope increases along several straight lines, one whose derivative decreases over time
Alternatively, by increasing it along a straight line with a constant slope, the startup time can be shortened, the large current associated with startup and the duration of startup can be shortened, and a startup pattern can be easily generated. Even if it can be done

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の第1〜第3の実施例における
ブラシレスモータの起動装置の同期信号の周波数とデユ
ーティ比の時間的増加のさせ方を表わした波形久 第4
図は同実施例におけるブラシレスモータの起動装置のブ
ロック医 第5図は同実施例におけるブラシレスモータ
の起動atの構成図 第6図は第5図の構成図中の各部
波形図であも 1・・・・直流電電 2・・・・半導体スイッチング素
子脈 3・・・・ブラシレスモー久 4・・・・電機子
5iL5・・・・磁石回転子、 6・・・・位置検出半
没 7・・・・切換手配 8・・・・駆動信号発生半没
 9・・・・パルス幅変調手法10・・・・同期信号発
生手i  100・・・・同期信’4 11・・・・回
転磁界発生半没12・・・・起動指令手阪13・・・・
切換指令半没14・・・・デユーティ比指令手段、15
・・・・マイクロコンピユー久151・・・・起動指令
信号152・・・・切換信号 153・・・・デユーテ
ィ比指令信へ
FIGS. 1 to 3 are waveform diagrams showing how the frequency and duty ratio of the synchronizing signal of the brushless motor starting device are increased over time in the first to third embodiments of the present invention.
Figure 5 is a block diagram of the brushless motor starting device in the same embodiment. Figure 5 is a block diagram of the brushless motor starter in the same embodiment. Figure 6 is a waveform diagram of each part in the configuration diagram in Figure 5. ...DC electric current 2...Semiconductor switching element pulse 3...Brushless motor 4...Armature 5iL5...Magnet rotor, 6...Position detection half-submerged 7... ...Switching arrangement 8...Drive signal generation half-immersion 9...Pulse width modulation method 10...Synchronization signal generation hand i 100...Synchronization signal '4 11...Rotating magnetic field generation Half-submerged 12... Startup command Tesaka 13...
Switching command half-recessed 14...Duty ratio command means, 15
...Microcomputer 151...Start command signal 152...Switching signal 153...To duty ratio command signal

Claims (5)

【特許請求の範囲】[Claims] (1)磁石回転子を有するブラシレスモータの電機子巻
線に誘起される電圧信号を検出し、この電圧信号を変換
して得られる信号により前記ブラシレスモータの転流信
号を生成することで回転子磁極位置検出器を省略したブ
ラシレスモータにおいて、モータの起動確定以前は前記
ブラシレスモータの電機子巻線に発生させる回転磁界の
周波数と、モータ印加電圧の制御手段としてのデューテ
ィ比を同時に時間とともに一定の傾きの直線に沿って増
加させ、起動確定後は前記電圧信号を変換して得られる
信号に基づいて前記ブラシレスモータを駆動することを
特徴とするブラシレスモータの起動方法。
(1) Detecting a voltage signal induced in the armature winding of a brushless motor having a magnetic rotor, and generating a commutation signal for the brushless motor using the signal obtained by converting this voltage signal, In a brushless motor that does not include a magnetic pole position detector, the frequency of the rotating magnetic field generated in the armature winding of the brushless motor and the duty ratio as a control means for the motor applied voltage are simultaneously kept constant over time before motor startup is confirmed. A method for starting a brushless motor, comprising increasing the slope along a straight line, and driving the brushless motor based on a signal obtained by converting the voltage signal after starting is determined.
(2)回転磁界の周波数とデューティ比の少なくとも一
方は時間とともにその微分係数が減少する曲線に沿って
増加させ、他方は時間とともに一定の傾きの直線に沿っ
て増加させることを特徴とする請求項1記載のブラシレ
スモータの起動方法。
(2) A claim characterized in that at least one of the frequency and duty ratio of the rotating magnetic field is increased along a curve whose differential coefficient decreases over time, and the other is increased along a straight line with a constant slope over time. 1. A method for starting the brushless motor described in 1.
(3)回転磁界の周波数とデューティ比の少なくとも一
方は時間とともにその傾きが減少する複数の直線に沿っ
て増加させ、他方は時間とともにその微分係数が減少す
る曲線、あるいは一定の傾きの直線に沿って増加させる
ことを特徴とする請求項1記載のブラシレスモータの起
動方法。
(3) At least one of the frequency and duty ratio of the rotating magnetic field is increased along a plurality of straight lines whose slope decreases over time, and the other is set along a curve whose differential coefficient decreases over time, or along a straight line with a constant slope. 2. The method for starting a brushless motor according to claim 1, further comprising increasing the number of brushless motors.
(4)中性点非接地に結線された3相電機子巻線と、直
流電源と、前記電機子巻線への電流を通電、遮断する半
導体スイッチング素子群と、磁石回転子を有するブラシ
レスモータと、起動指令手段と、前記起動指令手段の指
令により同期信号を出力する同期信号発生手段と、前記
同期信号発生手段より出力される信号を用いて前記電機
子巻線に回転磁界を発生させる回転磁界発生手段と、前
記電機子巻線に誘起される電圧信号によって前記電機子
巻線と前記磁石回転子の相対的位置を検出する位置検出
手段と、前記回転磁界発生手段の出力信号と前記位置検
出手段の出力信号を選択し、切り換えて出力する切換手
段と、前記切換手段に切換指令を与える切換指令手段と
、前記切換手段の出力信号を用いて前記スイッチング素
子群の駆動信号を生成する駆動信号発生手段と、デュー
ティ比指令手段と、前記駆動信号発生手段の出力信号に
、前記デューティ比指令手段の指令に基づいてパルス幅
変調をかけるパルス幅変調手段を備え、前記起動指令手
段の指令発生後モータの起動確定以前は、前記同期信号
発生手段の出力信号の周波数と、前記デューティ比を同
時に時間とともに一定の傾きの直線に沿って増加させ、
前記磁石回転子を回転起動し、起動確定後は、前記切換
手段を切り換えて前記位置検出手段の出力信号に基づい
てモータを駆動することを特徴とするブラシレスモータ
の起動装置。
(4) A brushless motor having a three-phase armature winding connected to an ungrounded neutral point, a DC power supply, a group of semiconductor switching elements for supplying or interrupting current to the armature winding, and a magnet rotor. a start command means; a synchronization signal generation means for outputting a synchronization signal in response to a command from the start command means; and a rotation for generating a rotating magnetic field in the armature winding using the signal output from the synchronization signal generation means. a magnetic field generating means, a position detecting means for detecting the relative position of the armature winding and the magnet rotor based on a voltage signal induced in the armature winding, and an output signal of the rotating magnetic field generating means and the position. a switching means for selecting, switching and outputting an output signal of the detection means; a switching command means for giving a switching command to the switching means; and a drive for generating a drive signal for the switching element group using the output signal of the switching means. A signal generating means, a duty ratio commanding means, and a pulse width modulation means for applying pulse width modulation to the output signal of the drive signal generating means based on a command from the duty ratio commanding means, and generating a command for the start commanding means. Before the activation of the rear motor is confirmed, the frequency of the output signal of the synchronizing signal generating means and the duty ratio are simultaneously increased along a straight line with a constant slope over time,
A starting device for a brushless motor, characterized in that the magnetic rotor is started to rotate, and after the starting is confirmed, the switching means is switched to drive the motor based on the output signal of the position detecting means.
(5)同期信号発生手段の出力信号の周波数と、デュー
ティ比の少なくとも一方は時間とともにその微分係数が
減少する曲線に沿って増加させ、他方は時間とともに一
定の傾きの直線に沿って増加させることを特徴とする請
求項4記載のブラシレスモータの起動装置。(6)同期
信号発生手段の出力信号の周波数と、デューティ比の少
なくとも一方は時間とともにその傾きが減少する複数の
直線に沿って増加させ、他方は時間とともにその微分係
数が減少する曲線、あるいは一定の傾きの直線に沿って
増加させることを特徴とする請求項4記載のブラシレス
モータの起動装置。
(5) At least one of the frequency and duty ratio of the output signal of the synchronization signal generating means is increased along a curve whose differential coefficient decreases over time, and the other is increased along a straight line with a constant slope over time. The brushless motor starting device according to claim 4, characterized in that: (6) At least one of the frequency and duty ratio of the output signal of the synchronization signal generating means is increased along a plurality of straight lines whose slope decreases with time, and the other is a curve whose differential coefficient decreases with time, or is constant. 5. The brushless motor starting device according to claim 4, wherein the inclination of the brushless motor is increased along a straight line.
JP2027516A 1990-02-07 1990-02-07 Method and apparatus for starting brushless motor Pending JPH03235695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2027516A JPH03235695A (en) 1990-02-07 1990-02-07 Method and apparatus for starting brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2027516A JPH03235695A (en) 1990-02-07 1990-02-07 Method and apparatus for starting brushless motor

Publications (1)

Publication Number Publication Date
JPH03235695A true JPH03235695A (en) 1991-10-21

Family

ID=12223293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027516A Pending JPH03235695A (en) 1990-02-07 1990-02-07 Method and apparatus for starting brushless motor

Country Status (1)

Country Link
JP (1) JPH03235695A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259491A (en) * 1991-02-14 1992-09-16 Sharp Corp Drum type washing machine
JPH06307719A (en) * 1993-04-23 1994-11-01 Toshiba Corp Controlling method for start-up of compressor in air conditioner
JP2000184776A (en) * 1998-12-11 2000-06-30 Moriyama Kogyo Kk Method and device for controlling brushless dc motor
US7515393B2 (en) * 2004-05-06 2009-04-07 Hewlett-Packard Development Company, L.P. Voltage regulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259491A (en) * 1991-02-14 1992-09-16 Sharp Corp Drum type washing machine
JPH06307719A (en) * 1993-04-23 1994-11-01 Toshiba Corp Controlling method for start-up of compressor in air conditioner
US5723967A (en) * 1993-04-23 1998-03-03 Kabushiki Kaisha Toshiba Method of starting a brushless motor for driving a compressor in a refrigerating cycle
JP2000184776A (en) * 1998-12-11 2000-06-30 Moriyama Kogyo Kk Method and device for controlling brushless dc motor
US7515393B2 (en) * 2004-05-06 2009-04-07 Hewlett-Packard Development Company, L.P. Voltage regulator

Similar Documents

Publication Publication Date Title
US5672944A (en) Method and apparatus for minimizing torque ripple in a DC brushless motor using phase current overlap
US6160367A (en) Apparatus and method for driving motor
US5166591A (en) Current chopping strategy for generating action in switched reluctance machines
JPS5915478B2 (en) Method and device for driving an alternating current motor
JPH11122978A (en) Drive current control method for dc brushless motor with independent winding
JPH03235695A (en) Method and apparatus for starting brushless motor
JP2682164B2 (en) Brushless motor starting method and starting device
JP4269921B2 (en) Brushless motor drive device
JP2722750B2 (en) Drive device for brushless motor
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
JP2887320B2 (en) Starting method and starting device for brushless motor
JP4269920B2 (en) Brushless motor drive device
JP4229523B2 (en) Brushless motor drive device
JP3305642B2 (en) Brushless motor drive circuit
JP2005192286A (en) Drive controller for dc motor
JP3486724B2 (en) Drive device for DC motor
JPS61214788A (en) Starter of commutatorless motor
JP2931164B2 (en) Drive circuit for brushless motor
JPH0691758B2 (en) Motor control device
JPH03235694A (en) Method and apparatus for starting brushless motor
JPS61135386A (en) Brushless motor drive device
JPS61135385A (en) Brushless motor drive device
JPS61135379A (en) Brushless motor drive device
JPS61135388A (en) Brushless motor drive device
JP2004215372A (en) Driving method of multiple motors