JP4269921B2 - Brushless motor drive device - Google Patents

Brushless motor drive device Download PDF

Info

Publication number
JP4269921B2
JP4269921B2 JP2003410460A JP2003410460A JP4269921B2 JP 4269921 B2 JP4269921 B2 JP 4269921B2 JP 2003410460 A JP2003410460 A JP 2003410460A JP 2003410460 A JP2003410460 A JP 2003410460A JP 4269921 B2 JP4269921 B2 JP 4269921B2
Authority
JP
Japan
Prior art keywords
switching
synchronous operation
frequency
applied voltage
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003410460A
Other languages
Japanese (ja)
Other versions
JP2005176453A (en
Inventor
幸彦 岡村
健二 阪本
直 有村
博 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003410460A priority Critical patent/JP4269921B2/en
Publication of JP2005176453A publication Critical patent/JP2005176453A/en
Application granted granted Critical
Publication of JP4269921B2 publication Critical patent/JP4269921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ブラシレスモータを駆動する駆動装置に関するものである。   The present invention relates to a drive device that drives a brushless motor.

従来より、永久磁石を有する回転子と三相巻線からなる固定子巻線を有したブラシレスモータが様々な機器で利用されているが、この種のブラシレスモータには、回転子の回転によって開放相(通電されていない相)の固定子巻線に発生する誘起電圧(端子電圧)を基準電圧と比較することで回転子の回転位置を検出する位置検出手段を有するものがある(特許文献1参照)。また、ブラシレスモータを始動する始動方法として、回転子が停止しているとき、位置検出手段の検出結果に関わらず、各々同時に通電する固定子巻線の組み合わせを異ならせた複数の通電パターンをその切換周波数(「転流周波数」という)を徐々に増加しながら順次切り換える同期運転を行うことで回転子を起動し、転流周波数が所定周波数に達したら、位置検出手段の検出結果に基づいて前記複数の通電パターンを順次切り換えるブラシレス運転に切り換える、という方法がある(特許文献1及び特許文献2参照)。例えば、特許文献2に記載されている駆動装置では、一旦印加電圧を減少させて回転子の回転速度を下げることで同期運転時の転流タイミングと回転子位置の位相差をブラシレス運転時の位相差に一致させてから、同期運転からブラシレス運転へ移行させている。また、ブラシレス運転時には、駆動装置が回転子の位置に応じて最適なタイミングで転流するから、発生トルク並びに加速度を大きくすることが可能であり、外部から与えられる指令速度と回転子の速度を一致させるように固定子巻線への印加電圧を調整する。
特開平7−308092号公報 特開2001−178184号公報
Conventionally, a brushless motor having a rotor having a permanent magnet and a stator winding composed of a three-phase winding has been used in various devices, but this kind of brushless motor is opened by the rotation of the rotor. Some have position detection means for detecting the rotational position of the rotor by comparing the induced voltage (terminal voltage) generated in the stator winding of the phase (phase not energized) with the reference voltage (Patent Document 1). reference). Also, as a starting method for starting the brushless motor, when the rotor is stopped, a plurality of energization patterns with different combinations of stator windings that are energized at the same time are used regardless of the detection result of the position detecting means. The rotor is started by performing a synchronous operation that sequentially switches while gradually increasing the switching frequency (referred to as “commutation frequency”). When the commutation frequency reaches a predetermined frequency, the above-described detection is performed based on the detection result of the position detection means. There is a method of switching to brushless operation that sequentially switches a plurality of energization patterns (see Patent Document 1 and Patent Document 2). For example, in the drive device described in Patent Document 2, the applied voltage is once decreased to lower the rotational speed of the rotor so that the phase difference between the commutation timing and the rotor position during the synchronous operation is the same as that during the brushless operation. After matching the phase difference, the operation is shifted from synchronous operation to brushless operation. Also, during brushless operation, the drive device commutates at an optimal timing according to the position of the rotor, so the generated torque and acceleration can be increased, and the command speed and rotor speed given from the outside can be increased. The voltage applied to the stator winding is adjusted so as to match.
Japanese Patent Laid-Open No. 7-308092 JP 2001-178184 A

しかしながら、特許文献2に記載されている従来装置では、印加電圧を低下させるという過程を経てから同期運転からブラシレス運転へ移行するから、短時間でブラシレスモータを起動して同期運転からブラシレス運転へ移行させることが困難であった。特に、始動時に与えられる指令速度が大きくなるにつれて同期運転の時間が長くなり、その結果、停止状態から指令速度に達するまでの時間も長くならざるを得なかった。   However, in the conventional apparatus described in Patent Document 2, since the process of decreasing the applied voltage is shifted to the synchronous operation from the brushless operation, the brushless motor is started in a short time to shift from the synchronous operation to the brushless operation. It was difficult to make. In particular, as the command speed given at the time of start-up increases, the time for the synchronous operation becomes longer, and as a result, the time until the command speed is reached from the stop state must be increased.

本発明は上記事情に鑑みて為されたものであり、その目的は、停止状態から指令速度に達するまでの時間が短縮できるブラシレスモータの駆動装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a brushless motor driving device capable of shortening the time required to reach a command speed from a stopped state.

請求項1の発明は、上記目的を達成するために、永久磁石を有する回転子と三相巻線からなる固定子巻線を有したブラシレスモータを駆動する駆動装置において、開放相の固定子巻線の端子電圧を基準電圧と比較することで回転子の回転位置を検出する位置検出手段と、外部電源から供給される直流電圧をスイッチングすることで固定子巻線の各相への通電状態を切り換える通電切換手段と、通電切換手段を制御して各々同時に通電する固定子巻線の組み合わせを異ならせた複数の通電パターンを順次切り換えるとともに単位時間当たりの通電量を変化させて固定子巻線への印加電圧を調整する制御手段とを備え、制御手段は、位置検出手段の検出結果に関わらず前記複数の通電パターンを順次切り換える同期運転制御と、位置検出手段の検出結果に基づいて前記複数の通電パターンを順次切り換え回転子の回転速度を外部から与えられた指令速度に一致させるように印加電圧を調整するブラシレス運転制御とを行い、回転子が停止状態にあるときに複数の通電パターンの切換周波数を徐々に増加しながら同期運転制御を行うことで回転子を起動し、切換周波数が所定周波数に達した後にブラシレス運転制御に移行する駆動装置において、制御手段は、指令速度に応じて同期運転制御における切換周波数並びに印加電圧を変化させるとともに、同期運転制御における切換周波数並びに印加電圧を、指令速度と正の相関関係を持つように変化させることを特徴とする。 In order to achieve the above object, a first aspect of the present invention provides a driving apparatus for driving a brushless motor having a rotor having a permanent magnet and a stator winding composed of a three-phase winding. The position detection means that detects the rotational position of the rotor by comparing the terminal voltage of the wire with the reference voltage, and the energization state of each phase of the stator winding by switching the DC voltage supplied from the external power supply A plurality of energization patterns with different combinations of energization switching means for switching and energization switching means by controlling the energization switching means are sequentially switched and the energization amount per unit time is changed to the stator winding. And a control means for adjusting the applied voltage, the control means for synchronous operation control for sequentially switching the plurality of energization patterns irrespective of the detection result of the position detection means, and for detection of the position detection means. Based on the results, the plurality of energization patterns are sequentially switched. When the rotor is in a stopped state, brushless operation control is performed to adjust the applied voltage so that the rotational speed of the rotor matches the command speed given from the outside. In the driving device that starts the rotor by performing the synchronous operation control while gradually increasing the switching frequency of the plurality of energization patterns, and shifts to the brushless operation control after the switching frequency reaches a predetermined frequency, the control means includes: The switching frequency and the applied voltage in the synchronous operation control are changed according to the command speed, and the switching frequency and the applied voltage in the synchronous operation control are changed so as to have a positive correlation with the command speed .

この発明によれば、指令速度に応じて同期運転制御における切換周波数並びに印加電圧を変化させることで同期運転の時間を短くすることができるから、停止状態から指令速度に達するまでの時間が短縮できる。しかも、指令速度が大きくなるにつれて同期運転制御における切換周波数並びに印加電圧を大きくすることで同期運転中の脱調が防止できる。 According to the present invention, since the time for the synchronous operation can be shortened by changing the switching frequency and the applied voltage in the synchronous operation control according to the command speed, the time until the command speed is reached from the stop state can be shortened. . Moreover, the step-out during the synchronous operation can be prevented by increasing the switching frequency and the applied voltage in the synchronous operation control as the command speed increases.

請求項の発明は、請求項の発明において、制御手段は、同期運転制御における切換周波数並びに印加電圧の増加率を、指令速度と正の相関関係を持つように変化させることを特徴とする。 The invention of claim 2 is characterized in that, in the invention of claim 1 , the control means changes the switching frequency and the increase rate of the applied voltage in the synchronous operation control so as to have a positive correlation with the command speed. .

この発明によれば、指令速度が大きくなるにつれて同期運転制御における切換周波数並びに印加電圧の増加率を大きくすることで同期運転中の脱調が防止できる。さらに、停止状態の回転子を起動するときの切換周波数並びに印加電圧の初期値を小さくできるから、通電切換手段に過電流が流れるのを防止できる。   According to this invention, the step-out during the synchronous operation can be prevented by increasing the switching frequency and the increase rate of the applied voltage in the synchronous operation control as the command speed increases. Further, since the switching frequency and the initial value of the applied voltage when starting the rotor in a stopped state can be reduced, it is possible to prevent an overcurrent from flowing through the energization switching means.

請求項の発明は、請求項1又はの発明において、制御手段は、同期運転からブラシレス運転へ移行する際の前記所定周波数を、指令速度と正の相関関係を持つように変化させることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the invention, the control means changes the predetermined frequency when shifting from the synchronous operation to the brushless operation so as to have a positive correlation with the command speed. Features.

この発明によれば、指令速度が大きくなるにつれて同期運転からブラシレス運転へ移行する際の所定周波数が大きくなるから、同期運転終了後の最初の回転子の位置検出を確実に行うことができ、ブラシレス運転への移行時に一時的に発生トルクが減少した場合でも停止させずに加速に必要なトルクを発生させて指令速度に達するまでの時間が短縮できる。   According to the present invention, as the command speed increases, the predetermined frequency at the time of shifting from the synchronous operation to the brushless operation increases. Therefore, the position detection of the first rotor after the completion of the synchronous operation can be reliably performed, and the brushless Even when the generated torque temporarily decreases during the transition to operation, it is possible to reduce the time required to generate the torque necessary for acceleration without stopping and reach the command speed.

請求項の発明は、請求項1〜の何れかの発明において、制御手段は、同期運転制御における切換周波数に対する印加電圧の割合を、指令速度と正の相関関係を持つように変化させることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the control means changes the ratio of the applied voltage to the switching frequency in the synchronous operation control so as to have a positive correlation with the command speed. It is characterized by.

この発明によれば、指令速度が大きくなるにつれて加速のために必要なトルクも増大するため、指令速度の増加に伴って切換周波数に対する印加電圧の割合も増加させることにより、固定子巻線に十分な電流を流してトルクが不足することを防ぐことができ、その結果、脱調の発生が抑えられる。   According to the present invention, as the command speed increases, the torque required for acceleration also increases. Therefore, the ratio of the applied voltage to the switching frequency is increased as the command speed increases. Current can be prevented from running out of torque, and as a result, occurrence of step-out can be suppressed.

請求項の発明は、請求項1〜の何れかの発明において、制御手段は、所定周波数に達した後、同期運転制御からブラシレス運転制御への移行前に所定時間だけ切換周波数を所定周波数に固定し且つ印加電圧を所定値に固定して同期運転制御を行うことを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the control means sets the switching frequency for a predetermined time after the predetermined frequency is reached and before the transition from the synchronous operation control to the brushless operation control. And synchronous operation control is performed with the applied voltage fixed at a predetermined value.

この発明によれば、同期運転時の加速状態に影響されずにブラシレス運転へ確実に移行できる。   According to the present invention, it is possible to reliably shift to the brushless operation without being affected by the acceleration state during the synchronous operation.

本発明によれば、指令速度に応じて同期運転制御における切換周波数並びに印加電圧を変化させることで同期運転の時間を短くすることができるから、停止状態から指令速度に達するまでの時間が短縮できるという効果がある。また、指令速度が大きくなるにつれて同期運転制御における切換周波数並びに印加電圧を大きくすることで同期運転中の脱調が防止できるという効果もある。 According to the present invention, the time for the synchronous operation can be shortened by changing the switching frequency and the applied voltage in the synchronous operation control according to the command speed, so the time until the command speed is reached from the stop state can be shortened. There is an effect. Further, there is an effect that step-out during synchronous operation can be prevented by increasing the switching frequency and applied voltage in the synchronous operation control as the command speed increases.

以下、本発明の実施形態を図面を参照して詳細に説明する。なお、本発明に係る駆動装置は、ブラシレスモータを動力源とする種々の電気機器(例えば、電動工具など)に好適なものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the drive device according to the present invention is suitable for various electric devices (for example, electric tools) using a brushless motor as a power source.

図1(a)に示すように、ブラシレスモータMは永久磁石を有する回転子50と三相巻線からなる固定子巻線51を有しており、U相、V相、W相の固定子巻線51がスター結線されるとともに駆動装置Aのインバータ回路1に接続されている。インバータ回路1は、各々ダイオードが逆並列に接続された2つのスイッチング素子2aと2d、2bと2e、2cと2fをそれぞれ直列接続した直列回路を、直流電源Eの両端に互いに並列に接続してなるスイッチング素子群と、これら6つのスイッチング素子2a〜2fをスイッチングするドライブ部3とで構成され、スイッチング素子群における各直列回路の中点(直列接続された2つのスイッチング素子2a、2b、…の接続点)にブラシレスモータMの3つの固定子巻線51が接続されている。すなわち、制御部4から与えられる指令に基づいてドライブ部3が6つのスイッチング素子2a〜2fを個別にスイッチングすることで転流が行われる。また位置検出部5は、固定子巻線51におけるU相とV相、V相とW相、W相とU相の各端子間電圧を基準電圧と比較することで誘起電圧のゼロクロス(回転子50の位置)を検出して位置検出信号を制御部4に出力する。   As shown in FIG. 1A, the brushless motor M has a rotor 50 having a permanent magnet and a stator winding 51 composed of a three-phase winding, and a U-phase, V-phase, and W-phase stator. The winding 51 is star-connected and connected to the inverter circuit 1 of the driving device A. The inverter circuit 1 has a series circuit in which two switching elements 2a and 2d, 2b and 2e, 2c and 2f, each having a diode connected in antiparallel, are connected in parallel to both ends of a DC power supply E. And a drive unit 3 for switching the six switching elements 2a to 2f, and the middle point of each series circuit in the switching element group (two switching elements 2a, 2b,. The three stator windings 51 of the brushless motor M are connected to the connection point). That is, commutation is performed by the drive unit 3 individually switching the six switching elements 2 a to 2 f based on a command given from the control unit 4. Further, the position detection unit 5 compares the voltages between the terminals of the U phase and the V phase, the V phase and the W phase, and the W phase and the U phase in the stator winding 51 with the reference voltage, thereby generating a zero cross of the induced voltage (rotor 50 position) is detected and a position detection signal is output to the control unit 4.

制御部4は、図1(b)に示す構成を有する。速度設定回路41は、操作部Bの操作量(例えば、可変抵抗器の抵抗値)に応じた指令速度を求めて速度制御回路42に出力する。速度検出回路43は、位置検出部5から位置検出信号が出力される時間間隔に基づいて回転子50の回転速度を演算して速度制御回路42に出力する。速度制御回路42は、速度検出回路43から入力される回転子50の回転速度が速度設定回路41から入力される指令速度に一致するように、回転速度と指令速度の差分に応じて決まる固定子巻線51への印加電圧の指令値を演算してブラシレス通電パターン回路44に出力する。ブラシレス通電パターン回路44は、固定子巻線51の通電パターン毎に、速度制御回路42から入力される指令値で決まる印加電圧を固定子巻線51に印加するために必要な条件、すなわち、ドライブ部3で各スイッチング素子をスイッチングするために出力される駆動パルスのオンデューティ比を求めるとともに、オンデューティ比を含めた通電パターンの指令値を位置検出信号の入力時点から所定の電気角後に切換回路45へ出力する。   The control unit 4 has a configuration shown in FIG. The speed setting circuit 41 obtains a command speed corresponding to the operation amount of the operation unit B (for example, the resistance value of the variable resistor) and outputs it to the speed control circuit 42. The speed detection circuit 43 calculates the rotation speed of the rotor 50 based on the time interval at which the position detection signal is output from the position detection unit 5 and outputs it to the speed control circuit 42. The speed control circuit 42 is a stator that is determined according to the difference between the rotation speed and the command speed so that the rotation speed of the rotor 50 input from the speed detection circuit 43 matches the command speed input from the speed setting circuit 41. The command value of the voltage applied to the winding 51 is calculated and output to the brushless energization pattern circuit 44. The brushless energization pattern circuit 44 has a condition necessary for applying an applied voltage determined by a command value input from the speed control circuit 42 to the stator winding 51 for each energization pattern of the stator winding 51, that is, a drive A switching circuit that obtains an on-duty ratio of a drive pulse that is output for switching each switching element in the unit 3 and that sends a command value of an energization pattern including the on-duty ratio after a predetermined electrical angle from the input time of the position detection signal. Output to 45.

また、指令速度は同期制御回路46にも出力されており、同期制御回路46では指令速度がゼロから変化したことを確認すると、同期運転に切り換えるための制御信号Sを切換回路45に出力するとともに、通電パターンを切り換える切換周波数(転流周波数)fを初期値から所定値まで徐々に増加させながら同期通電パターン回路47に出力し、転流周波数fが所定値に達すれば、同期運転からブラシレス運転への移行を指示する制御信号Sを切換回路45に出力する。同期通電パターン回路47は、固定子巻線51の通電パターン毎に、速度の指令値に対応した印加電圧を得るために必要な駆動パルスのオンデューティ比を求めるとともに、オンデューティ比を含めた通電パターンの指令値を転流周波数fによって決まるタイミングで切換回路45へ出力する。切換回路45では、制御信号Sにより同期運転に切り換えられている間は同期通電パターン回路47から入力される指令値をインバータ回路1のドライブ部3に出力し、制御信号Sによりブラシレス運転に切り換えられている間はブラシレス通電パターン回路44から入力される指令値をインバータ回路1のドライブ部3に出力する。そして、ドライブ部3では、制御部4から入力される指令値に基づいて通電パターンを切り換えるとともに駆動パルスのオンデューティ比を変化させて固定子巻線51への印加電圧を調整する、いわゆるPWM(パルス幅変調)制御が行われる。   The command speed is also output to the synchronous control circuit 46. When the synchronous control circuit 46 confirms that the command speed has changed from zero, it outputs a control signal S for switching to synchronous operation to the switching circuit 45. The switching frequency (commutation frequency) f for switching the energization pattern is output to the synchronous energization pattern circuit 47 while gradually increasing from the initial value to the predetermined value. When the commutation frequency f reaches the predetermined value, the operation is switched from the synchronous operation to the brushless operation. A control signal S instructing the shift to is output to the switching circuit 45. The synchronous energization pattern circuit 47 obtains an on-duty ratio of a drive pulse necessary for obtaining an applied voltage corresponding to a speed command value for each energization pattern of the stator winding 51 and energization including the on-duty ratio. The pattern command value is output to the switching circuit 45 at a timing determined by the commutation frequency f. The switching circuit 45 outputs the command value input from the synchronous energization pattern circuit 47 to the drive unit 3 of the inverter circuit 1 while being switched to the synchronous operation by the control signal S, and is switched to the brushless operation by the control signal S. During this period, the command value input from the brushless energization pattern circuit 44 is output to the drive unit 3 of the inverter circuit 1. The drive unit 3 switches the energization pattern based on the command value input from the control unit 4 and changes the on-duty ratio of the drive pulse to adjust the applied voltage to the stator winding 51, so-called PWM ( (Pulse width modulation) control is performed.

次に、図2及び図3のタイミングチャートを参照して、ブラシレスモータの始動時における動作をさらに詳細に説明する。   Next, with reference to the timing charts of FIGS. 2 and 3, the operation at the time of starting the brushless motor will be described in more detail.

まず、ブラシレスモータMが停止しているときに操作部Bが操作されて速度設定回路41から出力される指令速度ωsがゼロからωa(>0)に変化したとすると(図2(a)参照)、同期制御回路46では、上述のように指令速度ωsがゼロからωaに変化したことで起動を確認し、予め設定されているデータテーブルを参照して、印加電圧v、転流周波数f並びに同期運転の経過時間tをそれぞれ指令速度ωsの大きさ(=ωa)に対応した初期値v0(>0)、f0(>0)、t0に設定するとともに(図2(b)(c)参照)、同期運転に切り換えるためにLレベルの制御信号Sを切換回路45に出力する(図2(d)参照)。さらに同期制御回路46は、図2(b)(c)に示すように前記データテーブルから指令速度ωsの設定値ωaに対応した同期最大印加電圧va、同期最大周波数fa、同期運転時間taを読み出し、印加電圧v並びに転流周波数fを経過時間tが同期運転時間taに至るまでにそれぞれ同期最大印加電圧va、同期最大周波数faに到達させるように印加電圧v並びに転流周波数fをほぼ一定の増加率で増加させる。   First, suppose that the command speed ωs output from the speed setting circuit 41 is changed from zero to ωa (> 0) by operating the operation unit B when the brushless motor M is stopped (see FIG. 2A). ), The synchronization control circuit 46 confirms the start-up when the command speed ωs changes from zero to ωa as described above, and refers to the preset data table to apply the applied voltage v, the commutation frequency f, and The elapsed time t of the synchronous operation is set to initial values v0 (> 0), f0 (> 0), and t0 corresponding to the magnitude of the command speed ωs (= ωa) (see FIGS. 2B and 2C). ), An L level control signal S is output to the switching circuit 45 to switch to synchronous operation (see FIG. 2D). Further, as shown in FIGS. 2B and 2C, the synchronous control circuit 46 reads the synchronous maximum applied voltage va, the synchronous maximum frequency fa, and the synchronous operation time ta corresponding to the set value ωa of the command speed ωs from the data table. The applied voltage v and the commutation frequency f are substantially constant so as to reach the synchronous maximum applied voltage va and the synchronous maximum frequency fa, respectively, until the elapsed time t reaches the synchronous operation time ta. Increase at an increase rate.

そして、経過時間tが同期運転時間taに至った時点で、同期制御回路46は切換回路45にHレベルの制御信号Sを出力して同期運転からブラシレス運転に移行させる(図2(d)参照)。このとき、ブラシレス運転への移行時点では速度検出回路43で検出される速度が指令速度ωsの設定値ωaに到達していないため、速度制御回路42の速度制御によって検出速度と設定値ωaが一致するように印加電圧vを増加して加速し、検出速度と設定値ωaが一致したら(t=t1)、それ以降は指令速度ωsが変更されるか若しくは検出速度が変化するまで印加電圧vがほぼ一定に保たれる。   When the elapsed time t reaches the synchronous operation time ta, the synchronous control circuit 46 outputs an H level control signal S to the switching circuit 45 to shift from synchronous operation to brushless operation (see FIG. 2D). ). At this time, since the speed detected by the speed detection circuit 43 does not reach the set value ωa of the command speed ωs at the time of transition to the brushless operation, the detected speed matches the set value ωa by the speed control of the speed control circuit 42. When the detected voltage and the set value ωa coincide (t = t1), the applied voltage v increases until the command speed ωs is changed or the detected speed changes. It is kept almost constant.

一方、ブラシレスモータMの起動時における指令速度ωsがより大きな値ωb(>ωa)に設定された場合、同期制御回路46では、図3(b)(c)に示すように前記データテーブルから指令速度ωsの設定値ωbに対応した同期最大印加電圧vb(>va)、同期最大周波数fb(>fa)、同期運転時間tb(<ta)を読み出し、印加電圧v並びに転流周波数fを経過時間tが同期運転時間tbに至るまでにそれぞれ同期最大印加電圧vb、同期最大周波数fbに到達させるように印加電圧v並びに転流周波数fをほぼ一定の増加率で増加させる。そして、経過時間tが同期運転時間tbに至った時点で同期制御回路46が切換回路45にHレベルの制御信号Sを出力して同期運転からブラシレス運転に移行させ、その後、速度制御回路42の速度制御によって検出速度と設定値ωbが一致するように印加電圧vを増加して加速し、検出速度と設定値ωbが一致したら(t=t2)、それ以降は指令速度ωsが変更されるか若しくは検出速度が変化するまで印加電圧vがほぼ一定に保たれる。   On the other hand, when the command speed ωs at the start of the brushless motor M is set to a larger value ωb (> ωa), the synchronous control circuit 46 instructs the command from the data table as shown in FIGS. The synchronous maximum applied voltage vb (> va), the synchronous maximum frequency fb (> fa), and the synchronous operation time tb (<ta) corresponding to the set value ωb of the speed ωs are read, and the applied voltage v and the commutation frequency f are elapsed time. The applied voltage v and the commutation frequency f are increased at a substantially constant rate so that the maximum synchronous applied voltage vb and the maximum synchronous frequency fb are reached before t reaches the synchronous operation time tb. When the elapsed time t reaches the synchronous operation time tb, the synchronous control circuit 46 outputs an H level control signal S to the switching circuit 45 to shift from the synchronous operation to the brushless operation. When the detected voltage and the set value ωb are increased by speed control to increase the applied voltage v to accelerate, and the detected speed and the set value ωb match (t = t2), is the command speed ωs changed thereafter? Alternatively, the applied voltage v is kept substantially constant until the detection speed changes.

また、同期運転中に指令速度ωsが変更された場合、例えば、図4に示すように経過時間t=t3で指令速度ωsの設定値がωaからωbに変更された場合、同期制御回路46は、上述のように前記データテーブルから指令速度ωsの設定値ωbに対応した同期最大印加電圧vb、同期最大周波数fb、同期運転時間tbを読み出し、印加電圧v並びに転流周波数fを経過時間tがt=t3からt=tbに至るまでにそれぞれ同期最大印加電圧vb、同期最大周波数fbに到達させるように印加電圧v並びに転流周波数fをほぼ一定の増加率で増加させ、経過時間tが同期運転時間tbに至った時点で同期運転からブラシレス運転に移行させる。   When the command speed ωs is changed during the synchronous operation, for example, when the set value of the command speed ωs is changed from ωa to ωb at the elapsed time t = t3 as shown in FIG. As described above, the synchronous maximum applied voltage vb, the synchronous maximum frequency fb, and the synchronous operation time tb corresponding to the set value ωb of the command speed ωs are read from the data table, and the applied voltage v and the commutation frequency f are determined by the elapsed time t. From t = t3 to t = tb, the applied voltage v and the commutation frequency f are increased at a substantially constant rate so that the synchronous maximum applied voltage vb and the synchronous maximum frequency fb are reached, respectively, and the elapsed time t is synchronized. When the operation time tb is reached, the operation is shifted from the synchronous operation to the brushless operation.

このように本実施形態では、指令速度ωsの増減に応じて指令速度ωsと正の相関関係を持つように同期制御回路46が同期運転制御における転流周波数f並びに印加電圧vの増加率を変化させているため、同期運転時の印加電圧不足による脱調の防止と過剰な印加電圧によるブラシレスモータMの振動や過電流を抑えながら短時間で同期運転からブラシレス運転へ移行することができる。そして、ブラシレス運転移行後は速度制御回路42の速度制御によって加速度を大きくできるので、停止状態から指令速度ωsに達するまでの時間が短縮できる。なお、指令速度ωsの増減に応じて転流周波数f並びに印加電圧vの初期値f0,v0を変化させても、同様に停止状態から指令速度ωsに達するまでの時間短縮が可能である。但し、増加率を変化させる場合であれば、停止状態の回転子50を起動するときの転流周波数fの初期値f0並びに印加電圧vの初期値v0を小さくできるから、インバータ回路1に過電流が流れるのを防止できるという利点がある。   As described above, in this embodiment, the synchronous control circuit 46 changes the rate of increase of the commutation frequency f and the applied voltage v in the synchronous operation control so as to have a positive correlation with the command speed ωs according to the increase / decrease of the command speed ωs. Therefore, it is possible to shift from synchronous operation to brushless operation in a short time while preventing step-out due to insufficient applied voltage during synchronous operation and suppressing vibration and overcurrent of the brushless motor M due to excessive applied voltage. Since the acceleration can be increased by the speed control of the speed control circuit 42 after the transition to the brushless operation, the time until the command speed ωs is reached from the stop state can be shortened. Even if the commutation frequency f and the initial values f0 and v0 of the applied voltage v are changed according to the increase / decrease in the command speed ωs, the time from the stop state until the command speed ωs is reached can be shortened. However, if the increase rate is to be changed, the initial value f0 of the commutation frequency f and the initial value v0 of the applied voltage v when starting the rotor 50 in a stopped state can be reduced. There is an advantage that it can be prevented from flowing.

また本実施形態では、同期運転からブラシレス運転へ移行する際の同期最大周波数を、指令速度ωsと正の相関関係を持つように変化させ、指令速度ωsが大きくなるにつれて同期運転からブラシレス運転へ移行する際の同期最大周波数を大きくしているから、同期運転終了後の最初の回転子50の位置検出を確実に行うことができ、ブラシレス運転への移行時に一時的に発生トルクが減少した場合でも停止させずに加速に必要なトルクを発生させて指令速度ωsに達するまでの時間が短縮できるものである。   In this embodiment, the maximum synchronous frequency when shifting from synchronous operation to brushless operation is changed so as to have a positive correlation with the command speed ωs, and the operation shifts from synchronous operation to brushless operation as the command speed ωs increases. Since the maximum synchronous frequency is increased, the position of the first rotor 50 after the synchronous operation can be reliably detected, and even when the generated torque temporarily decreases during the transition to the brushless operation. The time required to generate the torque necessary for acceleration without stopping and to reach the command speed ωs can be shortened.

なお、図2〜図4に示す例では同期運転制御における転流周波数fに対する印加電圧vの割合を指令速度ωsに関係なく一定としているが、図5に示すように指令速度ωsが設定値ωbに設定されたときの印加電圧vの設定値をvc(>vb)とし、転流周波数fに対する印加電圧vの割合(vc/fb)を指令速度ωsと正の相関関係を持つように変化させても構わない。すなわち、指令速度ωsが大きくなると加速のために必要なトルクも大きくなるが、このとき、転流周波数fに対する印加電圧vの割合が一定であると、転流周波数fの増加に伴って固定子巻線51のインダクタンス成分によりインピーダンスが増加し、印加電圧vを大きくしても電流が増加しないため、固定子巻線51に流れる電流が増加せず、このためにトルクも増加せずに脱調してしまう虞がある。したがって、転流周波数fに対する印加電圧vの割合を指令速度ωsと正の相関関係を持つように変化させれば、固定子巻線51に十分な電流を流してトルクが不足することを防ぐことができ、その結果、脱調の発生が抑えられる。   2 to 4, the ratio of the applied voltage v to the commutation frequency f in the synchronous operation control is constant regardless of the command speed ωs, but the command speed ωs is set to the set value ωb as shown in FIG. The set value of the applied voltage v is set to vc (> vb), and the ratio of the applied voltage v to the commutation frequency f (vc / fb) is changed so as to have a positive correlation with the command speed ωs. It doesn't matter. That is, as the command speed ωs increases, the torque required for acceleration also increases. At this time, if the ratio of the applied voltage v to the commutation frequency f is constant, the stator increases as the commutation frequency f increases. The impedance increases due to the inductance component of the winding 51, and the current does not increase even when the applied voltage v is increased. Therefore, the current flowing through the stator winding 51 does not increase, and therefore the torque does not increase and the step-out occurs. There is a risk of it. Therefore, if the ratio of the applied voltage v to the commutation frequency f is changed so as to have a positive correlation with the command speed ωs, a sufficient current is passed through the stator winding 51 to prevent a torque shortage. As a result, the occurrence of step-out can be suppressed.

ところで、上述のように指令速度ωsに応じて同期運転時における転流周波数f、印加電圧v並びに同期運転時間ta,tbを変化させると同期運転時の加速状態が変化し、ブラシレス運転への移行に影響がでる場合がある。そこで、図6に示すように転流周波数fが同期最大周波数fbに達した後、同期運転からブラシレス運転への移行前に同期運転時間tbから所定時間tsが経過するまで転流周波数f並びに印加電圧vをそれぞれ同期最大周波数fb並びに同期最大印加電圧vbに固定して同期運転を行ってからブラシレス運転に移行させれば、同期運転時の加速状態に影響されずにブラシレス運転へ確実に移行できて望ましいものである。   By the way, if the commutation frequency f, the applied voltage v, and the synchronous operation time ta and tb during the synchronous operation are changed according to the command speed ωs as described above, the acceleration state during the synchronous operation changes, and the transition to the brushless operation is performed. May be affected. Therefore, as shown in FIG. 6, after the commutation frequency f reaches the synchronous maximum frequency fb and before the transition from the synchronous operation to the brushless operation, the commutation frequency f and the application are applied until a predetermined time ts elapses from the synchronous operation time tb. If the voltage v is fixed to the synchronous maximum frequency fb and the synchronous maximum applied voltage vb, and the synchronous operation is performed and then the brushless operation is performed, the brushless operation can be reliably performed without being influenced by the acceleration state during the synchronous operation. Is desirable.

実施形態を示し、(a)は全体の概略構成図、(b)は制御部のブロック図である。Embodiment is shown, (a) is a whole schematic block diagram, (b) is a block diagram of a control part. 同上の動作説明用のタイミングチャートである。It is a timing chart for operation | movement description same as the above. 同上の動作説明用のタイミングチャートである。It is a timing chart for operation | movement description same as the above. 同上の動作説明用のタイミングチャートである。It is a timing chart for operation | movement description same as the above. 同上の動作説明用のタイミングチャートである。It is a timing chart for operation | movement description same as the above. 同上の動作説明用のタイミングチャートである。It is a timing chart for operation | movement description same as the above.

符号の説明Explanation of symbols

1 インバータ回路
4 制御部
41 速度設定回路
45 切換回路
46 同期制御回路
DESCRIPTION OF SYMBOLS 1 Inverter circuit 4 Control part 41 Speed setting circuit 45 Switching circuit 46 Synchronization control circuit

Claims (5)

永久磁石を有する回転子と三相巻線からなる固定子巻線を有したブラシレスモータを駆動する駆動装置において、開放相の固定子巻線の端子電圧を基準電圧と比較することで回転子の回転位置を検出する位置検出手段と、外部電源から供給される直流電圧をスイッチングすることで固定子巻線の各相への通電状態を切り換える通電切換手段と、通電切換手段を制御して各々同時に通電する固定子巻線の組み合わせを異ならせた複数の通電パターンを順次切り換えるとともに単位時間当たりの通電量を変化させて固定子巻線への印加電圧を調整する制御手段とを備え、制御手段は、位置検出手段の検出結果に関わらず前記複数の通電パターンを順次切り換える同期運転制御と、位置検出手段の検出結果に基づいて前記複数の通電パターンを順次切り換え回転子の回転速度を外部から与えられた指令速度に一致させるように印加電圧を調整するブラシレス運転制御とを行い、回転子が停止状態にあるときに複数の通電パターンの切換周波数を徐々に増加しながら同期運転制御を行うことで回転子を起動し、切換周波数が所定周波数に達した後にブラシレス運転制御に移行する駆動装置において、制御手段は、指令速度に応じて同期運転制御における切換周波数並びに印加電圧を変化させるとともに、同期運転制御における切換周波数並びに印加電圧を、指令速度と正の相関関係を持つように変化させることを特徴とするブラシレスモータの駆動装置。 In a driving device for driving a brushless motor having a rotor having a permanent magnet and a stator winding composed of a three-phase winding, the terminal voltage of the stator winding of the open phase is compared with a reference voltage to thereby compare the rotor Position detection means for detecting the rotational position, energization switching means for switching the energization state of each phase of the stator winding by switching a DC voltage supplied from an external power source, and controlling the energization switching means at the same time A control means for sequentially switching a plurality of energization patterns with different combinations of stator windings to be energized and changing an energization amount per unit time to adjust a voltage applied to the stator winding; , Synchronous operation control for sequentially switching the plurality of energization patterns regardless of the detection result of the position detection means, and the plurality of energization patterns sequentially based on the detection result of the position detection means The brushless operation control is performed to adjust the applied voltage so that the rotation speed of the switching rotor matches the command speed given from the outside. When the rotor is in a stopped state, the switching frequency of a plurality of energization patterns is gradually increased. In the drive device that starts the rotor by performing synchronous operation control while increasing the frequency to shift to brushless operation control after the switching frequency reaches a predetermined frequency, the control means switches in synchronous operation control according to the command speed. A brushless motor drive device characterized by changing the frequency and applied voltage, and changing the switching frequency and applied voltage in the synchronous operation control so as to have a positive correlation with the command speed . 制御手段は、同期運転制御における切換周波数並びに印加電圧の増加率を、指令速度と正の相関関係を持つように変化させることを特徴とする請求項1記載のブラシレスモータの駆動装置。 2. The brushless motor driving apparatus according to claim 1, wherein the control means changes the switching frequency and the increase rate of the applied voltage in the synchronous operation control so as to have a positive correlation with the command speed. 制御手段は、同期運転からブラシレス運転へ移行する際の前記所定周波数を、指令速度と正の相関関係を持つように変化させることを特徴とする請求項1又は2記載のブラシレスモータの駆動装置。 3. The brushless motor driving apparatus according to claim 1 , wherein the control unit changes the predetermined frequency when shifting from the synchronous operation to the brushless operation so as to have a positive correlation with the command speed. 制御手段は、同期運転制御における切換周波数に対する印加電圧の割合を、指令速度と正の相関関係を持つように変化させることを特徴とする請求項1又は2又は3記載のブラシレスモータの駆動装置。 4. The brushless motor driving apparatus according to claim 1, wherein the control means changes the ratio of the applied voltage to the switching frequency in the synchronous operation control so as to have a positive correlation with the command speed. 制御手段は、所定周波数に達した後、同期運転制御からブラシレス運転制御への移行前に所定時間だけ切換周波数を所定周波数に固定し且つ印加電圧を所定値に固定して同期運転制御を行うことを特徴とする請求項1〜4の何れかに記載のブラシレスモータの駆動装置 The control means performs the synchronous operation control by fixing the switching frequency to the predetermined frequency and fixing the applied voltage to the predetermined value for a predetermined time before the transition from the synchronous operation control to the brushless operation control after reaching the predetermined frequency. The brushless motor drive device according to any one of claims 1 to 4 .
JP2003410460A 2003-12-09 2003-12-09 Brushless motor drive device Expired - Fee Related JP4269921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410460A JP4269921B2 (en) 2003-12-09 2003-12-09 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410460A JP4269921B2 (en) 2003-12-09 2003-12-09 Brushless motor drive device

Publications (2)

Publication Number Publication Date
JP2005176453A JP2005176453A (en) 2005-06-30
JP4269921B2 true JP4269921B2 (en) 2009-05-27

Family

ID=34731554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410460A Expired - Fee Related JP4269921B2 (en) 2003-12-09 2003-12-09 Brushless motor drive device

Country Status (1)

Country Link
JP (1) JP4269921B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329842B2 (en) * 2007-05-16 2009-09-09 ダイキン工業株式会社 Fan motor control device and air conditioner
JP5448329B2 (en) * 2007-11-09 2014-03-19 パナソニック株式会社 Motor control device and motor control method
DE102008037543A1 (en) 2007-12-28 2009-07-02 DENSO CORPORARTION, Kariya-shi Engine control device, vehicle fan drive device and engine control method
JP4513914B2 (en) * 2007-12-28 2010-07-28 株式会社デンソー MOTOR CONTROL CIRCUIT, VEHICLE FAN DRIVE DEVICE, AND MOTOR CONTROL METHOD
JP5998656B2 (en) * 2012-06-04 2016-09-28 株式会社ジェイテクト Electric motor control device
JP6302638B2 (en) * 2013-02-26 2018-03-28 株式会社ミツバ Wiper device

Also Published As

Publication number Publication date
JP2005176453A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP3204644B2 (en) Driving device and driving method for electric motor
JP4386815B2 (en) Motor driving apparatus and driving method
JP5772029B2 (en) Sensorless brushless motor drive device
KR101041072B1 (en) Method of controlling brushless dc motor
JP6296566B2 (en) Motor drive control device
JP4467520B2 (en) Permanent magnet synchronous motor driving apparatus and driving method for expanding weakening magnetic flux region
JP3612027B2 (en) Single-phase SRM drive apparatus and method
JP2002369568A (en) Excitation of switched reluctance motor
US9941826B2 (en) Motor drive control device
JP4269921B2 (en) Brushless motor drive device
JP4242679B2 (en) Apparatus and method for controlling brushless DC motor
JP2018133895A (en) Motor drive control device and method of driving and controlling motor
JP2011030385A (en) Motor drive and method of determining relative position of rotor equipped in motor
JP4531180B2 (en) Synchronous motor and method for starting synchronous motor
JP6768753B2 (en) Motor control device
JP4269920B2 (en) Brushless motor drive device
JPH10191682A (en) Drive control device for blower
JP4389746B2 (en) Inverter control device
WO2022259624A1 (en) Inverter control device, inverter control method
JP2002186274A (en) Brushless dc motor controller
JP2003209999A (en) Motor controller
JP2018121501A (en) Motor control device and motor control method
KR20100071692A (en) Control method of bldc motor
JP2008295249A (en) Drive arrangement of brushless motor
JP4591949B2 (en) Control device for multiphase induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees