JPS61135381A - Brushless motor drive device - Google Patents

Brushless motor drive device

Info

Publication number
JPS61135381A
JPS61135381A JP59256005A JP25600584A JPS61135381A JP S61135381 A JPS61135381 A JP S61135381A JP 59256005 A JP59256005 A JP 59256005A JP 25600584 A JP25600584 A JP 25600584A JP S61135381 A JPS61135381 A JP S61135381A
Authority
JP
Japan
Prior art keywords
signal
phase
switching
signals
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256005A
Other languages
Japanese (ja)
Inventor
Takashi Kashimoto
隆 柏本
Kenichiro Miura
三浦 賢一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59256005A priority Critical patent/JPS61135381A/en
Publication of JPS61135381A publication Critical patent/JPS61135381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To stably operate a motor at a time of switching-over by increasing a signal from rotating magnetic field generating means and a power source voltage by a synchronizing signal of the prescribed frequency within a low voltage, detecting the rotation of an induced voltage signal and then generating a signals of a switching command. CONSTITUTION:A brushless motor 3 having a magnet rotor 5 is rotated by controlling the energization of an armature winding 4 by semiconductor switching group 2. When started by starting command means 12, a period signal of the prescribed frequency is input to rotating magnetic field generating means 9 to form 3-phase synchronizing signals 9-U-W phases, and the group 2 is controlled through switching means 11 and controlling means 12. Further, the drive power source 1 of the motor 3 is increased within a low voltage to forcibly rotate a magnet rotor 5. Thus, the means 11 is switched by the means 10, the position detection signal of the rotor 5 is input from comparator group 7 to the means 12 to normally rotate the motor 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブラシレスモータに係り、特に電機子巻線に誘
起される誘起電圧によって磁石回転子と電機子巻線との
相対的位置を検出し、起動から安定な回転を行なうため
のブラシレスモータに関fるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a brushless motor, and in particular detects the relative position between a magnet rotor and an armature winding by an induced voltage induced in the armature winding, and starts the motor. This invention relates to a brushless motor for stable rotation.

従来の技術 従来この種のブラシレスモータ駆動装置は、第5図に示
すような構成となっている。この構成は特公昭59−3
6519号公報、特公昭59−36520号公報記載の
例であり3相構成である。
2. Description of the Related Art Conventionally, this type of brushless motor drive device has a configuration as shown in FIG. This configuration was created in the 1980s.
This is an example described in Japanese Patent Publication No. 6519 and Japanese Patent Publication No. 59-36520, and has a three-phase configuration.

以下便宜上3相の例を用いて説明することにする。For convenience, a three-phase example will be used for explanation below.

すなわち直流電源1の両端に6個の半導体スイッチング
素子群2Q1〜Q6を3相ブリツジして形成した半導体
コミュテーク装置の出力端をモータ本体3の電機子巻線
4の入力端に接続しである。
That is, the output end of a semiconductor commutake device formed by three-phase bridged six semiconductor switching element groups 2Q1 to Q6 on both ends of the DC power supply 1 is connected to the input end of the armature winding 4 of the motor body 3.

そして磁石回転子5の回転によって電機子巻線4に誘起
される誘起電圧信号を用いて制御手段12が半導体コミ
ュテータ装置中の半桿体スイッチン−グ素子群2を通電
、遮断する信号に変換し磁石回転子を定常回転させる。
Using the induced voltage signal induced in the armature winding 4 by the rotation of the magnet rotor 5, the control means 12 converts it into a signal for energizing or cutting off the semi-rod switching element group 2 in the semiconductor commutator device. and rotate the magnet rotor steadily.

なお、第6図に示すように電機子巻線4に誘起される誘
起電圧信号4−U相、4−■相、4−W相は、半導体ス
イッチング素子群のオンオフに伴いスパイクノイズが発
生するので信号変換手段6によって除去し、それぞれ9
0°位相の遅れ尼三角波状の信号6−U相、6−■相、
6−W相に変換し、それぞれ3相を抵抗で合成した仮性
中性点信号と各相との大小をそれぞれ位置検出回路であ
る比較器群7(、なか、以後位置検出回路は比較器群と
して説明する)で比較する。この従来例においては、第
 図の波形図を見るとわかるように6−V相の信号で比
較器群7−U相の出力信号を、e−w相の信号で7−V
相を、6−U相の信号で7−W相の出力信号を作成して
おり、それらはそれぞれ1000位相のずれた固形波で
あり、それらの信号を回転子位置検出信号として切換手
段11へ入力し定常回転時には制御手段12に出力され
る3相の論理レベルに基すいて半導体スイッチング素子
群20通電、遮断を制御する。この方式であれば負荷変
動に応じて、比較器群7へ入力される各相の信号もそれ
に応じて、追従するので安定な運転が持続される。とこ
ろで起動時は磁石回転子5が停止状態にあるので各相に
誘起電圧信号が発生しない。そこで起動指令手段14の
能号発生後同期信号発生手段8の出力信号を回転磁界発
生手段9に入力し1000位相のずれた3相同1′91
信29−ty相、 9−V相、 9−W相を作成する。
As shown in FIG. 6, spike noise occurs in the induced voltage signals 4-U phase, 4-■ phase, and 4-W phase induced in the armature winding 4 as the semiconductor switching element group turns on and off. Therefore, they are removed by the signal converting means 6, and each 9
0° phase delay triangular wave signal 6-U phase, 6-■ phase,
Comparator group 7 (hereinafter the position detection circuit will be referred to as a comparator group (explained as). In this conventional example, as can be seen from the waveform diagram in FIG.
A 7-W phase output signal is created using a 6-U phase signal, and each of these is a solid wave with a phase shift of 1000, and these signals are sent to the switching means 11 as a rotor position detection signal. The semiconductor switching element group 20 is energized and cut off based on the three-phase logic level that is input and output to the control means 12 during steady rotation. With this method, the signals of each phase input to the comparator group 7 follow the load fluctuations accordingly, so stable operation can be maintained. By the way, at the time of startup, the magnet rotor 5 is in a stopped state, so no induced voltage signal is generated in each phase. Therefore, after generating the activation signal of the start command means 14, the output signal of the synchronizing signal generating means 8 is inputted to the rotating magnetic field generating means 9.
Create the 29-ty phase, 9-V phase, and 9-W phase.

この3相同期信号を切換手段11に入力し、起動時には
制御手段12へこれらの信号が出力され電機子巻線に回
転磁界を発生させ磁石回転子を強制的に回転させる。磁
石回転子5が回転すれば電機子巻線4に誘起電圧が発生
するので磁石回転子の回転検知を行なうことができる。
These three-phase synchronous signals are input to the switching means 11, and at the time of startup, these signals are output to the control means 12 to generate a rotating magnetic field in the armature winding and forcibly rotate the magnet rotor. When the magnet rotor 5 rotates, an induced voltage is generated in the armature winding 4, so that rotation of the magnet rotor can be detected.

そして検出後切換指令手段10の信号によって切換手段
11からの出力信号が比較器群7の出力信号7−U相、
7−■相、7−W相に切換わりモーフ3は定常回転する
。捷た起動後の3相同1■信号から比較器群7の3相誘
起電圧信号へ切換えるまでは同期モータとして駆動され
、同期信号発生手段8の出力信号の同波数を時間ととも
に増加しまた、それに同期した3相rUJ J9(信号
の同波数も増加し磁石回転子を加速するのが一般的であ
る。これは、磁石回転子5がある慣性モーメントを持っ
ており、電機子巻線4の回転磁界に追従し安定な起動回
転を行なうためである。そしてさらに特公昭59−36
520号公報の例によれば、3相同期信号9−U相、9
−■相、9−W相と比較器群7の出力信号7 =U相、
7−■相、7−W相の位相差を検出する回路13を付加
し、両者の位相差が略零になったことを検出してから切
換指令手段10の切換指令信号を出力し切換手段11の
出力信号を比較器群7の出力信号に切換えてそれらの信
号を制御手段12に入力する。これは、同期モータとし
て回転している時け3相同期信5+9−U相、9−■相
、9−W相と比較器群7の出力信号7−U相。
After detection, the output signal from the switching means 11 is changed to the output signal 7-U phase of the comparator group 7 by the signal from the switching command means 10.
The morph 3 switches to the 7-■ phase and the 7-W phase, and rotates steadily. The motor is driven as a synchronous motor until it switches from the 3-phase 1■ signal to the 3-phase induced voltage signal of the comparator group 7 after starting up. Synchronized three-phase rUJ J9 (generally the same wave number of the signal also increases and accelerates the magnet rotor. This is because the magnet rotor 5 has a certain moment of inertia, and the rotation of the armature winding 4 This is to follow the magnetic field and perform stable starting rotation.
According to the example of Publication No. 520, three-phase synchronizing signals 9-U phase, 9
-■ phase, 9-W phase and output signal 7 of comparator group 7 = U phase,
A circuit 13 for detecting the phase difference between the 7-■ phase and the 7-W phase is added, and after detecting that the phase difference between the two has become approximately zero, a switching command signal is output to the switching command means 10. 11 is switched to the output signal of comparator group 7, and these signals are input to control means 12. This is the three-phase synchronous signals 5+9-U phase, 9-■ phase, 9-W phase and the output signal 7-U phase of the comparator group 7 when the motor is rotating as a synchronous motor.

7−V相、7−W相の同相どおしの位相関係が必ずしも
一致せず位相ずれを起こしている。したがって3相同期
信号で半導体スイッチング素子群2のQ1〜Qstオン
オフするタイミングと、比較器7の3相の出力信号で半
導体スイッチング素子群2のQ1〜Q6をオンオフする
タイミングが異なってしまうために切換に失敗し脱調停
止してしまうのである。また脱調しない場合でも半導体
スイッチング素子群に過大な電流が流れてこれらを損傷
する。これらを防ぐために3相同期信号と比較器群7の
a相の出力信号の位相差を検出して両者の位相差が略零
になったことを検出してから切換えれば上述のような半
導体スイッチング素子群2a01〜Q6のオンオフのタ
イミングのずれもなく、スムーズに切換えがすすみモー
タ3の安定な運転が可能となるというものである。
The phase relationships between the 7-V phase and the 7-W phase do not necessarily match, causing a phase shift. Therefore, the timing at which Q1 to Qst of the semiconductor switching element group 2 are turned on and off by the three-phase synchronous signal is different from the timing at which Q1 to Q6 of the semiconductor switching element group 2 are turned on and off by the three-phase output signal of the comparator 7. This results in a failure, resulting in a loss of synchronization and a halt. Furthermore, even if there is no step-out, an excessive current flows through the group of semiconductor switching elements, damaging them. In order to prevent these, if the phase difference between the three-phase synchronization signal and the a-phase output signal of the comparator group 7 is detected, and the switching is performed after detecting that the phase difference between the two has become approximately zero, the above-mentioned semiconductor There is no deviation in the on/off timing of the switching element groups 2a01 to Q6, and switching proceeds smoothly, allowing stable operation of the motor 3.

発明が解決しようとする問題点 上記従来の構成においては、同波数を増加するための特
別な回路およびその制御が必要であり、また3相同期信
号と比較器群の位相差を検出する回路が必要でありシス
テム全体が複雑になる問題点を有していた。
Problems to be Solved by the Invention The above conventional configuration requires a special circuit and its control to increase the number of equal waves, and also requires a circuit to detect the phase difference between the three-phase synchronization signal and the comparator group. However, there was a problem in that the entire system became complicated.

本発明は、かかる従来の問題点を解消するもので、上述
のような時間1」な回路を用いなくてもモータを起動か
ら安定な運転を行なうことができ、切換時にも脱調せず
半導体スイッチング素子群への過大電流も抑えたブラシ
レスモータ駆動装置を提供することを目的とする。
The present invention solves such conventional problems, and allows stable operation of the motor from startup without using the above-mentioned time-consuming circuit. It is an object of the present invention to provide a brushless motor drive device that also suppresses excessive current to a switching element group.

間原点を解決するための手段 上記問題を解決するために本発明のブラシレスモータ駆
動装置は、ある一定@波数の同期信号発生手段の信号に
よる回転磁界発生手段の信号と起動時から比較器群の信
号に切換えるまで電源電圧をある低電圧内で増加させる
ことによって磁石回転子を回転起動させ、かつ誘起電圧
信号を用いて回転検知を行ない、検知後切換指令の信号
を発生する構成にし、またa相同期信号と比較器群の位
相差のずれがあっても安定な運転をすることができる位
置検出回路で構成したものである。
In order to solve the above-mentioned problem, the brushless motor drive device of the present invention has a method for solving the above-mentioned problem, in which the signal of the rotating magnetic field generating means is generated by the signal of the synchronizing signal generating means of a certain constant @ wave number and the comparator group is connected from the time of startup. The magnet rotor is started to rotate by increasing the power supply voltage within a certain low voltage until switching to the signal, and rotation is detected using the induced voltage signal, and after detection, a switching command signal is generated, and a It is constructed with a position detection circuit that can operate stably even if there is a phase difference between the phase synchronization signal and the comparator group.

作  用 本発明は、上記構成により切換時まで電源電圧をある低
電圧内の範囲で抑えているので過大電流は流れず、また
、3相同期信号と比較器群の3つの出力信号の位相差の
ずれが一定関係以下にあり切換時には脱調せず安定にモ
ータを運転することができる。
Function: The present invention suppresses the power supply voltage within a certain low voltage range until switching due to the above configuration, so that no excessive current flows, and the phase difference between the three-phase synchronizing signal and the three output signals of the comparator group is reduced. Since the deviation is within a certain relationship, the motor can be operated stably without step-out during switching.

実施例 以下、本発明の一実施例をa相巻線の例を用いて添付図
面にもとすき説明、する。
EXAMPLE Hereinafter, an example of the present invention will be explained using an example of an A-phase winding with reference to the accompanying drawings.

第1図は、本発明一実施例の概略シーケンス図、第2図
は全体構成図、第3図は、誘起電圧信号にもとすいた比
較器群7の出力信号による半導体スイッチング素子群2
のタイミング図、第4図は、同期回転中の同期信号によ
る半導体スイッチング素子群2のタイミング図と比較器
群7の出力信号による半導体スイッチング素子群2のタ
イミング図の位相関係を示したものである。
FIG. 1 is a schematic sequence diagram of an embodiment of the present invention, FIG. 2 is an overall configuration diagram, and FIG. 3 is a semiconductor switching element group 2 using an output signal of a comparator group 7 which is used as an induced voltage signal.
4 shows the phase relationship between the timing diagram of the semiconductor switching element group 2 according to the synchronizing signal during synchronous rotation and the timing diagram of the semiconductor switching element group 2 according to the output signal of the comparator group 7. .

まず@1図概略シーケンス図と第2口金体構成図により
説明する。起動指令手段14の信号発生後、ある一定の
同波数、を出力する同期信号発生手段8の出力信号を回
転磁界発生手段9に入力し、それぞれ120°位相のず
れた一定8波数の3相同期信号9−υ相、9−■相、9
−W相を作成する。この3相同期信号を切換手段11(
たとえばマルチプレクサ)に入力し、起動時には制御手
段12へこれらの信号が出力されそれぞれの論理レベル
にもとすいて制御手段12は半導体スイッチング素子群
2のQ1〜Q6の通電、遮断を制御する。そして、モー
タ3を駆動する電源1(たとえばスイッチング電源)を
ある低電圧内で増加し、電機子巻線4に回転磁界を発生
させ磁石回転子を強制的に回転させる。
First, explanation will be given using the schematic sequence diagram shown in Figure 1 and the configuration diagram of the second cap body. After the start command means 14 generates a signal, the output signal of the synchronization signal generation means 8 which outputs a certain same wave number is inputted to the rotating magnetic field generation means 9, and three-phase synchronization is performed with eight constant wave numbers each having a phase shift of 120 degrees. Signal 9-υ phase, 9-■ phase, 9
-Create W phase. The switching means 11 (
For example, a multiplexer), these signals are outputted to the control means 12 at startup, and the control means 12 controls energization and cutoff of Q1 to Q6 of the semiconductor switching element group 2 depending on the respective logic levels. Then, the power supply 1 (for example, a switching power supply) that drives the motor 3 is increased within a certain low voltage, and a rotating magnetic field is generated in the armature winding 4 to forcibly rotate the magnet rotor.

このようにして磁石回転子がいったん同勢すれば電機子
巻線4に誘起電圧が発生し、その後、切換指令手段10
から切換指令信号を発生し、切換手段11を切換えるこ
とにより回転子の位置検出信号である比較器群7から出
力される信号7−U相、7−■相、7−W相の信号を制
御手段12へ出力し以後これらの論理レベルにもとすい
て半導体スイッチング素子群2のQ1〜Q6を制御しモ
ータGを定常回転する。
In this way, once the magnet rotors are energized, an induced voltage is generated in the armature winding 4, and then the switching command means 10
generates a switching command signal from and controls the signals 7-U phase, 7-■ phase, and 7-W phase signals output from the comparator group 7, which are rotor position detection signals, by switching the switching means 11. The output signal is outputted to the means 12, and after that, based on these logic levels, Q1 to Q6 of the semiconductor switching element group 2 are controlled, and the motor G is rotated steadily.

次に本発明一実施例における回転子の位置検出信号であ
る比較器群7の出力信号7−U相、7−■相、7−W柑
の作成方法を第3図を用いて説明する。第3図において
各電機子巻線端子の誘起電圧信号の波形は、4−U相、
4−■相、4−W相である。U相についてみるならば、
Ooから60″の区間と180°から240°の区間は
開放状態であり電源に接続されていない。また、60°
から180°までは、電源1のe側に240°から30
0″′までの間は電源1のQ側に接続される。
Next, a method of creating the output signals 7-U phase, 7-■ phase, and 7-W phase of the comparator group 7, which are the rotor position detection signals in one embodiment of the present invention, will be explained with reference to FIG. In Fig. 3, the waveforms of the induced voltage signals at each armature winding terminal are 4-U phase,
4-■ phase and 4-W phase. If we look at the U phase,
The section from Oo to 60'' and the section from 180° to 240° are open and not connected to the power supply.
to 180°, from 240° to 30° on the e side of power supply 1.
0″′ is connected to the Q side of the power supply 1.

すなわち、このように電機子巻線端子の誘起電圧信号の
波形の振幅が最大となる60°から180゜と〉40°
から360°の時KU相に電流を流すことによりモータ
は効率よく回転されるものである。
In other words, from 60° to 180° and >40°, where the amplitude of the waveform of the induced voltage signal at the armature winding terminal is maximum.
The motor can be efficiently rotated by passing current through the KU phase when the angle is 360 degrees from .

他のV相、W相についても同様である。The same applies to the other V-phase and W-phase.

さて、各電機子巻線端子の誘起電圧信号4− U相、4
−■相、4−W相は、半導体スイッチング素子群2のオ
ンオフに伴うスパイクノイズが発生ブるので信号変換手
段6によって除去するが、従来例と異なるのは、その信
号変換手段6の回路の時定数を大きくとらず、単にモー
フ駆動電圧範囲内でスパイクノイズを除去せしめるもの
であり、位相けずらさないものである。しだがって、第
3図で示すように4−U相からやや波形のなめらかな6
−U相(Mit)K、4− V柑から6−V相(実線)
に4−W相から6二W相(実線)に変換される。そして
、これら変換された信号のうち、たとえば、第2図中比
較器群7に入力される6−U相と、他のa−V相と6−
W相を抵抗で分割合成した信号(%3図中の1点鎖線で
示す)との大小を比較した結果が7−U相の波形である
。その池、e  ”相と、6−W相と6−U相の合成し
た信号の大小の比較で7−V相を、6−W相と、6−U
相と6−V相を合成した信号の大小の比較で7−W相の
出力信号を得る。したがって従来例と異なるのけ、6−
U相の信号で比較器群7−U相の出力信号を、e−v相
の信号で7−V相を、6−W相の信号で7−W相の出力
信号を作成する点でありそれらは、それぞれ120°位
相のずれた区形波であり、回転子位置検出信号として切
換手段11へ入力し、定常回転時には制御手段12へ出
力されこれら1同期の3相の論理レベル(6ケのモード
)にもとすいて半導体スイッチング素子群2の通電、遮
断を制御し磁石回転子5け回転を持続する。また比較器
群7へ入力する信号として、第3図中2点鎖線で示した
ものは、6−U相と6−V相とa−W相の信号をすべて
抵抗で合成した仮性中性点信号であり、この信号との大
小をそれぞれ比較しても同様な比較器群7の出力信号が
得られる。そしてこれらの比較器群7の出力信号におい
て、たとえば7−U相の信号は、■相とW相の誘起電圧
信号の情報を踏まえて作成したものでアリ、このことに
よってU相の位相と他の相との位相関係が正確となり負
荷変動が生じ、各相の波形がそれに応じて変化しても、
比較対象の波形もそれに応じて変化追従するので安定な
位置検出信号となるわけである。他の相についても同様
である。また、信号変換手段6の時定数も小さく過渡特
性もよいので第3図をみるとわかるように各相の誘起電
圧借りの波形の振幅か最大となるところで各相電機子巻
線に接続された半導体スイッチング素子群2を通電して
おり、それ欲動率よく安定な回転を行なうことができる
のである。なお定常回転中の磁石回転子の回転数をあげ
るには市原1の電圧をあげればよい。
Now, the induced voltage signal of each armature winding terminal 4- U phase, 4
The -■ phase and the 4-W phase generate spike noise as the semiconductor switching element group 2 turns on and off, so they are removed by the signal conversion means 6. What is different from the conventional example is that the circuit of the signal conversion means 6 is It does not require a large time constant, but simply removes spike noise within the morph drive voltage range, and does not shift the phase. Therefore, as shown in Figure 3, from the 4-U phase to the 6 with a slightly smooth waveform.
-U phase (Mit) K, 4-V phase to 6-V phase (solid line)
The 4-W phase is converted into the 62-W phase (solid line). Of these converted signals, for example, the 6-U phase input to the comparator group 7 in FIG. 2, the other a-V phases and the 6-
The waveform of the 7-U phase is the result of a comparison in magnitude with a signal obtained by dividing and combining the W phase using resistors (indicated by the dashed line in the %3 diagram). By comparing the magnitudes of the combined signals of the e'' phase, 6-W phase, and 6-U phase, we can determine the 7-V phase, 6-W phase, and 6-U phase.
A 7-W phase output signal is obtained by comparing the magnitudes of the combined signals of the 6-V phase and the 6-V phase. Therefore, unlike the conventional example, 6-
The U-phase signal creates the output signal of the comparator group 7-U phase, the e-v phase signal creates the 7-V phase, and the 6-W phase signal creates the 7-W phase output signal. These are square waves with a phase shift of 120 degrees, and are input to the switching means 11 as rotor position detection signals, and output to the control means 12 during steady rotation, and are output to the control means 12 at the logic level (6 bits) of these 1 synchronous three-phase signals. mode), the semiconductor switching element group 2 is energized and cut off to maintain rotation of the magnet rotor by five rotations. In addition, as a signal input to the comparator group 7, the one shown by the two-dot chain line in FIG. A similar output signal of the comparator group 7 can be obtained by comparing the magnitude with this signal. Among the output signals of these comparator group 7, for example, the 7-U phase signal is created based on the information of the induced voltage signals of the ■ phase and W phase. Even if the phase relationship between the phases of
The waveform to be compared also follows the change accordingly, resulting in a stable position detection signal. The same applies to other phases. In addition, since the time constant of the signal converting means 6 is small and the transient characteristics are good, as can be seen from Fig. 3, the signal converting means 6 is connected to the armature winding of each phase at the point where the amplitude of the waveform of the induced voltage of each phase is maximum. Since the semiconductor switching element group 2 is energized, it can rotate stably with a high drive rate. Note that in order to increase the rotation speed of the magnet rotor during steady rotation, the voltage at Ichihara 1 may be increased.

次に同期信号による回転からその凌、切換指介手段10
の信号が発生され、比較器群7の出力信号に切換わるわ
けであるが、本発明一実施例においては、誘起電圧信号
による比較器群7の出力信号(区形波)を回転検知信号
として用いており、それらの信号(クロ7り)をカクン
トし、適当なカクント数を数えたら切換指令の信号を発
生する構成としている。したがって、確実に回転してい
るかどうか見究めた上で切換えるものである。
Next, from the rotation by the synchronization signal to the switching fingering means 10
However, in one embodiment of the present invention, the output signal (square wave) of the comparator group 7 based on the induced voltage signal is used as the rotation detection signal. These signals (black 7 lines) are counted, and when an appropriate number of ticks are counted, a switching command signal is generated. Therefore, the switch should be made after determining whether it is rotating reliably.

次に、制御手段12へ出力する信号を切換える段階で、
脱調せずに安定に切換わる理由を第4図を用いて説明す
る。第4図において、切換える前の同期回転中の3相同
期信号(図中斜線で示した)9−U相、9−■相、9−
W相にもとすく半導体スイッチング素子群2の通電、(
図中斜線で示した)遮断の制御を9−Q1相から9−〇
6相に示す。その同期回転中における位置検出信号であ
る比較器群7の出力信号7−U相、7−■相、7−W相
は、3相同期信号9−U相、9−■相、9−W相よりも
位相進みの状態にあるのが普通である。
Next, at the stage of switching the signal output to the control means 12,
The reason for stable switching without step-out will be explained with reference to FIG. In Fig. 4, the three-phase synchronous signals (indicated by diagonal lines in the figure) during synchronous rotation before switching: 9-U phase, 9-■ phase, 9-
The semiconductor switching element group 2 is energized in the W phase (
The control of shutoff (indicated by diagonal lines in the figure) is shown from phase 9-Q1 to phase 9-06. The output signals 7-U phase, 7-■ phase, and 7-W phase of the comparator group 7, which are position detection signals during the synchronous rotation, are the three-phase synchronous signals 9-U phase, 9-■ phase, 9-W phase. It is normal for the phase to be in a state that is ahead of the phase.

そして比較器群7の出力信号にもとすく半導体スイツチ
ング素子群2の通電(図中太線で示した)遮断の制御を
7−Q1相から7−〇6相に示す。
The output signal of the comparator group 7 is used to control the energization (indicated by thick lines in the figure) of the semiconductor switching element group 2 from phase 7-Q1 to phase 7-06.

たとえば第4図のように3相同期信号より比較器群7の
出力信号が最大60°の位相進み(磁石の着磁と電機子
巻線との相対位置よりそのようになる)の時に、この−
同期中どの時点において切崩指令を出しても変化する半
導体スイッチング素子群ばたたの1つだけである。つま
り、00〜60°中においてはQ3からQlへと変化が
おきるが、同期信号による制御であれば9−Q1相がオ
フで比較器群7の出力信号にもとず<7−01相がオン
、また9−Q3相がオンで7−〇〇相がオフの状態であ
る。そして同期信号の60°から12σにおいチングの
制御としては同じである。すなわち磁石回転子5を回転
させようとする方向は同一でありこの状態をくずさずに
切換えた瞬間に磁石回転子5を回転方向へ60°シフト
し回転させることに他ならない。すなわち脱調停止する
ことは起こりえない。筐た、比較器群7からの出力信号
は、それぞれ12σ位相のずれた信号であり、それらは
負荷変動に追従しつる信号であるからしたがって切換え
た瞬間も切換えた後も安定に回転を続ける′ことができ
るのである。
For example, as shown in Fig. 4, when the output signal of comparator group 7 has a phase lead of up to 60 degrees from the three-phase synchronous signal (this is caused by the relative position between the magnetization of the magnet and the armature winding), this −
No matter what time a cut command is issued during synchronization, only one of the semiconductor switching element groups changes. In other words, a change occurs from Q3 to Ql during 00 to 60 degrees, but if the control is based on a synchronization signal, the 9-Q1 phase is off and the <7-01 phase is off based on the output signal of comparator group 7. On, 9-Q3 phase is on and 7-〇〇 phase is off. The control of the synchronization signal from 60° to 12σ is the same. That is, the direction in which the magnet rotor 5 is to be rotated is the same, and the instant this state is switched without changing, the magnet rotor 5 is shifted by 60 degrees in the rotation direction and rotated. In other words, it is impossible for the motor to step out and stop. The output signals from the comparator group 7 are signals with a phase shift of 12σ, and these are signals that follow load fluctuations, so they continue to rotate stably both at the moment of switching and after switching. It is possible.

発明の効果 以上のように本発明のブラシレスモータ駆動装置によれ
ば次の効果が得られる。
Effects of the Invention As described above, the brushless motor drive device of the present invention provides the following effects.

(1)起動時における同期回転中は、電圧をある低電圧
内に抑えであるので半導体スイッチング素子群等に過電
流が流れず素子の損傷や劣化を防ぐ効果がある。
(1) During synchronous rotation at startup, the voltage is kept within a certain low voltage range, so no overcurrent flows through the semiconductor switching element group, etc., which is effective in preventing damage and deterioration of the elements.

(2)起動から定常回転への切換時の同期信号と回転子
の位置検出信号の位相差を検出する回路もいらず、きわ
めて簡単な回路構成で起動から定常回転までスムーズに
行なうことかでき安価に構成できる。
(2) There is no need for a circuit to detect the phase difference between the synchronization signal and the rotor position detection signal when switching from startup to steady rotation, and the circuit configuration is extremely simple and allows smooth transition from startup to steady rotation at low cost. It can be configured as follows.

(3)従来同期信号を増加しながら回転子を加速する構
成は、その周期を変化さ、せる制御が複雑であるが、本
発明によればその同期信号の周波数は一定でよいので非
常に簡単となり構成も簡略なものとなる。
(3) In the conventional configuration in which the rotor is accelerated while increasing the synchronization signal, the control to change the period is complicated, but according to the present invention, the frequency of the synchronization signal can be kept constant, so it is very simple. Therefore, the configuration is also simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、木発111′I−実施例の概1堅シーケンス
図、第2図は同全体構成図、第3図は同誘起電圧信号に
もとすく各115の波形図、第4図は同期回転中の3相
同+91信号と位置検出回路の出力能号にもとすく半導
体スイッチング素子のタイミングチャート、第5図は従
来例の全体構成図、第6図は同誘起電iモ[11号にも
とすく各部波形図である。 1− ・・電源、2・・半導体スイッチンデ素子群、3
 ・モータ、4・・・電機子巻線、5・・・−磁石回転
子、6・・信号要換手段、7・−・・・位置検出回路(
比較器群)、b−・・・・同期信号発生手段、9・−回
転磁界発生手段、10・・・・・1.IJ li!!8
指令手段、11−・・切換手段、12 ・・制御手段、
14−起動指令手段。 代理人の氏名 弁理上 中 尾 赦 男 行か1名第1
図 第2図 第3図 第4図 第5図 第 6 図 =449−
Fig. 1 is a general sequence diagram of the wood generator 111'I-embodiment, Fig. 2 is its overall configuration diagram, Fig. 3 is a waveform diagram of each 115 for the induced voltage signal, Fig. 4 5 is a timing chart of a semiconductor switching element based on the three-phase +91 signal during synchronous rotation and the output signal of a position detection circuit, FIG. 5 is an overall configuration diagram of a conventional example, and FIG. This is a waveform diagram of each part. 1-...Power supply, 2...Semiconductor switch element group, 3
・Motor, 4... Armature winding, 5... - Magnet rotor, 6... Signal exchange means, 7... Position detection circuit (
comparator group), b--synchronous signal generating means, 9--rotating magnetic field generating means, 10...1. IJ li! ! 8
Command means, 11--Switching means, 12- Control means,
14-Start command means. Agent's name: Attorney's name: Masao Nakao (1 person)
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure =449-

Claims (2)

【特許請求の範囲】[Claims] (1)複数相を中性点非接地に結線し、それぞれn個(
nは1以上)に分割した電機子巻線と、前記電機子巻線
への電流を通電、遮断する半導体スイッチング素子群と
、2m極(mは1以上)に分割着磁した磁石回転子を有
するモータと、前記モータを駆動する電源と、起動指令
手段と、ある一定の周波数を出力する同期復号発生手段
と、前記信号発生手段より出力される信号を用いて前記
電機子巻線に回転磁界を発生させる回転磁界発生手段と
、前記電機子巻線に誘起される電圧信号によって前記電
機子巻線と前記磁石回転子の相対的位置を検出する位置
検出回路と、前記回転磁界発生手段の出力信号と前記位
置検出回路の出力信号を選択し、切換えて出力する切換
手段と、前記切換手段に切換指令を与える切換指令手段
と、前記切換手段の出力信号を用いて前記スイッチング
素子群を制御する制御手段とからなり、前記起動指令手
段の信号発生後の同期回転中は前記電源の電圧をある低
電圧に固定し、前記磁石回転子を回転起動させるととも
に、前記切換指令手段は、前記誘起電圧信号を検出する
構成とし、前記誘起電圧信号検出後、前記切換指令手段
の信号により前記位置検出回路の出力信号に切換えて前
記磁石回転子を定常回転させる構成としたブラシレスモ
ータ駆動装置。
(1) Connect multiple phases to an ungrounded neutral point, and connect n pieces (
An armature winding divided into 2 m poles (m is 1 or more), a group of semiconductor switching elements that conduct or cut off current to the armature winding, and a magnet rotor divided into 2m poles (m is 1 or more). a motor having a motor, a power source for driving the motor, a start command means, a synchronous decoding generating means for outputting a certain frequency, and a rotating magnetic field applied to the armature winding using the signal output from the signal generating means. a position detection circuit that detects the relative position of the armature winding and the magnet rotor based on a voltage signal induced in the armature winding; and an output of the rotating magnetic field generation means. a switching means for selecting, switching and outputting a signal and an output signal of the position detection circuit; a switching command means for giving a switching command to the switching means; and controlling the switching element group using the output signal of the switching means. The switching command means fixes the voltage of the power supply to a certain low voltage during synchronous rotation after generation of the signal from the start command means, starts the rotation of the magnet rotor, and controls the induced voltage. A brushless motor drive device configured to detect a signal, and after detecting the induced voltage signal, switch to an output signal of the position detection circuit according to a signal from the switching command means to steadily rotate the magnet rotor.
(2)位置検出回路は、前記複数相の電機子巻線に誘起
される信号を適宜適当な信号に変換する信号変換手段と
、前記信号変換手段後の複数相すべての出力信号を合成
した仮性中性点信号と、前記複数相の任意の出力信号の
大小をそれぞれ比較するか、もしくは、ある任意の相の
出力信号と他の相の出力信号を合成した信号の大小をそ
れぞれ比較する比較器群で構成した特許請求の範囲第1
項記載のブラシレスモータ駆動装置。
(2) The position detection circuit includes a signal conversion means for appropriately converting the signals induced in the armature windings of the plurality of phases into appropriate signals, and a virtual circuit that combines the output signals of all the plurality of phases after the signal conversion means. A comparator that compares the magnitude of the neutral point signal and arbitrary output signals of the plurality of phases, or compares the magnitude of a signal obtained by combining the output signal of a certain arbitrary phase and the output signal of other phases. Claim 1 consisting of a group
The brushless motor drive device described in Section 1.
JP59256005A 1984-12-04 1984-12-04 Brushless motor drive device Pending JPS61135381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256005A JPS61135381A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256005A JPS61135381A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Publications (1)

Publication Number Publication Date
JPS61135381A true JPS61135381A (en) 1986-06-23

Family

ID=17286578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256005A Pending JPS61135381A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Country Status (1)

Country Link
JP (1) JPS61135381A (en)

Similar Documents

Publication Publication Date Title
US5572097A (en) Method and apparatus for starting polyphase dc motor
US4392099A (en) Starting system for brushless motor
JP3509919B2 (en) Method and apparatus for starting brushless DC motor
JPH1175394A (en) Ac dynamoelectric machine power converter
JP4147383B2 (en) DC brushless motor parallel drive circuit
JP2005245058A (en) Parallel drive method of dc brushless motor
JPS61244291A (en) Brushless motor drive device
JPS61135387A (en) Brushless motor drive device
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
JPS61135381A (en) Brushless motor drive device
JPS61135389A (en) Brushless motor drive device
JPS61135382A (en) Brushless motor drive device
JPS61135383A (en) Brushless motor drive device
JPS61135378A (en) Brushless motor drive device
JPS61135379A (en) Brushless motor drive device
JPS61135386A (en) Brushless motor drive device
JPS61135384A (en) Brushless motor drive device
JPS61135385A (en) Brushless motor drive device
JPS61135388A (en) Brushless motor drive device
JPH04312390A (en) Starter for brushless motor
JPS61135380A (en) Brushless motor drive device
JPH10285983A (en) Operation controller for brushless motor
JP2738110B2 (en) Driving device for brushless motor
JPH10313585A (en) Operation control device of brushless motor
JP4269920B2 (en) Brushless motor drive device