JPS61135383A - Brushless motor drive device - Google Patents

Brushless motor drive device

Info

Publication number
JPS61135383A
JPS61135383A JP59256007A JP25600784A JPS61135383A JP S61135383 A JPS61135383 A JP S61135383A JP 59256007 A JP59256007 A JP 59256007A JP 25600784 A JP25600784 A JP 25600784A JP S61135383 A JPS61135383 A JP S61135383A
Authority
JP
Japan
Prior art keywords
signal
phase
switching
output
armature winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256007A
Other languages
Japanese (ja)
Inventor
Takashi Kashimoto
隆 柏本
Kenichiro Miura
三浦 賢一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59256007A priority Critical patent/JPS61135383A/en
Publication of JPS61135383A publication Critical patent/JPS61135383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To stably operate a motor at switching time by increasing within a low voltage until switched to a signal from rotating magnetic field generating means and a signal of comparator group from starting time, detecting the rotation and generating a switching command signal. CONSTITUTION:A brushless motor 3 having a magnet rotor 5 is rotated by controlling the energization of an armature winding 4 by semiconductor switching group 2. When started by starting command means 14, a period signal of the prescribed frequency is input to rotating magnetic field generating means 9 to form 3-phase synchronizing signals 9-U-W phases, and the group 2 is controlled through switching means 11 and controlling means 12. Further, the drive power source 1 of the motor 3 is increased within a low voltage to forcibly rotate a rotor 5. Thus, after the induced voltage is generated in an armature winding 4, the means 11 is switched by the means 10, the position detection signal of the rotor 5 is input from comparator group 7 to the means 12 to normally rotate the motor 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブラシレスモータに係り、特にti子巻線に誘
起される誘起電圧によって磁石回転子と電機子巻線との
相対的位置を検出し、起動から安定な回転を行なうため
のブラシレスモータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a brushless motor, and in particular detects the relative position of a magnet rotor and an armature winding by an induced voltage induced in a Ti coil. This invention relates to a brushless motor for stable rotation.

従来の技術 従来この種のブラシレスモータ駆動装置は、第5図に示
すような構成となっている。この構成は特公昭59−3
6519号公報、特公昭59−36520号公報記載の
例であり3相構成である。以下便宜上3相の例を用いて
説明することにする。すなわち直流電源1の両端に6個
の半導体スイッチング素子群2Q1〜Q6を3相ブリツ
ジして形成した半導体コミュテータ装置の出力端をモー
タ本体3の電機子巻線4の入力端に接続しである。そし
て磁石回転子5の回転によって電機子巻線4に誘起され
る誘起電圧信号を用いて制御手段12が半導体コミュテ
ータ装置中の半導体スイッチング素子群2を通電、遮断
する信号に変換し磁石回転子を定常回転させる。なお、
第6図に示すように電機子巻線4に誘起される誘起電圧
信号4−U相、4−■相、4−W相は、半導体スイッチ
ング素子群2のオンオフに伴いスパイクノイズが発生す
るので信号変換手段6によって除去し、それぞれ90゜
位相の遅れた三角波状の信号6−U相、6−v相。
2. Description of the Related Art Conventionally, this type of brushless motor drive device has a configuration as shown in FIG. This configuration was created in the 1980s.
This is an example described in Japanese Patent Publication No. 6519 and Japanese Patent Publication No. 59-36520, and has a three-phase configuration. For convenience, a three-phase example will be used for explanation below. That is, the output end of a semiconductor commutator device formed by three-phase bridged six semiconductor switching element groups 2Q1 to Q6 on both ends of the DC power supply 1 is connected to the input end of the armature winding 4 of the motor body 3. Then, using the induced voltage signal induced in the armature winding 4 by the rotation of the magnet rotor 5, the control means 12 converts it into a signal for energizing or cutting off the semiconductor switching element group 2 in the semiconductor commutator device. Rotate steadily. In addition,
As shown in FIG. 6, spike noise is generated in the induced voltage signals 4-U phase, 4-■ phase, and 4-W phase induced in the armature winding 4 as the semiconductor switching element group 2 turns on and off. Triangular wave signals 6-U phase and 6-V phase are removed by the signal converting means 6 and are delayed by 90 degrees in phase.

6−W相に変換し、それぞれ3相を抵抗で合成した仮性
中性点信号と各相との大小をそれぞれ位置検出回路であ
る比較器群7(なお以後位置検出回路は比較器群として
説明する)で比較する。この従来例においては、第6図
の波形図を見るとわかるように6−V相の信号で比較器
群7−U相の出力信号を、6−W相の信号で7−V相を
、8−U相の信号で7−W相の出力信号を作成しており
、それらはそれぞれ1200位相のずれた区形波であり
、それらの信号を回転子位置検出信号として切換手段1
1へ入力し定常回転時には制御手段12に出力され3相
の論理レベルに基ずいて半導体スイッチング素子群2の
通電、遮断を制御する。この方式であれば負荷変動に応
じて、比較器群7へ入力される各相の信号もそれに応じ
て追従するので安定な運転が持続される。ところで起動
時は磁石回転子5が停止状態にあるので各相に誘起電圧
信号が発生しない。そこで起動指令手段14の信号発生
後同期信号発生手段8の出力信号を回転磁界発生手段9
に入力し120°位相のずれた3相同期信号9−U相、
9−■相、9−W相を作成する。
Comparator group 7, which is a position detection circuit, detects the magnitude of each phase and the virtual neutral point signal which is converted into 6-W phase and synthesized three phases using resistors. ) to compare. In this conventional example, as can be seen from the waveform diagram in FIG. A 7-W phase output signal is created using an 8-U phase signal, and each of them is a square wave with a phase shift of 1200, and these signals are used as a rotor position detection signal to be used by the switching means 1.
1 and output to the control means 12 during steady rotation to control energization and cut-off of the semiconductor switching element group 2 based on the three-phase logic levels. With this method, the signals of each phase input to the comparator group 7 follow the load fluctuations accordingly, so stable operation can be maintained. By the way, at the time of startup, the magnet rotor 5 is in a stopped state, so no induced voltage signal is generated in each phase. Therefore, after generating the signal from the start command means 14, the output signal from the synchronizing signal generating means 8 is transferred to the rotating magnetic field generating means 9.
A three-phase synchronous signal 9-U phase with a 120° phase shift input to the
Create 9-■ phase and 9-W phase.

この3相同期信号を切換手段11に入力し、起動時には
制御手段12へこれらの信号が出力され電機子巻線に回
転磁界を発生させ磁石回転子を強制的に回転させる。磁
石回転子5が回転すれば電機子巻線4に誘起電圧が発生
するので磁石回転子5の回転検知を行なうことができる
。そして、検出後切換指令手段10の信号によって切換
手段11からの出力信号が比較器群7の出力信号7−U
相。
These three-phase synchronous signals are input to the switching means 11, and at the time of startup, these signals are output to the control means 12 to generate a rotating magnetic field in the armature winding and forcibly rotate the magnet rotor. When the magnet rotor 5 rotates, an induced voltage is generated in the armature winding 4, so that rotation of the magnet rotor 5 can be detected. Then, the output signal from the switching means 11 is changed to the output signal 7-U of the comparator group 7 by the signal from the switching command means 10 after detection.
phase.

7−V相、7−W相に切換わりモータ3は定常回転する
。また起動後の3相同期信号から比較器群7の3相誘起
電圧信号へ切換えるまでは同期モータとして駆動され、
同期信号発生手段8の出力信号の周波数を時間とともに
増onしまた、それに同期した3相同期信号の周波数が
増加し磁石回転子を加速するのが一般的である。これは
、磁石回転子5がある慣性モーメントを持っており、電
機子巻線4の回転磁界に追従し安定な起動回転を行、な
うためである。そしてさらに特公昭59−365205
゜報、)つIImよゎば、3相同期信号4゛二。相、9
−■相、9−W相と比較器群7の出力信号7−U相、7
−■相、7−W相の位相差を検出する回路1aを付加し
、両者の位相差が略零になったことを検出してから切換
指令手段10の切換指令信号を出力し切換手段11の出
力信号を比較器群7の出力信号に切換えてそれらの信号
を制御手段12に入力する。これは、同期モータとして
回転している時は3相同期信号9−U相、9−■相、9
−W相と比較器群7の出力信号7−U相、7−■相。
The motor 3 is switched to the 7-V phase and the 7-W phase, and the motor 3 rotates steadily. In addition, until the 3-phase synchronous signal after startup is switched to the 3-phase induced voltage signal of the comparator group 7, it is driven as a synchronous motor.
Generally, the frequency of the output signal of the synchronization signal generating means 8 is increased over time, and the frequency of the three-phase synchronization signal synchronized therewith is also increased to accelerate the magnet rotor. This is because the magnet rotor 5 has a certain moment of inertia and follows the rotating magnetic field of the armature winding 4 to perform stable starting rotation. And furthermore, special public service No. 59-365205
゜Report, )゜ゎゎ, 3-phase synchronous signal 4゛2. phase, 9
-■ phase, 9-W phase and output signal of comparator group 7 7-U phase, 7
A circuit 1a for detecting the phase difference between the -■ phase and the 7-W phase is added, and after detecting that the phase difference between the two has become approximately zero, a switching command signal is output to the switching command means 10, and the switching means 11 The output signal of the comparator group 7 is switched to the output signal of the comparator group 7, and these signals are input to the control means 12. When rotating as a synchronous motor, the three-phase synchronous signals 9-U phase, 9-■ phase, 9
-W phase and output signals of comparator group 7 7-U phase, 7-■ phase.

7−W相の同相どおしの位相関係が必ずしも一致せず位
相ずれを起こしている。したがって3相同期信号で半導
体スイッチング素子群2のQ、〜Q6をオンオフするタ
イミングと、比較器7の3相の出力信号で半導体スイッ
チング素子群2のQ1〜Q6をオンオフするタイミング
が異なってしまうために切換に失敗し脱調停止してしま
うのである。
The phase relationship between the 7-W phases does not necessarily match, causing a phase shift. Therefore, the timing at which Q, ~Q6 of semiconductor switching element group 2 are turned on and off by the 3-phase synchronous signal and the timing at which Q1 ~ Q6 of semiconductor switching element group 2 are turned on and off by the 3-phase output signal of comparator 7 are different. This causes a failure in switching, resulting in a loss of synchronization and a stop.

また脱調しない場合でも半導体スイッチング素子群に過
大な電流が流れてこれらを損傷する。これらを防ぐため
に3相同期信号と比較器群7のG相の出力信号の位相差
を検出して両者の位相差が略零になったことを検出して
から切換えれば上述のような半導体スイッチング素子群
2のQ、〜Q6のオンオフのタイミングのずれもなく、
スムーズに切換えがすすみモータ3の安定な運転が可能
となるというものである。
Furthermore, even if there is no step-out, an excessive current flows through the group of semiconductor switching elements, damaging them. In order to prevent these, if the phase difference between the three-phase synchronizing signal and the G-phase output signal of the comparator group 7 is detected, and the switching is performed after detecting that the phase difference between the two has become approximately zero, the above-mentioned semiconductor There is no deviation in the on/off timing of Q, ~Q6 of switching element group 2,
This allows smooth switching and stable operation of the motor 3.

発明が解決しようとする問題点 上記従来の構成においては、周波数を増加するための特
別な回路およびその制御が必要であり、また3相同期信
号と比較器群の位相差を検出する回路が必要でありシス
テム全体が複雑になる問題点を有していた。
Problems to be Solved by the Invention The above conventional configuration requires a special circuit and its control to increase the frequency, and also requires a circuit to detect the phase difference between the three-phase synchronization signal and the comparator group. This has the problem of complicating the entire system.

本発明は、かかる従来の問題点を解消するもので、上述
のような特別な回路を用いなくてもモータを起動から安
定な運転を行なうことができ、切換時にも脱調せず半導
体スイッチング素子群への過大電流も抑えたブラシレス
モータ駆動装置を提倶することを目的とする。
The present invention solves these conventional problems, and allows stable operation of the motor from startup without using the special circuit as described above, and prevents step-out even when switching, using a semiconductor switching element. It is an object of the present invention to provide a brushless motor drive device that also suppresses excessive current to the motor group.

問題点を解決するための手段 上記問題点を解決するために本発明のブラシレスモータ
駆動装置は、ある一定周波数による同期信号発生手段の
信号による回転磁界発生手段の信号と、起動時から比較
器群の信号に切換えるまである低電圧内で増加させてゆ
き磁石回転子を回転起動させ、誘起電圧信号を用いて回
転検知を行ない、検知後切換指令の信号を発生する構成
にし、また3相同期信号と比較器群の位相差のずれがあ
っても安定な運転をすることができる位置検出回路で構
成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the brushless motor drive device of the present invention provides a signal from the rotating magnetic field generating means based on a signal from the synchronizing signal generating means at a certain constant frequency, and a comparator group from the time of startup. The magnetic rotor is started to rotate by increasing the voltage within a certain low voltage until it switches to the signal of 3-phase synchronous signal. It is constructed with a position detection circuit that can operate stably even if there is a phase difference between the comparator group and the comparator group.

作  用 本発明は、上記構成により切換時まで電源電圧をある低
電圧内の範囲で抑えているので過大電流は流れず、また
、回転していることを検知してから定常回転へ切換え、
かつ3相同期信号と比較器群の3つの出力信号の位相差
のずれが一定関係以下にあり切換時には脱調せず安定に
モータを運転することができる。
Function The present invention suppresses the power supply voltage within a certain low voltage range until switching due to the above configuration, so that no excessive current flows, and also switches to steady rotation after detecting that it is rotating.
In addition, the phase difference between the three-phase synchronizing signal and the three output signals of the comparator group is within a certain relationship, and the motor can be operated stably without step-out during switching.

実施例 以下、本発明の一実施例を3相巻線の例を用いて添付図
面にもとずき説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described using an example of a three-phase winding with reference to the accompanying drawings.

第1図は、本発明−実施例の概略シーケンス図、第2図
は全体構成図、第3図は、誘起電圧信号にもとずいた比
較器群7の出力信号による半導体スイッチング素子群2
のタイミング図、第4図は、同期回転中の同期信号によ
る半導体スイッチング素子群2のタイミング図と比較器
群7の出力信号による半導体スイッチング素子群2のタ
イミング図の位相関係を示したものである。
FIG. 1 is a schematic sequence diagram of an embodiment of the present invention, FIG. 2 is an overall configuration diagram, and FIG. 3 is a semiconductor switching element group 2 based on an output signal of a comparator group 7 based on an induced voltage signal.
4 shows the phase relationship between the timing diagram of the semiconductor switching element group 2 according to the synchronizing signal during synchronous rotation and the timing diagram of the semiconductor switching element group 2 according to the output signal of the comparator group 7. .

まず第1図概略シーケンス図と第2口金体構成図により
説明する。起動指令手段14の信号発生後、ある一定の
周波数を出力する同期信号発生手段8の出力信号を回転
磁界発生手段9に入力し、それぞれ120°位相のずれ
た一定周波数の3相同期信号9−U相、9−■相、9−
W相を作成する。
First, explanation will be given with reference to a schematic sequence diagram in FIG. 1 and a second cap body configuration diagram. After the activation command means 14 generates a signal, the output signal of the synchronization signal generation means 8 which outputs a certain constant frequency is inputted to the rotating magnetic field generation means 9, and three-phase synchronization signals 9- of constant frequency with a phase shift of 120 degrees are inputted to the rotating magnetic field generation means 9. U phase, 9-■ phase, 9-
Create W phase.

この3相同期信号を切換手段11(たとえばマルチプレ
クサ)に入力し、起動時には制御手段12へこれらの信
号が出力されそれぞれの論理レベルにもとすいて制御手
段12は半導体スイッチング素子群2のQ1〜Q6 の
通電、遮断を制御する。
These three-phase synchronization signals are input to the switching means 11 (for example, a multiplexer), and at startup, these signals are output to the control means 12, and when the respective logic levels are adjusted, the control means 12 switches the semiconductor switching element group 2 from Q1 to Controls energization and disconnection of Q6.

そして、モータ3を駆動する電源1(たとえばスイッチ
ング電源)をある低電圧内で増加し、電機子巻線4に回
転磁界を発生させ磁石回転子を強制的に回転させる。
Then, the power supply 1 (for example, a switching power supply) that drives the motor 3 is increased within a certain low voltage, and a rotating magnetic field is generated in the armature winding 4 to forcibly rotate the magnet rotor.

このようにして磁石回転子5がいったん回転すれば、電
機子巻線4に誘起電圧が発生するのでその後、切換指令
手段10から切換指令信号を発生し、切換手段11を切
換えることにより回転子の位置検出信号である比較器群
7から出力される信号7−U相、7−■相、7−W相の
信号を制御手段12へ出力し以後これらの論理レベルに
もとすいて半導体スイッチング素子群2のQ、〜Q6を
制御しモータ3を定常回転する。
Once the magnet rotor 5 rotates in this manner, an induced voltage is generated in the armature winding 4, so that the switching command means 10 generates a switching command signal, and the switching means 11 is switched. The signals 7-U phase, 7-■ phase, and 7-W phase signals outputted from the comparator group 7, which are position detection signals, are outputted to the control means 12, and after that, they are set to these logic levels and the semiconductor switching elements are outputted. The motor 3 is rotated steadily by controlling Q, to Q6 of group 2.

次に本発明一実施例における回転子の位置検出信号であ
る比較器群7の出力信号7−U相、7−■相、7−W相
の作成方法を第3図を用いて説明する。第3図において
各電機子巻線端子の誘起電圧信号の波形は、4−U相、
4−■相、4−W相である。U相についてみるならば、
0°から60°の区間と180°から240°の区間は
開放状態であり電源に接続されていない。また、60°
から1800までは、電源1の■側に240°から30
0°までの間は電源1のO側に接続される。すなわち、
このように電機子巻線端子の誘起電圧信号の波形の振幅
が最大となる60°から180°と240°から360
゜の時にU相に電流を流すことによりモータは効率よく
回転されるものである。他のV相、W相についても同様
である。
Next, a method of creating the output signals 7-U phase, 7-■ phase, and 7-W phase of the comparator group 7, which are rotor position detection signals in one embodiment of the present invention, will be described with reference to FIG. In Fig. 3, the waveforms of the induced voltage signals at each armature winding terminal are 4-U phase,
4-■ phase and 4-W phase. If we look at the U phase,
The section from 0° to 60° and the section from 180° to 240° are open and not connected to the power supply. Also, 60°
to 1800, from 240° to 30° to the ■ side of power supply 1.
Until 0°, it is connected to the O side of the power source 1. That is,
In this way, the amplitude of the waveform of the induced voltage signal at the armature winding terminal is maximum from 60° to 180° and from 240° to 360°.
The motor can be rotated efficiently by passing current through the U phase when the angle is .degree. The same applies to the other V-phase and W-phase.

さて、各電機子巻線端子の誘起電圧信号4−U相、4−
■相、4−W相は、半導体スイッチング素子群2のオン
オフに伴うスパイクノイズが発生するので信号変換手段
6によって除去するが、従来例と異なるのは、その信号
変換手段6の回路の時定数を大きくとらず、単にモータ
駆動電圧範囲内でスパイクノイズを除去せしめるもので
あり、位相はずらさないものである。したがって、第3
図で示すように4−U相からやや波形のなめらかな6−
U相(実線)に、4−V相から6−V相(実線)に4−
W相から6−W相(実線)に変換される。そして、これ
ら変換された信号のうち、たとえば、第2図中比較器群
7に入力される6−U相と、他の6−V相と6−W相を
抵抗で分割合成した信号(第3図中の1点鎖線で示す)
との大小を比較した結果が7−U相の波形である。その
他、6−V相と、6−W相と6−U相の合成した信号の
大小の比較で7−V相を、a−W相と、6−U相と6−
V相を合成した信号の大小の比較で7−・W相の出力信
号を得る。したがって従来例と異なるのは、6−U相の
信号で比較器群7−U相の出力信号を、6−V相の信号
で7−V相を、6−W相の信号で7−W相の出力信号を
作成する点であり、それらはそれぞれ1200位相のず
れた区形波であり回転子位置検出信号として切換手段1
1へ入力し、定常回転時には制御手段12へ出力されこ
れら1周期の3相の論理レベル(6ケのモード)にもと
ずいて半導体スイッチング素子群2の通電、遮断を制御
し磁石回転子5は回転を持続する。また比較器群7へ入
力する信号として、第3図中2点鎖線で示したものは、
8−U相と6−V相と6−W相の信号をすべて抵抗で合
成した仮性中性点信号であり、この信号との大小をそれ
ぞれ比較しても同様な比較器群7の出力信号が得られる
。そしてこれらの比較器群7の出力信号において、たと
えば7−U相の信号は、■相とW相の誘起電圧信号の情
報を踏まえて作成したものであり、このことによってU
相の位相と他の相との位相関係が正確となり負荷変動が
生じ、各相の波形がそれに応じて変化しても、比較対象
の波形もそれに応じて変化追従するので安定な位置検出
信号となるわけである。他の相についても同様である。
Now, the induced voltage signals of each armature winding terminal 4-U phase, 4-
Phase (3) and 4-W phase generate spike noise as the semiconductor switching element group 2 turns on and off, so it is removed by the signal conversion means 6. What is different from the conventional example is the time constant of the circuit of the signal conversion means 6. It does not take a large value, but simply removes spike noise within the motor drive voltage range, and does not shift the phase. Therefore, the third
As shown in the figure, the waveform is slightly smooth from the 4-U phase to the 6-
From the 4-V phase to the 6-V phase (solid line), the 4-
The W phase is converted to the 6-W phase (solid line). Among these converted signals, for example, a signal (the 6-U phase, which is input to the comparator group 7 in FIG. (Indicated by the dashed-dotted line in Figure 3)
The result of comparing the magnitude with that is the waveform of the 7-U phase. In addition, by comparing the magnitudes of the combined signals of the 6-V phase, 6-W phase, and 6-U phase, the 7-V phase, a-W phase, 6-U phase, and 6-U phase are compared.
By comparing the magnitude of the combined V-phase signal, a 7-.W-phase output signal is obtained. Therefore, the difference from the conventional example is that the output signal of the comparator group 7-U phase is determined by the 6-U phase signal, the 7-V phase is determined by the 6-V phase signal, and the 7-W phase is determined by the 6-W phase signal. The point is to create phase output signals, each of which is a square wave with a phase shift of 1200 degrees, and is used as a rotor position detection signal by the switching means 1.
1, and during steady rotation, it is output to the control means 12, which controls the energization and interruption of the semiconductor switching element group 2 based on the three-phase logic levels (6 modes) of one cycle, and controls the magnet rotor 5. continues to rotate. In addition, the signals input to the comparator group 7 shown by the two-dot chain line in FIG.
This is a pseudo-neutral point signal in which all the signals of the 8-U phase, 6-V phase, and 6-W phase are combined with a resistor, and the output signal of the comparator group 7 is the same even when compared in magnitude with this signal. is obtained. Among the output signals of these comparator group 7, for example, the 7-U phase signal is created based on the information of the induced voltage signals of the ■ phase and W phase.
The phase relationship between the phase of a phase and other phases is accurate, and even if a load fluctuation occurs and the waveform of each phase changes accordingly, the waveform to be compared will follow the change accordingly, resulting in a stable position detection signal. That's why it happens. The same applies to other phases.

また、信号変換手段らの時定数も小さく過渡特性もよい
ので第3図をみるとわかるように各相の誘起電圧信号の
波形の振幅が最大となるところで各相電機子巻線に接続
された半導体スイッチング素子群2を通電しており、そ
れ欲動率よく安定な回転を行なうことができるのである
。なお定常回転中の磁石回転子の回転数をあげるには電
#1の電圧をあげればよい。
In addition, since the time constant of the signal conversion means is small and the transient characteristics are good, as shown in Figure 3, each phase is connected to the armature winding at the point where the waveform amplitude of the induced voltage signal of each phase is maximum. Since the semiconductor switching element group 2 is energized, it can rotate stably with a high drive rate. Note that in order to increase the rotation speed of the magnet rotor during steady rotation, it is sufficient to increase the voltage of voltage #1.

次に同期信号による回転からその後、切換指令手段10
の信号が発生され、比較器群7の出力信号に切換わるわ
けであるが本発明一実施例においては、誘起電圧信号に
よる比較器群7の出力信号(区形波)を回転検知信号と
して用いており、それらの信号(フロック)をカウント
し、適当なカウント数を数えたら切換指令の信号を発生
する構成としている。したがって、確実に回転している
かどうか見究めた上で切換えるものである。
Next, from the rotation by the synchronization signal, the switching command means 10
The signal is generated and switched to the output signal of the comparator group 7. However, in one embodiment of the present invention, the output signal (square wave) of the comparator group 7 based on the induced voltage signal is used as the rotation detection signal. These signals (flocks) are counted, and when an appropriate count is reached, a switching command signal is generated. Therefore, the switch should be made after determining whether it is rotating reliably.

次に、制御手段12へ出力する信号を切換える段階で、
脱調せずに安定に切換れる理由9を第4図を用いて説明
する。第4図において、切換える前の同期回転中の3相
同期信号(図中斜線で示した)9−U相、9−■相、9
−W相にもとすく半導体スイッチング素子群2の通電、
(図中斜線で示した)遮断の制御を9−Q1相から9−
〇〇相に示す。その同期回転中における位置検出信号で
ある比較器群7の出力信号7−U相、7−■相、7− 
  ′W相は、3相同期信号9−U相、9−■相、9−
W相よりも位相進みの状態にあるのが普通である。
Next, at the stage of switching the signal output to the control means 12,
Reason 9 for stable switching without step-out will be explained with reference to FIG. In Fig. 4, three-phase synchronous signals (indicated by diagonal lines in the figure) during synchronous rotation before switching: 9-U phase, 9-■ phase, 9
- energization of the semiconductor switching element group 2 in the W phase;
The shutoff control (indicated by diagonal lines in the diagram) is controlled from the 9-Q1 phase to the 9-Q1 phase.
Shown in phase 〇〇. Output signals of the comparator group 7 which are position detection signals during the synchronous rotation 7-U phase, 7-■ phase, 7-
'W phase is a three-phase synchronizing signal 9-U phase, 9-■ phase, 9-
It is normal for the phase to be in a phase-advanced state compared to the W phase.

そして比較器群7の出力信号にもとすく半導体スイッチ
ング素子群2の通電(図中太線で示した)遮断の制御を
7−01相から7−Q6相に示す。
The output signal of the comparator group 7 is used to control the energization (indicated by thick lines in the figure) of the semiconductor switching element group 2 from the 7-01 phase to the 7-Q6 phase.

たとえば第4図のように3相同期信号より比較器群7の
出力信号が最大60°の位相進み(磁石の着磁と電機子
巻線との相対位置よりそのようになる。)の時に、この
−周期中どの時点において切換指令を出しても変化する
半導体スイッチング素子群2はただの1つだけである。
For example, as shown in Fig. 4, when the output signal of the comparator group 7 has a maximum phase lead of 60 degrees from the three-phase synchronous signal (this is caused by the relative position between the magnetization of the magnet and the armature winding), There is only one semiconductor switching element group 2 that changes no matter when a switching command is issued during this cycle.

つまり、0°〜60°中においてはQ3からQlへと変
化がおきるが、同期信号による制御であれば9−Q1相
がオフで比較器群7の出力信号にもとず<7−01相が
オン、また9−Q  相がオンで7−Q3相がオフの状
態である。そして同期信号の60°から120°におい
てグの制御としては同じである。すなわち磁石回転子5
を回転させようとする方向は同一でありこの状態をくず
さずに切換えた瞬間に磁石回転子5を回転方向へ60°
シフト1回転させることに他ならない。すなわち脱調停
止することは起こりえない。
In other words, during 0° to 60°, a change occurs from Q3 to Ql, but if the control is based on a synchronization signal, the 9-Q1 phase is off, and based on the output signal of the comparator group 7, the 7-01 phase changes. is on, the 9-Q phase is on, and the 7-Q3 phase is off. The control of the synchronous signal from 60° to 120° is the same. That is, the magnet rotor 5
The direction in which the magnet rotor 5 is to be rotated is the same, and the moment the switch is made without changing this state, the magnet rotor 5 is rotated by 60° in the rotation direction.
It's nothing more than one rotation of the shift. In other words, it is impossible for the motor to step out and stop.

また、比較器群7からの出力信号は、それぞれ120°
位相のずれた信号であり、それらは負荷変動に追従しう
る信号であるからしたがって切換えた瞬間も切換えた後
も安定に回転を続けることができるのである。
Moreover, the output signals from the comparator group 7 are each 120°
The signals are out of phase and can follow load fluctuations, so they can continue to rotate stably both at the moment of switching and after switching.

発明の効果 以上のように本発明のブラシレスモータ駆動装置によれ
ば次の効果が得られる。
Effects of the Invention As described above, the brushless motor drive device of the present invention provides the following effects.

(1)起動時における同期回転中は、誘起電圧信号によ
る回転検知をし、なおかつ電圧をある低電圧内に抑えで
あるのでモータロックによる半導体スイッチング素子群
等への過電流および素子の損傷や劣化を防ぐ効果がある
(1) During synchronous rotation at startup, rotation is detected using an induced voltage signal and the voltage is kept within a certain low voltage, so overcurrent to semiconductor switching elements etc. due to motor lock and damage or deterioration of the elements may occur. It has the effect of preventing

(2)起動から定常回転への切換時の同期信号と回転子
の位置検出信号の位相差を検出する回路もいらずその位
相差も一定関係以下に保たれ、なおかつ脱調しやすい同
期回転中の回転検知を行なっているのでシステム全体の
制御の信頼性も向上し、きわめて簡単な回路構成で起動
から定常回転までスムーズに行なうことができ安価に構
成できる。
(2) There is no need for a circuit to detect the phase difference between the synchronization signal and the rotor position detection signal when switching from startup to steady rotation, and the phase difference is kept below a certain relationship, and during synchronous rotation, which is prone to step-out. Since the rotation is detected, the reliability of the control of the entire system is improved, and the extremely simple circuit configuration allows smooth operation from startup to steady rotation, and can be configured at low cost.

(3)従来のように同期信号を増加しながら回転子を加
速する構成は、その周期を変化させる制御が複雑である
が、本発明によればその同期信号の周波数は一定でよい
ので非常に簡単となり構成も簡略なものとなる。
(3) In the conventional configuration in which the rotor is accelerated while increasing the synchronization signal, the control to change the period is complicated, but according to the present invention, the frequency of the synchronization signal can be kept constant, so it is very easy to control. It is simple and the configuration is also simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明−実施例の概略シーケンス図、第2図は
同全体構成図、第3図は同誘起電圧信号にもとずく各部
の波形図、第4図は同期回転中の3相同期信号と位置検
出回路の出力信号にもとすく半導体スイッチング素子の
タイミングチャート、第5図は従来例の全体構成図、第
6図は同誘起電圧信号にもとすく各部波形図である。 1・・・・電源、2・−・・・半導体スイッチング素子
群、3・・ モータ、4・・・・・・電機子巻線、5・
・・・磁石回転子、6・・・信号変換手段、7・・・・
・位置検出回路(比較器群)、8・・・・・・同期信号
発生手段、9・・・・回転磁界発生手段、1o・・・・
・・切換指令手段、11・・・切換手段、12・・・・
・制御手段、14・・・・起動指令手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名j第
1図 第2図 第3図 第4図 第5図 第6図
Fig. 1 is a schematic sequence diagram of the present invention-embodiment, Fig. 2 is an overall configuration diagram of the same, Fig. 3 is a waveform diagram of each part based on the same induced voltage signal, and Fig. 4 is a three-phase analog during synchronous rotation. FIG. 5 is a timing chart of the semiconductor switching element for the period signal and the output signal of the position detection circuit, FIG. 5 is an overall configuration diagram of a conventional example, and FIG. 6 is a waveform diagram of each part of the induced voltage signal. 1... Power supply, 2... Semiconductor switching element group, 3... Motor, 4... Armature winding, 5...
... Magnet rotor, 6... Signal conversion means, 7...
・Position detection circuit (comparator group), 8... Synchronization signal generation means, 9... Rotating magnetic field generation means, 1o...
...Switching command means, 11...Switching means, 12...
- Control means, 14...Start command means. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)複数相を中性点非接地に結線し、それぞれn個(
nは1以上)に分割した電機子巻線と、前記電機子巻線
への電流を通電、遮断する半導体スイッチング素子群と
、2m極(mは1以上)に分割着磁した磁石回転子を有
するモータと、前記モータを駆動する電源と、起動指令
手段と、ある一定の周波数を出力する同期信号発生手段
と、前記信号発生手段より出力される信号を用いて前記
電機子巻線に回転磁界を発生させる回転磁界発生手段と
、前記電機子巻線に誘起される電圧信号によって前記電
機子巻線と前記磁石回転子の相対的位置を検出する位置
検出回路と、前記回転磁界発生手段の出力信号と前記位
置検出回路の出力信号を選択し、切換えて出力する切換
手段と、前記切換手段に切換指令を与える切換指令手段
と、前記切換手段の出力信号を用いて前記スイッチング
素子群を制御する制御手段とからなり、前記起動指令手
段の信号発生後の同期回転中は前記電源の電圧をある低
電圧内で時間とともに増加させて前記磁石回転子を回転
起動させるとともに、前記切換指令手段は、前記誘起電
圧信号を検出する構成とし、前記誘起電圧信号を検出後
、前記切換指令手段の信号により前記位置検出回路の出
力信号に切換えて前記磁石回転子を定常回転させる構成
としたブラシレスモータ駆動装置。
(1) Connect multiple phases to an ungrounded neutral point, and connect n pieces (
An armature winding divided into 2 m poles (m is 1 or more), a group of semiconductor switching elements that conduct or cut off current to the armature winding, and a magnet rotor divided into 2m poles (m is 1 or more). a motor having a motor, a power supply for driving the motor, a start command means, a synchronization signal generation means for outputting a certain frequency, and a rotating magnetic field applied to the armature winding using the signal output from the signal generation means. a position detection circuit that detects the relative position of the armature winding and the magnet rotor based on a voltage signal induced in the armature winding; and an output of the rotating magnetic field generation means. a switching means for selecting, switching and outputting a signal and an output signal of the position detection circuit; a switching command means for giving a switching command to the switching means; and controlling the switching element group using the output signal of the switching means. During the synchronous rotation after the signal from the start command means is generated, the voltage of the power supply is increased over time within a certain low voltage to start the rotation of the magnet rotor, and the switching command means: A brushless motor drive device configured to detect the induced voltage signal, and after detecting the induced voltage signal, switch to the output signal of the position detection circuit according to a signal from the switching command means to steadily rotate the magnet rotor. .
(2)位置検出回路は、前記複数相の電機子巻線に誘起
される電圧信号を適宜適当な信号に変換する複数個の信
号変換手段と、前記信号変換手段後複数相すべての出力
信号を合成した仮性中性点信号と、前記複数相の任意の
出力信号の大小をそれぞれ比較するか、もしくは、ある
任意の相の出力信号と他の相の出力信号を合成した信号
の大小をそれぞれ比較する比較器群で構成した特許請求
の範囲第1項記載のブラシレスモータ駆動装置。
(2) The position detection circuit includes a plurality of signal conversion means for converting the voltage signals induced in the armature windings of the plurality of phases into appropriate signals as appropriate, and a plurality of signal conversion means for converting the output signals of all the plurality of phases after the signal conversion means. Compare the magnitudes of the synthesized pseudo-neutral point signal and arbitrary output signals of the plurality of phases, or compare the magnitudes of the output signal of a certain arbitrary phase and the signal obtained by synthesizing the output signals of other phases. A brushless motor drive device according to claim 1, comprising a group of comparators.
JP59256007A 1984-12-04 1984-12-04 Brushless motor drive device Pending JPS61135383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256007A JPS61135383A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256007A JPS61135383A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Publications (1)

Publication Number Publication Date
JPS61135383A true JPS61135383A (en) 1986-06-23

Family

ID=17286608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256007A Pending JPS61135383A (en) 1984-12-04 1984-12-04 Brushless motor drive device

Country Status (1)

Country Link
JP (1) JPS61135383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900993A (en) * 1987-06-17 1990-02-13 Matsushita Electric Industrial Co., Ltd. Driving apparatus for brushless motor
JP2008263709A (en) * 2007-04-11 2008-10-30 Shotatsu Kagi Kofun Yugenkoshi Method of controlling initial current value in driving motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208853A (en) * 1981-06-17 1982-12-22 Hitachi Ltd Direct current brushless motor
JPS59149780A (en) * 1983-02-09 1984-08-27 Toshiba Corp Drive device for motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208853A (en) * 1981-06-17 1982-12-22 Hitachi Ltd Direct current brushless motor
JPS59149780A (en) * 1983-02-09 1984-08-27 Toshiba Corp Drive device for motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900993A (en) * 1987-06-17 1990-02-13 Matsushita Electric Industrial Co., Ltd. Driving apparatus for brushless motor
JP2008263709A (en) * 2007-04-11 2008-10-30 Shotatsu Kagi Kofun Yugenkoshi Method of controlling initial current value in driving motor

Similar Documents

Publication Publication Date Title
EP0780033B1 (en) Method and apparatus for minimizing torque ripple in a dc brushless motor using phase current overlap
JPH0678583A (en) Electronic apparatus for starting of synchronous motor provided with permanent- magnet rotor
US6128436A (en) Speed monitoring and control for a brushless motor
US6008615A (en) Commutation controller
JPS61135383A (en) Brushless motor drive device
JPS61244291A (en) Brushless motor drive device
JPS61135387A (en) Brushless motor drive device
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
JPS61135389A (en) Brushless motor drive device
JPH10191682A (en) Drive control device for blower
JPS61135382A (en) Brushless motor drive device
JP3711749B2 (en) Permanent magnet type synchronous motor and control method thereof
JP2722750B2 (en) Drive device for brushless motor
JPS61135379A (en) Brushless motor drive device
JP3283377B2 (en) DC motor synchronous starter
JPS61135384A (en) Brushless motor drive device
JPS61135386A (en) Brushless motor drive device
JPS61135388A (en) Brushless motor drive device
JPS61135378A (en) Brushless motor drive device
JPS61135381A (en) Brushless motor drive device
JPS61135385A (en) Brushless motor drive device
JP2887320B2 (en) Starting method and starting device for brushless motor
JPS61135380A (en) Brushless motor drive device
JP2002101686A (en) Brushless motor device
JP2738110B2 (en) Driving device for brushless motor