JPS61134680A - Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor - Google Patents

Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Info

Publication number
JPS61134680A
JPS61134680A JP25652584A JP25652584A JPS61134680A JP S61134680 A JPS61134680 A JP S61134680A JP 25652584 A JP25652584 A JP 25652584A JP 25652584 A JP25652584 A JP 25652584A JP S61134680 A JPS61134680 A JP S61134680A
Authority
JP
Japan
Prior art keywords
lighting
voltage
light
volt
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25652584A
Other languages
Japanese (ja)
Other versions
JPH0453271B2 (en
Inventor
Masahiro Horiguchi
堀口 昌宏
Manabu Goto
学 後藤
Tomoshiro Horiguchi
堀口 友四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP25652584A priority Critical patent/JPS61134680A/en
Publication of JPS61134680A publication Critical patent/JPS61134680A/en
Publication of JPH0453271B2 publication Critical patent/JPH0453271B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To measure efficiently a volt - ampere characteristic by a small-sized device even with respect to a photoelectromotive force semiconductor whose response speed is low by bringing a xenon short arc lamp to stand-by lighting in advance, and superposing and inputting a pulsative power to said stand-by lighting. CONSTITUTION:A light of a xenon short arc lamp 1 is condensed to an integrator 3 through a condensing mirror 2, and its emitted light is projected to a solar battery S through a plane reflecting plate 5 and a collimating lens 6. In such a state, when measuring a volt - ampere characteristic, in a state that a shutter 4 has been opened, power of about 5kw is superposed and inputted to stand-by lighting in a shape of a pulse of 20-200msec time width. Also, during this time, a current and a voltage of the solar battery of, for instance, 64 points are measured, a temperature and an illuminance are corrected, a volt - ampere characteristic curve is formed, and when the pulsative lighting is ended, the shutter 4 is closed, and the measurement is ended.

Description

【発明の詳細な説明】 本発明は、光を豐けで起電力を発生する光起電力半導体
の電圧電流特性の測定方法に関する−のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring voltage-current characteristics of a photovoltaic semiconductor that generates electromotive force when exposed to light.

太陽電池モジエールとして使用される光起電力半導体の
ような半導体における電圧電流特性の測定に&いては、
従来は当鋏半導体Kl!(Cl大降光の定常光を連続し
て照射して行われていた。即ち。
For measuring the voltage-current characteristics of semiconductors such as photovoltaic semiconductors used as solar cell modules,
Previously, our scissors semiconductor Kl! (This was done by continuously irradiating a steady light with a large Cl precipitation. That is.

半導体に定常光を一様な照度で連続して照射した状IN
において、半導体に加える電圧をゆっくり変化せしめな
がら各電圧点にシける電流値をプロットして電圧型an
性を測定していた。しかし、このように定常光を用いる
II定においては、定常光を連続して照射するため消費
電力が大きなものとなり、そして近時は、例えば光起電
力半導体な平面状に並べて大きさが1.5 X 1.O
iの太陽電池も実用化されているが、この様な大面積を
照射するためには定常光発生装置として光出力が大きく
て大型のものを設計しなければならず、併せて太陽電池
の温度上昇を避けることができないため恒温化4dl置
が必要とされ、コストも非常に高いものになりてしまう
IN: Semiconductor is continuously irradiated with constant light at uniform illuminance.
, the voltage type an is plotted by plotting the current value at each voltage point while slowly changing the voltage applied to the semiconductor.
was measuring gender. However, in II constant light that uses constant light, the power consumption is large because the constant light is continuously irradiated, and recently, for example, photovoltaic semiconductors are arranged in a plane and the size is 1. 5 X 1. O
i solar cells have also been put into practical use, but in order to irradiate such a large area, it is necessary to design a large constant light generator with a high light output, and at the same time the temperature of the solar cell must be Since the temperature rise cannot be avoided, it is necessary to keep the temperature constant at 4 dl, and the cost becomes extremely high.

このため最近K)いては、この特性の測定のために、瞬
間的にモ分大きな光出力が得られる閃光放電灯が用いら
れるようKなりている。つまり、第1図に示すように光
起電力半導体PDK閃光放電灯10より時間巾が1.5
 msec糧度の閃光ノ(ルスを照射し、電圧411に
より光起電力半導体FDの電極&、BISflKflJ
ば0ボルトから当該光起電力半導体FDの起電力程度ま
での電圧を時間的に変゛化せしめながら印加し、電極A
、B!′1JIKJi続して設けた電流測定器12によ
ジ電流値の変化を測定し、第2図に示すよりなI −V
特性曲線を得る。
For this reason, in order to measure this characteristic, flash discharge lamps, which can instantaneously provide a large light output, have recently been used. In other words, as shown in FIG.
Irradiated with a flash of light of msec intensity, and applied a voltage of 411 to the electrodes of the photovoltaic semiconductor FD &, BISflKflJ
For example, a voltage from 0 volts to about the electromotive force of the photovoltaic semiconductor FD is applied while changing over time.
, B! '1JIKJi Next, the change in the current value was measured using the current measuring device 12 provided, and the change in the current value was determined as shown in FIG.
Obtain the characteristic curve.

このとき、各電圧1点における電流値がプロットされる
が、例えばプロット点数を64個とすれば、パルスの時
間中が1.5m5et 81j’であるので1プロツト
あたりの照射時間は0.02 msec程度である。
At this time, the current value at each voltage point is plotted. For example, if the number of plot points is 64, the pulse time is 1.5m5et81j', so the irradiation time per plot is 0.02 msec. That's about it.

ところで、従来の光起電力半導体PDは単結晶シリコン
からなるためK、光起゛電力の応答速度が早く、前述の
通り照射時間がo、ozmsec s度と短ゆくても、
印加電圧に対して生起電流が七分に応答し、正確1に特
性曲線を得ることができる。しかしながら、近時はアモ
ルファスクリコンの製造技術の鵡歩もありて、アモルフ
ァスシリコンからなる光超電力半導体が多用されるよう
Kなったが、これは単結晶シリコンか師なるものく比べ
て応答速度が遅い。従って、170ツトあたりの照射時
4″″′″IJII/17″′″″′〜′°°1′40
.02    lmsec 11度では、第2図の点線
曲線で示すように電流値が実際よりも低くなり、正確な
特性曲線な得ることができない。このためプロット敬を
少なくすると1プロツトあたりの照射時間を長くするこ
とができるが、これでは唖性曲線が直線近憚となりて精
度が低下する。従りて、プロット数を減少させることな
く12+2ツトあた9の照射時間を長くする必要がある
が、アモルファスクリコンからなる光起電力半導体の場
合は、lプロットあたりの照射時間はQ、 5 mse
c以上、プロット数も200点以上が田型しいとされて
お9、結局、閃光放電のパルスの時間巾は26msec
以上が必要となる。しかしながら、大型の太陽電池に対
して、この様に長時間中にわたりて一定照度のパルス点
灯な閃光放電灯により行うKは、モ数KWの大型ランプ
が必要となり、電源トランスや光学系などのl1Ft#
!設備もこ九に併りて大間となってしまい、とても実用
化することは不ITlr!である。
By the way, since the conventional photovoltaic semiconductor PD is made of single-crystal silicon, the response speed of the photovoltaic power is fast, and as mentioned above, even if the irradiation time is as short as 0,000 oz msec,
The generated current responds to the applied voltage in 7 minutes, making it possible to obtain a characteristic curve with accuracy of 1. However, in recent years, there has been rapid progress in the manufacturing technology of amorphous silicon, and optical superpower semiconductors made of amorphous silicon have come into widespread use, but this has a slower response speed than single crystal silicon. . Therefore, when irradiating around 170 points, 4''''''IJII/17''''''~'°°1'40
.. 02 lmsec At 11 degrees, the current value becomes lower than the actual value as shown by the dotted line curve in FIG. 2, and an accurate characteristic curve cannot be obtained. Therefore, if the plot density is reduced, the irradiation time per plot can be lengthened, but in this case, the mutability curve becomes close to a straight line, and the accuracy decreases. Therefore, it is necessary to increase the irradiation time per 12+2 plots without reducing the number of plots, but in the case of a photovoltaic semiconductor made of amorphous silicon, the irradiation time per 1 plot is Q, 5 mse.
c or more, and the number of plots is 200 or more, it is considered to be a good shape9.In the end, the time width of the flash discharge pulse is 26 msec.
The above is required. However, performing K on large solar cells using pulsed flash discharge lamps with constant illuminance over a long period of time requires large lamps with a power transformer and optical system. #
! The equipment is also very bulky, so it's unlikely to be put into practical use! It is.

そこで本発明は、アモルファスシリコンからなる光起電
力半導体のように、光起電力の応答速度の遅い光起電力
半導体に対しても、小型の装置でもって動感よくその電
圧電流特性を測定できる方法を提供することを目的とす
る。そして、その構成は、その電圧電流特性な測定すべ
き光起電力半導体、例えば太陽電池のような光起電力半
導体K、キセノフシ1−ドアークランプよりの光を照射
するとともに、この光起電力半導体の電極間に電圧値が
時間的に変化する電圧を印加し、この電甑間における電
流値変化の測定を行うことKよって光起電力半導体の電
圧電流特性を測定する方法でろりで、前記光は、小定電
流による待機点灯tct費された時間巾が20 ff1
lJecないし20 Q rnsecのパルス状の大電
流により点灯される光であり、かつ。
Therefore, the present invention has developed a method that can dynamically measure the voltage-current characteristics of photovoltaic semiconductors, such as photovoltaic semiconductors made of amorphous silicon, which have a slow photovoltaic response speed, using a small device. The purpose is to provide. The structure is such that a photovoltaic semiconductor whose voltage-current characteristics are to be measured, for example a photovoltaic semiconductor such as a solar cell, is irradiated with light from a xenofushi 1-door lamp, and the photovoltaic semiconductor is This is a method of measuring the voltage-current characteristics of a photovoltaic semiconductor by applying a voltage whose voltage value changes over time between the electrodes and measuring the change in current value between the electrodes. , the time span spent on standby lighting TCT by a small constant current is 20 ff1
It is a light that is lit by a large pulsed current of lJec to 20 Qrnsec, and.

照射にあたっては、待機点灯中はシャッターに′;Ij
1られ、パルス状の点灯中はシャッターが開くことを特
徴とするものである。
When irradiating, set the shutter to ';Ij during standby lighting.
1, and the shutter is open during pulsed lighting.

以下に図面に基いて本発明の実施例を具体的にIi明す
る。
Embodiments of the present invention will be explained in detail below based on the drawings.

If!3図は不発IPIK使用される光照射装置を模式
的に示すが、ランプ1は定格1.6KWのキセノフシ1
−トアーク放電灯であり、実際には3本のりンプlが設
置されている。そして、ランプ1の背後には断面楕円形
の集光鏡2が配置され、ランプ1の光はインチグレータ
ー3に!i:される。このインチグレーター30前には
シャッター4が配置され、このシャッター4が閉じると
ランプ1の光は遡られて外部に投射されない。インチグ
レーター3を出射した光は平面反射板5で反射されてコ
リメーティングレンズ6に入射し、平行光となって被検
体である太陽電池8に投射される。この太陽′を池Sは
寸法が1.5mX0.5mのパネル(アモルファスシリ
コンからなる光起電力半導体モジエールが平面状Kf!
置されたものである。
If! Figure 3 schematically shows a light irradiation device used for unexploded IPIK.
- It is a arc discharge lamp, and actually three lamps are installed. A condensing mirror 2 with an elliptical cross section is placed behind the lamp 1, and the light from the lamp 1 is directed to an inch grater 3! i: To be done. A shutter 4 is arranged in front of this inch grater 30, and when this shutter 4 is closed, the light from the lamp 1 is traced back and is not projected to the outside. The light emitted from the inch grater 3 is reflected by the plane reflector 5 and enters the collimating lens 6, where it becomes parallel light and is projected onto the solar cell 8, which is the subject. This solar pond S is a panel with dimensions of 1.5 m x 0.5 m (a photovoltaic semiconductor module made of amorphous silicon is a planar Kf!
It was placed there.

次に84図は、キセノフシ嘗−トアークランク1本あた
りの人力電力の時間的変化ft示したものであるが、こ
のランプIKは常時0.6KWの電力が人力され待機点
灯している。この待機点灯時はシャッター4が閉−じて
シ9、その光は外部には洩れない。そして、電圧電流特
性の測定に際しては、シャッター4が開き、これとはソ
同時に5KWの電力が時間巾20 msec〜200m
secのパルス状で待機点灯に重畳して入力される。こ
の2ノグーの定格電力は1.6KWであるが、パルス状
く入力するので5KWの入力が可能であり、時間中も2
00msec s zまで一定の照度な持続することが
できる。
Next, Fig. 84 shows the temporal change in the human power per one toe crank, and this lamp IK is always powered by 0.6 KW of power and is lit on standby. During this standby lighting, the shutter 4 is closed and the light does not leak outside. When measuring the voltage-current characteristics, the shutter 4 is opened, and at the same time, 5KW of power is applied for a time width of 20 msec to 200 m.
It is input in the form of a pulse of sec, superimposed on the standby lighting. The rated power of these two nogoos is 1.6KW, but since the input is in pulses, it is possible to input 5KW.
A constant illuminance can be maintained up to 00 msec s z.

因みに本実施例において、3本の2ングーな前記の条件
でパルス点灯すると、太陽電池8に対する放射黒蜜は1
00mW//cIlであり、その均一度な±5%;/1
00 rnsecが得られた。そしてこの間に、例えば
64ポイントの大降電池電流と電圧がg1図の回路でl
II定され、@度や照度補正がなされてプロットされ、
t−V特性曲線がイ尋られる。そして、パルス状点灯が
終了するとはy同時にシャッター4が閉じて測定が終了
する。
Incidentally, in this example, when three lights are pulsed under the conditions described above, the radiation to the solar cell 8 is 1.
00mW//cIl, and its uniformity is ±5%;/1
00 rnsec was obtained. During this period, for example, the large falling battery current and voltage at 64 points are l in the circuit shown in diagram g1.
II is determined, @degree and illuminance correction are made and plotted,
The t-V characteristic curve is shown. When the pulsed lighting ends, the shutter 4 closes at the same time, and the measurement ends.

以上のような方法によれば、キセノフシ1−トアークツ
ンプを待機点灯させておいて、これにパルス状電力を重
畳して入力するので、トリカー電力を必要とすることな
くパルス点灯ができ、しかも定格電力の数倍のパルス状
電力を入力可能となる。従って、小型のランプで高出力
が可能とfkす、前記の実施例では1.6KWの2ノグ
3本で15KW点灯が行われ、また、2ンフの小型化に
併りて電源トランスや光学系などの附帯設備も小型とf
kジ、試験装置としてモ分に11!用化可能な規模にお
さめることができる。そして、パルスの時間巾も長くと
ることができるので、l1lI定に#またっては、プロ
ット教を減小することなく1プロツトあたりの照射時間
を長くでき、前記の実施例では6.5 msec以上が
aysとなる。このため、光起電力の応答aIIl′の
遅いアモルファスシリコンからなる半導体でありても、
この照射時間内に印加電圧に対応する電流が完全に生起
し、正確なI−Vm線を得ることができる。よって、不
発dAKよれば、光起電力の応答速度の遅い光起電力半
導体に対しても、小型の装置でもって効率よくその電圧
電流特性を測定できる方法を提供することができる。
According to the method described above, the xenofushi 1-torque lamp is turned on in standby mode, and pulsed power is superimposed on it and input, so pulsed lighting can be performed without requiring trigger power, and moreover, the rated power is It becomes possible to input pulsed power several times that of the current value. Therefore, high output is possible with a small lamp.In the above example, 15KW lighting was achieved with three 1.6KW 2-nog lamps. Ancillary equipment such as
Kji, 11 minutes as a test device! It can be reduced to a practical scale. In addition, since the pulse duration can be made longer, the irradiation time per plot can be increased without reducing the plot value, and in the above example, it is 6.5 msec or more. becomes ays. Therefore, even if the semiconductor is made of amorphous silicon, which has a slow photovoltaic response aIIl',
A current corresponding to the applied voltage is completely generated within this irradiation time, and an accurate I-Vm line can be obtained. Therefore, according to the non-explosion dAK, it is possible to provide a method that can efficiently measure the voltage-current characteristics of a photovoltaic semiconductor having a slow photovoltaic response speed using a small device.

【図面の簡単な説明】[Brief explanation of the drawing]

第11は電圧電流特性の測定方法の回路図、第2図は特
性曲線のm明図、1g3図は光照射装置の模式図、第4
図は入力電力の説明図tそれぞれ示す。 1−・・キセノフシ1−トアーク2ンプ2・・・集光@
l   3−・・インチグレーター4・・・シャッター
 6・・・コリメーティングレンズ10−・・閃光放電
灯 11・・・電圧源12 ・・・電流濶定器 8、−
・太陽電池FD・−光起電力半導体
Figure 11 is a circuit diagram of the method for measuring voltage-current characteristics, Figure 2 is a light diagram of the characteristic curve, Figure 1g3 is a schematic diagram of the light irradiation device, and Figure 4
The figures each show an explanatory diagram t of input power. 1-... Xenofushi 1-To arc 2 pump 2... Focusing@
l 3--inch grater 4-shutter 6-collimating lens 10--flash discharge lamp 11-voltage source 12-current regulator 8,-
・Solar cell FD・-Photovoltaic semiconductor

Claims (1)

【特許請求の範囲】 その電圧電流特性を測定すべき光起電力半導体、例えば
太陽電池のような光起電力半導体に、キセノンショート
アークランプよりの光を照射するとともに、前記半導体
の電極間に電圧値が時間的に変化する電圧を印加し、前
記電極間における電流値変化の測定を行うことによって
光起電力半導体の電圧電流特性を測定する方法であって
、 前記光は、小定電流による待機点灯に重量された、時間
巾が20msecないし200msecのパルス状の大
電流により点灯される光であり、かつ、照射にあたって
は、待機点灯中はシャッターに遮ぎられ、パルス状の点
灯中はシャッターが開くことを特徴とする光起電力半導
体の電圧電流特性の測定方法。
[Claims] A photovoltaic semiconductor whose voltage-current characteristics are to be measured, for example a photovoltaic semiconductor such as a solar cell, is irradiated with light from a xenon short arc lamp, and a voltage is applied between the electrodes of the semiconductor. A method for measuring voltage-current characteristics of a photovoltaic semiconductor by applying a voltage whose value changes over time and measuring changes in current value between the electrodes, the light being applied to a standby state with a small constant current. It is a light that is lit by a large pulsed current with a time width of 20msec to 200msec, and when it is irradiated, it is blocked by a shutter during standby lighting, and the shutter is closed during pulsed lighting. A method for measuring voltage-current characteristics of a photovoltaic semiconductor characterized by an open state.
JP25652584A 1984-12-06 1984-12-06 Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor Granted JPS61134680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25652584A JPS61134680A (en) 1984-12-06 1984-12-06 Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25652584A JPS61134680A (en) 1984-12-06 1984-12-06 Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Publications (2)

Publication Number Publication Date
JPS61134680A true JPS61134680A (en) 1986-06-21
JPH0453271B2 JPH0453271B2 (en) 1992-08-26

Family

ID=17293831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25652584A Granted JPS61134680A (en) 1984-12-06 1984-12-06 Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Country Status (1)

Country Link
JP (1) JPS61134680A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237338A (en) * 1986-04-08 1987-10-17 Wakomu:Kk Control method for artificial sunshine irradiating device
JPS63206670A (en) * 1987-02-23 1988-08-25 Kanegafuchi Chem Ind Co Ltd Apparatus for testing reliability of semiconductor device
WO2007076846A1 (en) * 2005-12-30 2007-07-12 Solartec Ag Test apparatus and test method for a pv concentrator module
CN102520330A (en) * 2011-12-01 2012-06-27 华中科技大学 Volt-ampere characteristic testing system of solar cell photovoltaic device
JP2013131678A (en) * 2011-12-22 2013-07-04 Pulstec Industrial Co Ltd Solar cell panel inspection method
CN105445543A (en) * 2015-12-17 2016-03-30 厦门法博科技有限公司 Laser welding system pulse xenon lamp power detection circuit and method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237338A (en) * 1986-04-08 1987-10-17 Wakomu:Kk Control method for artificial sunshine irradiating device
JPS63206670A (en) * 1987-02-23 1988-08-25 Kanegafuchi Chem Ind Co Ltd Apparatus for testing reliability of semiconductor device
WO2007076846A1 (en) * 2005-12-30 2007-07-12 Solartec Ag Test apparatus and test method for a pv concentrator module
CN102520330A (en) * 2011-12-01 2012-06-27 华中科技大学 Volt-ampere characteristic testing system of solar cell photovoltaic device
CN102520330B (en) * 2011-12-01 2014-01-22 华中科技大学 Volt-ampere characteristic testing system of solar cell photovoltaic device
JP2013131678A (en) * 2011-12-22 2013-07-04 Pulstec Industrial Co Ltd Solar cell panel inspection method
CN105445543A (en) * 2015-12-17 2016-03-30 厦门法博科技有限公司 Laser welding system pulse xenon lamp power detection circuit and method thereof

Also Published As

Publication number Publication date
JPH0453271B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
TWI452943B (en) Solar simulator and multijunction photovoltaic devices measurement method
JP5148073B2 (en) Measurement method using solar simulator
CN202008060U (en) Sunlight irradiation simulating device
EP1139016B1 (en) Infrared pulsed solar simulator
CN102338323A (en) Steady state solar simulator
FI106408B (en) Method and apparatus for measuring current voltage characteristics of solar panels
JPS61134680A (en) Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor
JPH0573074B2 (en)
US20150244314A1 (en) Pseudo sunlight irradiation apparatus and method for evaluating solar battery module
CN1010257B (en) Technical embodiment for a test equipment of solar cells using short pulse
RU2380663C1 (en) Solar radiation simulator
US20020171441A1 (en) Method and apparatus for accelerated life testing of a solar cell
Dennis et al. A programmable solar simulator for realistic seasonal, diurnal, and air-mass testing of multi-junction concentrator photovoltaics
CN203660987U (en) High-power optically focused photovoltaic battery test system
Rumyantsev et al. Solar Simulator For Characterization Of The Large‐Area HCPV Modules
ES2198373T3 (en) A METHOD AND A DEVICE FOR MEASURING THE SPECIAL AVERAGE INTENSITY OF A BEAM OF LIGHT AND A METHOD AND DEVICE FOR REGULATING A LIGHT FOCUS.
JPS62237338A (en) Control method for artificial sunshine irradiating device
Chawla et al. A step by step guide to selecting the “right” Solar Simulator for your solar cell testing application
JP2014099260A (en) Solar simulator
RU70791U1 (en) DEVICE FOR TREATING AMBLIOPIA USING A LASER WITH AUTOMATIC FREQUENCY CONVERTER
Askins et al. Realization of a solar simulator for production testing of HCPV modules
Buso et al. Laboratory PV generator for MPPT dynamic response testing
Jungwirth et al. Advancements in solar simulators for terrestrial solar cells at high concentration (500 to 5000 Suns) levels
JPH02158500A (en) Artificial satellite
Cancro et al. Low-cost solar simulator for CPV cells characterizations