JPS62237338A - Control method for artificial sunshine irradiating device - Google Patents

Control method for artificial sunshine irradiating device

Info

Publication number
JPS62237338A
JPS62237338A JP61079293A JP7929386A JPS62237338A JP S62237338 A JPS62237338 A JP S62237338A JP 61079293 A JP61079293 A JP 61079293A JP 7929386 A JP7929386 A JP 7929386A JP S62237338 A JPS62237338 A JP S62237338A
Authority
JP
Japan
Prior art keywords
lamp
irradiation lamp
current
irradiation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61079293A
Other languages
Japanese (ja)
Other versions
JPH06105280B2 (en
Inventor
Masaki Kusuhara
昌樹 楠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakomu KK
Original Assignee
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakomu KK filed Critical Wakomu KK
Priority to JP61079293A priority Critical patent/JPH06105280B2/en
Publication of JPS62237338A publication Critical patent/JPS62237338A/en
Publication of JPH06105280B2 publication Critical patent/JPH06105280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable the artificial sunshine to be irradiated for a long time by start supplying a rated current to an irradiation lamp within a range where adverse influence is exerted upon the lamp when the irradiation lamp is turned on. CONSTITUTION:A light quantity controller 1 controls the quantity of light, i.e. output of the irradiation lamp 2. Further, output light L emitted by the lamp 2 is converged by a converging mirror 3, reflected by reflecting mirrors 4 and 5, and then directed to an integration optical system 6. Light passed through this optical system 6 is reflected by a reflecting mirror 7 to illuminate a solar cell 8. A testing device 9, on the other hand, varies the current flowing through the battery 8 variously when the quantity of the output light of the irradiation lamp 2 reaches a prescribed quantity, and the potential difference of the battery 8 corresponding to each current value is measured.

Description

【発明の詳細な説明】 (産業−ヒの利用分野) 本発明は、擬似太陽光照射装置の制御方法に関するbの
であり、特に太陽電池の特性試験等を行なうのに好適な
擬似太陽光照射装置の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application in Industry-A) The present invention relates to a method for controlling a simulated sunlight irradiation device, and in particular, a simulated sunlight irradiation device suitable for conducting characteristic tests of solar cells, etc. The present invention relates to a control method.

(従来の技術》 近年、パネル状の大型太陽電池の需要が高くなると共に
、該太陽電池の特性試験、特に最大出力の測定等を行な
う擬似太陽光照射装置の開発が進められている。
(Prior Art) In recent years, as the demand for large panel-shaped solar cells increases, the development of simulated sunlight irradiation devices for testing the characteristics of the solar cells, particularly measuring the maximum output, etc., is progressing.

大型太陽電池の特性試験を行なうには、広範囲に頁り擬
似太陽光を照射するために、大出力(例えば、60 [
kw] )の擬似太陽光照射ランプ(以下、照射ランプ
という)か必要であるが、周知のように、現状では連続
点灯形のランプに、必より入光量を発生するものがなく
、事実上、連続点灯形ランプを用いて大型太陽電池の特
性試験を行なうのは不可能である。
In order to perform characteristic tests on large solar cells, high output power (e.g. 60 [
[kw] ) is required, but as is well known, there are currently no continuous lighting type lamps that necessarily generate the amount of incident light, and in fact, It is impossible to test the characteristics of large solar cells using continuously lit lamps.

そこで、従来においては、照射ランプとしてフラッシュ
ランプを用いている。
Therefore, conventionally, a flash lamp is used as the irradiation lamp.

太陽電池の特性試験は、例えば太陽電池(被検体)に可
変抵抗負荷を接続し、照射ランプが点灯している間に前
記抵抗負荷の抵抗値を変えて太陽電池に流れる電流を規
定値に制御し、該電流に対応して太陽電池に必られれる
電位差を測定することににり行なう。
For solar cell characteristics testing, for example, a variable resistance load is connected to the solar cell (test object), and the resistance value of the resistance load is changed while the irradiation lamp is lit to control the current flowing through the solar cell to a specified value. This is done by measuring the potential difference required for the solar cell in response to the current.

一般には、照射ランプが点灯して予定光量を発生してい
る間に、前記電流が64〜128種程度の値に段階的に
変化するように前記抵抗負荷の抵抗値を変え、各電流値
に対応する電位差をそれぞれ測定することにより、特性
試験が行なわれる。
Generally, while the irradiation lamp is lit to generate a scheduled amount of light, the resistance value of the resistive load is changed so that the current changes stepwise to about 64 to 128 different values, and each current value is A characteristic test is carried out by measuring the corresponding potential difference in each case.

(発明が解決しようとする問題点) 上記した従来の技術は、次のような問題点を有していた
(Problems to be Solved by the Invention) The above-described conventional techniques had the following problems.

フラッシュランプの点灯時間は、通常は2〜2Q[m5
ec]でおる。この点灯時間内において、擬似太陽光の
スペク1〜ルが安定してから、太陽電池に接続された抵
抗負荷の抵抗値を64〜128段階に変化さけると、前
記抵抗値がおる目標値に設定されてから、つぎ゛の目標
値に設定されるまでの時間が極めて短くなり、太陽電池
に生じる電位差を測定するタイミングがとりにくくなる
The lighting time of the flash lamp is usually 2 to 2Q [m5
ec]. During this lighting time, after the spectrum 1 to 1 of the simulated sunlight stabilizes, the resistance value of the resistive load connected to the solar cell is changed in 64 to 128 steps, and the resistance value is set to the target value. The time from when the target value is set until the next target value is set becomes extremely short, making it difficult to find the timing to measure the potential difference occurring in the solar cell.

また、前記抵抗負荷を変化ざIてから、太陽電池に流れ
る電流が規定値に安定するまでの時間、および前記電流
が安定してから、太陽電池にあられれる電位差が安定す
るまでの時間等を考慮すると、前記電位差を測定するタ
イミングがざらにとりにくくなる。
Also, the time from when the resistive load is changed until the current flowing through the solar cell stabilizes to a specified value, and the time from when the current stabilizes until the potential difference across the solar cell stabilizes, etc. Taking this into consideration, it becomes difficult to determine the timing of measuring the potential difference.

ざらに、擬似太陽光のスペクトル分布が安定しないうち
に、あるいは、太陽電池に必られれる電位差が安定しな
いうらに、該電位差を測定しなくてはならないこともお
り、従来の擬似太陽光照射装置による太陽電池の特性試
験においては、1qられるデータの信頼性に欠けるとい
う懸念もある。
Furthermore, it is sometimes necessary to measure the potential difference before the spectral distribution of the simulated sunlight has stabilized, or before the potential difference required for solar cells has stabilized. There is also a concern that the data obtained in solar cell characteristic tests conducted by 1Q may lack reliability.

本発明は、前述の問題点を解決するためになされたもの
である。
The present invention has been made to solve the above-mentioned problems.

(問題点を解決するための手段および作用)前記の問題
点を解決するために、本発明は、その照射ランプとして
連続点灯形の照射ランプを用いた擬似太陽光照射装置を
、前記照射ランプが点灯中に所定時間だけ、該照射ラン
プにその定格電流を超えた電流を流すように制御すると
いう手段を講じ、この結果、従来のフラッシュランプを
用いた擬似太陽光照射装置よりも長い時間、一定光量の
擬似太陽光を照射できるようにして、太陽電池の特性試
験を容易に、かつ確実に行なえるようにした点に特徴が
おる。
(Means and effects for solving the problems) In order to solve the above-mentioned problems, the present invention provides a pseudo sunlight irradiation device using a continuous lighting type irradiation lamp as the irradiation lamp. We have taken measures to control the irradiation lamp so that a current exceeding its rated current flows for a predetermined period of time while it is on, and as a result, the current can be controlled to flow at a constant rate for a longer period of time than with conventional simulated sunlight irradiation devices using flash lamps. The feature is that it is possible to irradiate a simulated amount of sunlight to easily and reliably test the characteristics of solar cells.

(実施例) 以下に図面を参照して、本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第2図は本発明が適用された擬似太陽光照射装置、およ
び太陽電池の試験装置を示す概略ブロック図である。
FIG. 2 is a schematic block diagram showing a simulated sunlight irradiation device and a solar cell testing device to which the present invention is applied.

第2図において、照射ランプ2は、連続点灯用の放電ラ
ンプである。
In FIG. 2, the irradiation lamp 2 is a discharge lamp for continuous lighting.

光量制御装置1は、第1図に関して後述する手法で照射
ランプ2の光量、すなわち出ツクを制御する。
The light amount control device 1 controls the light amount, ie, the output, of the irradiation lamp 2 by a method that will be described later with reference to FIG.

照射ランプ2から放射される出力光りは、集光鏡3によ
り集光され、そして、反射鏡4.5で反射された後、積
分光学系6に指向される。
The output light emitted from the irradiation lamp 2 is collected by a condenser mirror 3 and, after being reflected by a reflector 4.5, is directed to an integrating optical system 6.

前記積分光学系6を通過した光は、反射鏡7ににり反則
され、太陽電池8に照射される。
The light that has passed through the integrating optical system 6 is reflected by a reflecting mirror 7 and is irradiated onto a solar cell 8 .

試j倹装置9は、前記光量制御装置1により制御される
照射ランプ2の出力光の光量があらかじめ規定された光
量に達したならば、太陽電池8に流れる電流を種々の値
に変化させ、各々の電流値に対応する該太陽電池8の電
位差を測定する。
The trial saving device 9 changes the current flowing through the solar cell 8 to various values when the amount of output light from the irradiation lamp 2 controlled by the light amount control device 1 reaches a predetermined amount of light. The potential difference of the solar cell 8 corresponding to each current value is measured.

第3図は第2図の光量制御装置1の概略構成を示す回路
図でおる。前記第2図においては、光量制御装置1には
複数の照射ランプ2が接続されているが、この第3図に
おいては、照射ランプ2は1つだけ示されている。
FIG. 3 is a circuit diagram showing a schematic configuration of the light amount control device 1 shown in FIG. 2. As shown in FIG. In FIG. 2, a plurality of irradiation lamps 2 are connected to the light amount control device 1, but in FIG. 3, only one irradiation lamp 2 is shown.

第3図において、交流電源11は、スイッチ12を介し
て変圧器13の一次巻線に接続されている。
In FIG. 3, AC power supply 11 is connected to the primary winding of transformer 13 via switch 12. In FIG.

前記変圧器13の二次巻線は、コイル14および15を
介して、整流器17の入力端子に接続されている。前記
コイル14および15は、前記整流器17により整流さ
れる電流を制限する素子である。
The secondary winding of the transformer 13 is connected to the input terminal of a rectifier 17 via coils 14 and 15. The coils 14 and 15 are elements that limit the current rectified by the rectifier 17.

前記コイル14のインダクタンスは、後述する交流スイ
ッチング装置16がオンのとき、すなわちコイル15が
短絡しているときに、照射ランプ2の定格電流Irを超
える電流、例えば、定格電流■rの4倍の電流が該照射
ランプ2に流れるように、その値が設定されている。
The inductance of the coil 14 is such that when an AC switching device 16 (described later) is on, that is, when the coil 15 is short-circuited, a current exceeding the rated current Ir of the irradiation lamp 2, for example, four times the rated current ■r, is generated. Its value is set so that the current flows through the irradiation lamp 2.

前記コイル15のインダクタンスは、前記交流スイッチ
ング装置16がオフのときに、照射ランプ2が放電を維
持できる最小の電流、例えば照射ランプ2の定格電流1
rの1/2倍の電流が該照射ランプ2に流れるように、
その値が設定されている。
The inductance of the coil 15 is determined by the minimum current at which the irradiation lamp 2 can maintain discharge when the AC switching device 16 is off, for example the rated current 1 of the irradiation lamp 2.
so that a current 1/2 times r flows through the irradiation lamp 2,
That value has been set.

換言ずれば、コイル14およびコイル15の合成インダ
クタンスは、照射ランプ2が放電を維持できる最小の電
流が該照射ランプ2に流れるように設定されている。
In other words, the combined inductance of the coil 14 and the coil 15 is set such that the minimum current that allows the irradiation lamp 2 to maintain its discharge flows through the irradiation lamp 2.

前記コイル15の両端には、交流スイッチング装置16
が接続されている。前記交流スイッチング装置16は、
トライアック、F−ET、SCR等を利用したものであ
る。前記交流スイッチング装置16の一例を第4図に示
す。
An AC switching device 16 is connected to both ends of the coil 15.
is connected. The AC switching device 16 includes:
It uses triac, F-ET, SCR, etc. An example of the AC switching device 16 is shown in FIG.

第4図には、逆並列接続のナイリスタSRI。FIG. 4 shows Nyristor SRI connected in antiparallel.

SR2によって構成された交流スイッチング装置の一例
が示されている。サイリスタSR’lおよびSR2のゲ
ート間に設けられたスイッチSWを開閉することによっ
て、このスイッチング装置をオン、オフすることができ
る。
An example of an AC switching device configured by SR2 is shown. This switching device can be turned on and off by opening and closing a switch SW provided between the gates of thyristors SR'l and SR2.

再び第3図に戻り、前記整流器17の出力端子は、図示
されるように平滑回路18およびスタータ19を介して
照射ランプ2に接続されている。
Returning again to FIG. 3, the output terminal of the rectifier 17 is connected to the irradiation lamp 2 via a smoothing circuit 18 and a starter 19 as shown.

前記スタータ19は高電圧発生装置であり、照射ランプ
2を放電させるに必要な電圧を該照射う・ンプ2に供給
する。
The starter 19 is a high voltage generator and supplies the irradiation lamp 2 with the voltage necessary to discharge the irradiation lamp 2.

つぎに本発明による擬似太陽光照射装置の制御方法を、
第3図を用いて説明する。なお、以下の説明においては
、60 [kw]に近い擬似太陽光を出力することので
きる擬似太陽光照射装置の制御方法について説明する。
Next, the method for controlling the simulated sunlight irradiation device according to the present invention is as follows.
This will be explained using FIG. In the following description, a method for controlling a simulated sunlight irradiation device that can output simulated sunlight close to 60 [kW] will be described.

まず、擬似太陽光照射装置の照射ランプとしては、定格
用ツノ3.6[kw]、定格電圧30[V]、定格電流
120 [A]の連続点灯用の放電ランプを4灯用いる
First, as the irradiation lamps of the simulated sunlight irradiation device, four discharge lamps for continuous lighting with a rated horn of 3.6 [kW], a rated voltage of 30 [V], and a rated current of 120 [A] are used.

また、スイッチ12および交流スイッチング装置16は
開放しておく。
Further, the switch 12 and the AC switching device 16 are left open.

まずスイッチ12を投入すると共にスタータ19を付勢
して、照射ランプ2を放電(点灯)させる。
First, the switch 12 is turned on and the starter 19 is energized to discharge (light up) the irradiation lamp 2.

照q・1ランプ2が放電したならばスタータ19の付勢
を停止する。前記スタータ19の付勢を停止しても、ス
イッチ12が投入されているので、照射ランプ2が放電
を持続することのできる最小の電流か該照射ランプ2に
流れる。
When the light q.1 lamp 2 is discharged, the energization of the starter 19 is stopped. Even if the energization of the starter 19 is stopped, the switch 12 is turned on, so that the minimum current that allows the irradiation lamp 2 to continue discharging flows through the irradiation lamp 2.

つぎに、所定のタイミングで、交流スイッチング装置1
6をオンにする。前記交流スイッチング装置16の投入
により、前記照射ランプ2には、該照射ランプ2の定格
電流Irの4倍の電流が流れ、該照射ランプ2の光出力
も定格出力の約4倍となる。すなわら、この実施例にお
いては、前記照射ランプ2全体の光出力は約58 [k
w]となる。
Next, at a predetermined timing, the AC switching device 1
Turn on 6. By turning on the AC switching device 16, a current four times the rated current Ir of the irradiation lamp 2 flows through the irradiation lamp 2, and the light output of the irradiation lamp 2 also becomes about four times the rated output. That is, in this embodiment, the light output of the entire irradiation lamp 2 is approximately 58 [k
w].

この様子を第1図を用いて、ざらに詳細に説明する。第
1図は、照射ランプ2に流れる電流と時間との関係を示
すグラフである。
This situation will be roughly explained in detail using FIG. FIG. 1 is a graph showing the relationship between the current flowing through the irradiation lamp 2 and time.

第1図において、照射ランプ2が点灯してから時刻T3
に交流スイッチング装置16をオンにしたとすると、T
3からΔT1経過後(時刻T4)に、照射ランプ2に流
れる電流は定格電流■rの4倍の値に安定し、そして照
射ランプ2から出力される光のスペクトルおよび強度が
安定する。
In FIG. 1, time T3 is elapsed after the irradiation lamp 2 is turned on.
When the AC switching device 16 is turned on, T
3 (time T4), the current flowing through the irradiation lamp 2 stabilizes at a value four times the rated current r, and the spectrum and intensity of light output from the irradiation lamp 2 become stable.

この実施例においては、照射ランプ2に悪影響を与えな
い範囲内で、該照射ランプ2に定格電流Irの4倍の電
流を流しておくことができる最大の時間T maxは約
1[sec ]であることが、発明者の実験により確認
された。
In this embodiment, the maximum time T max for which a current four times the rated current Ir can be made to flow through the irradiation lamp 2 without adversely affecting the irradiation lamp 2 is approximately 1 [sec]. This was confirmed through experiments conducted by the inventor.

また、交流スイッチング装置16をオンにしてから、照
射ランプ2に流れる電流が安定し、かつ照射ランプ2の
照射光が安定するまでの時間ΔT1は、約10[1nS
eC]であった。
Further, the time ΔT1 from when the AC switching device 16 is turned on until the current flowing through the irradiation lamp 2 becomes stable and the irradiation light from the irradiation lamp 2 becomes stable is about 10 [1 nS
eC].

したかつて、照射ランプ2に4Irの電流を安定して流
してd3りことができる時間ΔT2は、最大990[m
5cc ]となり、この時間内において、太陽電池8の
特性試験を行なえば良い。
In the past, the time ΔT2 during which a current of 4Ir could be stably passed through the irradiation lamp 2 for d3 was 990 m at maximum.
5 cc], and the characteristics test of the solar cell 8 may be performed within this time.

この結果、太陽電池に流れる電流を種々の値に制御して
、各電流値ごとに太陽電池に生じる電位差を測定する場
合においては、太陽電池に流れる電流かある電流値に安
定してから、つぎの電流値に変化するまでの時間が、従
来の擬似太陽光照射装置の制御方法に比べて格段に長く
なり、各電流値ごとの電位差の測定を確実に行なうこと
ができる。
As a result, when controlling the current flowing through the solar cell to various values and measuring the potential difference generated in the solar cell for each current value, the current flowing through the solar cell must be stabilized at a certain current value before the next one. The time it takes for the current value to change to is much longer than in the conventional control method for the simulated sunlight irradiation device, and it is possible to reliably measure the potential difference for each current value.

もちろん、交流スイッチング装置16をオンにする時間
(ΔT1+ΔT2)は、必ずしもT maxでおる必要
はなく、試験装置9により、各電流値ごとの電位差の測
定を確実に行なうことができる最小の時間であれば良い
。前記交流スイッチング装置16の開閉時間の制御は、
既知の手法を用いて行なうことができるので、その説明
は省略する。
Of course, the time (ΔT1+ΔT2) for turning on the AC switching device 16 does not necessarily have to be T max, but may be the minimum time that allows the test device 9 to reliably measure the potential difference for each current value. Good. Control of the opening/closing time of the AC switching device 16 is as follows:
Since this can be done using a known method, its explanation will be omitted.

この実施例においては、試験装置9により太陽電池8の
特性試験を行なわないときにおいても、照射ランプ2の
放電を持続しているので、交流スイッチング装置16を
オンにしてから、照射ランプ2に流れる電流が定格電流
以上の値に安定し、かつ照射ランプ2め照射光のスペク
トルおよびその強度が安定するまでの時間ΔT1が、照
射ランプ2の放電を持続しない場合に比べて短くなる。
In this embodiment, even when the characteristics test of the solar cell 8 is not performed using the test device 9, the discharge of the irradiation lamp 2 is continued, so that after the AC switching device 16 is turned on, The time ΔT1 until the current stabilizes to a value equal to or higher than the rated current and the spectrum and intensity of the second irradiation light from the irradiation lamp become stable is shorter than when the irradiation lamp 2 does not continue to discharge.

換言すれば、同一のT maxに対するΔT2の割合が
犬ぎくなる。したがって、試験装置9により太陽電池8
の特性試験を行なう時間を長くとることができる。
In other words, the ratio of ΔT2 to the same T max becomes too large. Therefore, the solar cell 8 is
It is possible to take more time to conduct characteristic tests.

なお、定格電流以上の電流を複数回にわたって照射ラン
プに流す場合には、その電流を流す間隔(インターバル
)は必まり短くない方が良い。この実施例においては、
インターバルは15[SeC]以上とることが望ましい
Note that when a current higher than the rated current is passed through the irradiation lamp multiple times, the intervals at which the current is passed should not necessarily be short. In this example,
It is desirable that the interval is 15 [SeC] or more.

また、交流スイッチング装置16をオンにすることによ
り、照射ランプ2には、その定格電流の4倍の電流か流
れるものとして説明したが、本発明では特にこれのみに
限定されることはなく、4倍に満たない、あるいは4倍
@超える電流が流れるにうにしても良いことは当然であ
る。
Further, although the explanation has been made assuming that when the AC switching device 16 is turned on, a current four times the rated current flows through the irradiation lamp 2, the present invention is not limited to this. Of course, it is possible to allow a current less than twice as much or more than four times as much to flow.

(発明の効果) 以上の説明から明らかなように、本発明によれば、つぎ
のような効果が達成される。
(Effects of the Invention) As is clear from the above description, according to the present invention, the following effects are achieved.

′?t′なわら、照射ランプとして連続点灯用の照射ラ
ンプを用い、該照射ランプが点灯してから、該ランプに
悪影響を与えない範囲で、該照射ランプに定格電流を超
える電流を流ずようにしたので、従来のフラッシュラン
プよりも長時間擬似太陽光を照射させることができる。
′? t', use an irradiation lamp for continuous lighting as the irradiation lamp, and after the irradiation lamp is lit, do not apply a current exceeding the rated current to the irradiation lamp to the extent that it does not adversely affect the lamp. Therefore, it is possible to irradiate simulated sunlight for a longer period of time than with conventional flash lamps.

したがって、太陽電池の特性試験を従来の制御方法に比
べて長時間に亘って行なうことができる。
Therefore, solar cell characteristic tests can be conducted for a longer period of time than in conventional control methods.

換言すれば、擬似太陽光の出力および発光スペクトルが
安定してから特性試験を開始することができると共に、
太陽電池の出力が充分に安定してから該出力を測定する
ことができる。
In other words, the characteristic test can be started after the output and emission spectrum of the simulated sunlight are stabilized, and
The output of the solar cell can be measured after it becomes sufficiently stable.

この結果、太陽電池の特性を、充分に信頼性のおるデー
タとして得ることができる。また、前記特性試験を容易
に行なうことができる。
As a result, sufficiently reliable data on the characteristics of the solar cell can be obtained. Further, the characteristic test described above can be easily performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による手法を示すための照射ランプに流
れる電流と時間との関係を示すグラフ、第2図は本発明
が適用された擬似太陽光照射装置および太陽電池の試験
装置を示す概略ブロック図、第3図は第2図の光量制御
装置の概略構成を示す回路図、第4図は第3図の交流ス
イッチング装置の具体例を示す回路図である。 1・・・光量制御装置、2・・・照射ランプ、3・・・
集光鏡、4,5.7・・・反射鏡、6・・・積分光学系
、8・・・太陽電池、9・・・試験装置、14.15・
・・コイル、16・・・交流スイッチング装置、19・
・・スタータ代理人 弁理士 平木通人 外18 第  1  図 4a  2  図 第  4  図
Fig. 1 is a graph showing the relationship between current flowing through an irradiation lamp and time to demonstrate the method according to the present invention, and Fig. 2 is a schematic diagram showing a simulated sunlight irradiation device and a solar cell testing device to which the present invention is applied. In the block diagram, FIG. 3 is a circuit diagram showing a schematic configuration of the light amount control device shown in FIG. 2, and FIG. 4 is a circuit diagram showing a specific example of the AC switching device shown in FIG. 3. 1... Light amount control device, 2... Irradiation lamp, 3...
Condensing mirror, 4,5.7... Reflecting mirror, 6... Integrating optical system, 8... Solar cell, 9... Testing device, 14.15.
... Coil, 16... AC switching device, 19.
...Starter agent Patent attorney Michito Hiraki 18th Figure 1 Figure 4a 2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)その照射ランプとして連続点灯形の照射ランプを
用いた擬似太陽光照射装置の制御方法であって、 前記照射ランプが点灯中に所定時間だけ、該照射ランプ
に、その定格電流を超えた電流を流すことを特徴とする
擬似太陽光照射装置の制御方法。
(1) A method for controlling a pseudo-sunlight irradiation device using a continuously lit irradiation lamp as the irradiation lamp, wherein the irradiation lamp is supplied with a current exceeding its rated current for a predetermined period of time while the irradiation lamp is on. A method for controlling a simulated sunlight irradiation device characterized by flowing an electric current.
(2)前記照射ランプは放電ランプであり、該放電ラン
プが放電を開始してから、該放電ランプにその定格電流
を超えた電流を流すまでの間、前記定格電流に満たない
電流を流して、該放電ランプの放電を持続させておくこ
とを特徴とする前記特許請求の範囲第1項記載の擬似太
陽光照射装置の制御方法。
(2) The irradiation lamp is a discharge lamp, and a current less than the rated current is passed through the discharge lamp from the time the discharge lamp starts discharging until the current exceeding the rated current is passed through the discharge lamp. A method for controlling a simulated sunlight irradiation device according to claim 1, characterized in that the discharge of the discharge lamp is sustained.
JP61079293A 1986-04-08 1986-04-08 Solar cell characteristics test method Expired - Lifetime JPH06105280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079293A JPH06105280B2 (en) 1986-04-08 1986-04-08 Solar cell characteristics test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079293A JPH06105280B2 (en) 1986-04-08 1986-04-08 Solar cell characteristics test method

Publications (2)

Publication Number Publication Date
JPS62237338A true JPS62237338A (en) 1987-10-17
JPH06105280B2 JPH06105280B2 (en) 1994-12-21

Family

ID=13685801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079293A Expired - Lifetime JPH06105280B2 (en) 1986-04-08 1986-04-08 Solar cell characteristics test method

Country Status (1)

Country Link
JP (1) JPH06105280B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199576A1 (en) * 2000-10-17 2002-04-24 Drei Solar AG Device for testing solar cells
WO2002033430A1 (en) * 2000-10-17 2002-04-25 Acr Automation In Cleanroom Gmbh Device for testing solar cells
JP2007088419A (en) * 2005-06-17 2007-04-05 Nisshinbo Ind Inc Measuring method by solar simulator
EP1771049A3 (en) * 2005-10-03 2008-09-03 Nisshinbo Industries Inc. Solar simulator and method for driving the same
JP2010097847A (en) * 2008-10-17 2010-04-30 Iwasaki Electric Co Ltd Xenon flash lamp and pseudo solar light irradiation device using the same
JP2017151282A (en) * 2016-02-25 2017-08-31 レーザーテック株式会社 Light source device, inspection device, and control method of light source device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134680A (en) * 1984-12-06 1986-06-21 Ushio Inc Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134680A (en) * 1984-12-06 1986-06-21 Ushio Inc Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199576A1 (en) * 2000-10-17 2002-04-24 Drei Solar AG Device for testing solar cells
WO2002033430A1 (en) * 2000-10-17 2002-04-25 Acr Automation In Cleanroom Gmbh Device for testing solar cells
JP2007088419A (en) * 2005-06-17 2007-04-05 Nisshinbo Ind Inc Measuring method by solar simulator
EP1771049A3 (en) * 2005-10-03 2008-09-03 Nisshinbo Industries Inc. Solar simulator and method for driving the same
US7514931B1 (en) 2005-10-03 2009-04-07 Nisshinbo Industries, Inc. Solar simulator and method for driving the same
JP2010097847A (en) * 2008-10-17 2010-04-30 Iwasaki Electric Co Ltd Xenon flash lamp and pseudo solar light irradiation device using the same
JP2017151282A (en) * 2016-02-25 2017-08-31 レーザーテック株式会社 Light source device, inspection device, and control method of light source device

Also Published As

Publication number Publication date
JPH06105280B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
TWI452943B (en) Solar simulator and multijunction photovoltaic devices measurement method
US7759822B2 (en) Uninterruptible power supply device with circuit for degradation judgment of storage battery
JPS62296215A (en) Adjustor by phase control
US5945839A (en) Method and apparatus for measurement of current-voltage characteristic curves of solar panels
US3952242A (en) Automatic voltage regulator with optical feedback
US5751121A (en) High voltage discharge bulb control
TW201014470A (en) Device for generating simulated solar light for solar battery characteristic measurement, and method of generating simulated solar light
JPS62237338A (en) Control method for artificial sunshine irradiating device
JPH0591719A (en) Testing method of self-excited converter
JP4724908B2 (en) HID lamp lighting circuit
JPS61134680A (en) Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor
US4574230A (en) Phase-regulated switching circuit
JP2886215B2 (en) Simulated solar irradiation device
US6621238B2 (en) Power factor correction circuit with faster bus charging rate during startup
JPH0917590A (en) Discharge lamp lighting device
JP2796286B2 (en) Discharge lamp lighting device
CA1083658A (en) Ballast circuit for accurately regulating hid lamp wattage
JPH11283766A (en) High pressure discharge lamp lighting device
JPH09154233A (en) Charging control circuit of capacitor magnetizer
JPS6259830A (en) Measuring instrument for light emission characteristics of laser diode
JPS58121597A (en) Method and circuit device for controlling illumination of gas discharge lamp
JP2012248394A (en) Xenon lamp lighting device, xenon lamp lighting method, and pseudo-sunlight irradiation device
US5619736A (en) Camera equipped with a lamp lighting controlling device
JPH0143840Y2 (en)
Severon et al. Technological advances in lighting systems for high-speed photography utilizing computer-controlled power supplies and mechanical subsystems for high-intensity flicker-free light with minimal heati

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term