JPS63206670A - Apparatus for testing reliability of semiconductor device - Google Patents

Apparatus for testing reliability of semiconductor device

Info

Publication number
JPS63206670A
JPS63206670A JP62039386A JP3938687A JPS63206670A JP S63206670 A JPS63206670 A JP S63206670A JP 62039386 A JP62039386 A JP 62039386A JP 3938687 A JP3938687 A JP 3938687A JP S63206670 A JPS63206670 A JP S63206670A
Authority
JP
Japan
Prior art keywords
light
semiconductor device
time
irradiation
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62039386A
Other languages
Japanese (ja)
Other versions
JPH0812225B2 (en
Inventor
Yoshinori Yamaguchi
美則 山口
Masataka Kondo
正隆 近藤
Hideo Yamagishi
英雄 山岸
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62039386A priority Critical patent/JPH0812225B2/en
Publication of JPS63206670A publication Critical patent/JPS63206670A/en
Publication of JPH0812225B2 publication Critical patent/JPH0812225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a testing apparatus capable of performing a test within a short time without raising the temp. of a semiconductor device, by providing a light source for irradiating the semiconductor device with irradiation energy with average power of 10<2> watt/cm<2> or more, which is a light containing an electromagnetic wave having a wavelength of 190-1,000nm, for a time of 10sec or less for a predetermined number of times. CONSTITUTION:A light source, wherein irradiation energy with average power of 10<2> watt/cm<2> of more being light containing an electromagnetic wave having a wavelength of 190-1,000nm is allowed to repeatedly irradiate a semiconductor device to be evaluated once-plural times for a time of 10sec or less, is provided. Since large irradiation energy can be allowed to irradiate the semiconductor device to be evaluated within a short time, the semiconductor device is deteriorated without raising the temp. thereof to make it possible to perform a light deterioration test. By performing irradiation plural times, the promotion test of the light deterioration can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は太@N池等の半導体装置の信頼性試験装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reliability testing device for semiconductor devices such as Ta@Nike.

[従来の技術] 従来、太陽電池等の光電変換素子の信頼性試験として光
劣化試験が行われている。この試験では、ソーラシュミ
レータを用いて赤道直下の太陽の光に対応するAM−1
の光を平均電力100mW/Cm2て光電変換素子に対
して数時間から数千時間の間連続して照射して、該素子
の劣化度を試験する。
[Prior Art] Conventionally, a photodegradation test has been conducted as a reliability test for photoelectric conversion elements such as solar cells. In this test, we used a solar simulator to test AM-1, which corresponds to sunlight directly below the equator.
The degree of deterioration of the photoelectric conversion element is tested by continuously irradiating the photoelectric conversion element with light at an average power of 100 mW/Cm2 for several hours to several thousand hours.

また、この光劣化試験の促進試験として上記平均電力の
10倍から50倍の電力を有する−1−述のAM−1の
光を光電変換素子に対して数時間から数千時間の間連続
して照射して該素子の劣化度を試験する。
In addition, as an accelerated test for this photodegradation test, the AM-1 light described in -1- above, which has a power of 10 to 50 times the above average power, was continuously applied to the photoelectric conversion element for a period of several hours to several thousand hours. to test the degree of deterioration of the element.

[発明が解決しようとする問題点] しかしながら、」二連の従来の試験方法においては、試
験される光電変換素子の温度を測定し」二連の照射電力
を制御しながら試験を行なわなければ、当該素子の温度
が」二昇し、特に」−述の促進試験のように照射する平
均電力をIW/crn’から5W/c712に」二昇さ
什て長時間連続して照射するとその効果か増大し該素子
が破壊に至るという問題点があった。
[Problems to be Solved by the Invention] However, in the conventional test method of two series, unless the temperature of the photoelectric conversion element to be tested is measured and the test is conducted while controlling the irradiation power of the two series, In particular, if the temperature of the element is increased by 2, and the average irradiation power is increased from IW/crn' to 5W/c712 by 2, as in the accelerated test mentioned above, and the irradiation is continued for a long time, the effect will be observed. There was a problem that the increase in the number of particles caused the element to break down.

また、この従来例の方法においては、上述のように長時
間光の照射を行う必要があり、当該試験装置の消耗や労
力が増大するという問題点があった。
Further, in this conventional method, as described above, it is necessary to irradiate with light for a long period of time, which has the problem of increasing wear and tear on the test equipment and labor.

本発明の目的は以−にの問題点を解決し、例えば太陽電
池等の光電変換素子の半導体装置の温度を」二昇させる
ことなく、短時間で行うことができる半導体装置の信頼
性試験装置を提供するこ七?こある。
The purpose of the present invention is to solve the following problems, and to provide a reliability testing device for semiconductor devices that can perform tests in a short period of time without raising the temperature of a semiconductor device such as a photoelectric conversion element such as a solar cell. What do you offer? There it is.

[問題点を解決するための手段] 本発明は、波長190nm以」二I000nm以下の電
磁波を含む光を、平均型ノ月02ワット/c112以上
の照射エネルギーを10秒以下の時間で1回又は複数回
繰り返し評価されろ半導体装置に対して照射する光源を
備えたことを特徴とする。
[Means for Solving the Problems] The present invention uses light containing electromagnetic waves with a wavelength of 190 nm or more and 21000 nm or less with an irradiation energy of 02 watts/c112 or more for an average time of 10 seconds or less once or The present invention is characterized in that it includes a light source that irradiates a semiconductor device that is repeatedly evaluated multiple times.

し作用] 以」二のように、従来例に比較して短時間でしかもより
大きな照射エネルギーで評価される半導体装置に対して
照射することができるので、」1記!1′。
As described in ``2'' below, it is possible to irradiate a semiconductor device, which is evaluated in a shorter time and with higher irradiation energy, compared to the conventional example. 1′.

導体装置の温度が−に昇することなく上記半導体装置を
劣化させることができ、上記光劣化試験を行うことがで
きる。また、複数回繰り返し照射することによって、上
記光劣化試験の促進試験を行うことができる。
The semiconductor device can be degraded without the temperature of the conductor device rising to -, and the photodegradation test can be performed. Further, by repeating irradiation a plurality of times, an accelerated test for the photodegradation test described above can be performed.

[実施例] ガラス基板上に、金属電極と光透過性導電酸化膜電極(
以下、TCO電極という。)でアモルファスSiにてな
るp−1−n型ダイオードを挟設した太陽電池をグロー
放電CVD装置を用いて形成し、キャノン社製ストロボ
装置を用いて平均電力10”W/cm2を有し、上述の
AM−1の光に近い白色光を2ミリ秒の間パルス的に照
射し、上記太陽電池の劣化を光電変換効率ηの変化で評
価した。
[Example] A metal electrode and a light-transparent conductive oxide film electrode (
Hereinafter, it will be referred to as a TCO electrode. ), a solar cell with a p-1-n type diode made of amorphous Si sandwiched therein was formed using a glow discharge CVD device, and an average power of 10”W/cm2 was formed using a strobe device manufactured by Canon. White light similar to the AM-1 light described above was irradiated in pulses for 2 milliseconds, and the deterioration of the solar cell was evaluated by the change in photoelectric conversion efficiency η.

発明者の実験によれば上述の1回の照射で上記太陽電池
の開放回路電圧Voc、フィルファクタFF及び短絡回
路電流Jscがともに低下し、光電変換効率ηが2%〜
10%の劣化率のオーダーで低下し、また1回の照射時
間2ミリ秒の上記ストロボ光を周期120秒で16回周
期的にくり返し照射することにより、上記光電変換効率
ηが劣化率で20%以上低下した。
According to the inventor's experiments, the open circuit voltage Voc, fill factor FF, and short circuit current Jsc of the solar cell were all reduced by one irradiation, and the photoelectric conversion efficiency η was 2% to 2%.
By repeatedly irradiating the above strobe light with a period of 120 seconds and 16 times with a period of 120 seconds, the photoelectric conversion efficiency η decreased by a deterioration rate of 20%. % or more.

この試験において、上記太陽電池の温度を測定したが、
上記光の照射を行う前の温度とほとんど変化がなかった
。これは大量の光子を短時間だけ照射するので、試料で
ある太陽電池に入射する全エネルギーが従来例のように
平均電力100mW/cv+”のAM−1光を長時間照
射するのに比較して非常に少ないためである。
In this test, the temperature of the solar cell was measured,
There was almost no change in temperature from before the above-mentioned light irradiation. Since this method irradiates a large number of photons for a short period of time, the total energy incident on the solar cell sample is lower than that of conventional irradiation with AM-1 light with an average power of 100 mW/cv+ for a long period of time. This is because there are very few.

本発明の装置を用いることにより、従来のAM−1の光
で30分から1時間の照射が必要であった光劣化試験を
、1ミリ秒から100ミリ秒で行うことができ、さらに
、数千時間必要であった促進試験を0.1秒から30分
程度で行うことができる。
By using the device of the present invention, a photodegradation test that conventionally required irradiation with AM-1 light for 30 minutes to 1 hour can be performed in 1 millisecond to 100 milliseconds. Accelerated tests that previously required time can be performed in about 0.1 seconds to 30 minutes.

以上の実施例において、光源としてカメラ用ストロボ装
置を用いているが、これに限らず、大型レーザーやYA
Gレーザー及びこれらのレーザーの波長変換器を用いて
半導体装置の吸収係数の大きい光波長に変換し、大量の
光子をパルス的に照射するようにしてもよい。
In the above embodiments, a camera strobe device is used as a light source, but the light source is not limited to this, and a large laser or YA flash device is used as the light source.
It is also possible to use a G laser and a wavelength converter for these lasers to convert the light wavelength to a light wavelength having a large absorption coefficient of the semiconductor device, and irradiate a large amount of photons in a pulsed manner.

上述の白色光は好ましくは波長+90nm以上1100
0n以下の電磁波であって、平均電力102W/am’
以上10 I0W/cyn’以下の照射エネルギーを1
ナノ秒以上10秒以下の時間に面積10−’cm2以J
: I O5am’以下の範囲の太陽電池に照射できる
ことが好ましい。また、上記光源が上記電磁波の波長分
布が可視光領域に極大値を持ち、かつ、1回の発光によ
って10−7ジュール以上105ジュール以下のエネル
ギーを放出することがより好ましい。
The above-mentioned white light preferably has a wavelength of +90 nm or more and 1100 nm.
Electromagnetic waves of 0n or less, average power 102W/am'
Irradiation energy of 10 I0W/cyn' or less is 1
Area 10-'cm2 or more J for a time of nanoseconds or more and 10 seconds or less
: It is preferable to be able to irradiate solar cells in the range of IO5am' or less. Further, it is more preferable that the light source has a wavelength distribution of the electromagnetic waves having a maximum value in the visible light region, and emits energy of 10<-7>Jule or more and 10<5>Jule or less in one light emission.

さらに、赤外光除去フィルター、可視光通過フィルター
及び紫外光通過フィルターのうち少なくとも1つを光源
と評価用の太陽電池の間に設けてもよい。また、1ジュ
ール/cm2から10’ンコ一ル/cm’程度の単位面
積当たりのエネルギーが評価される太陽電池に到達する
ことが好ましい。
Furthermore, at least one of an infrared light removal filter, a visible light passing filter, and an ultraviolet light passing filter may be provided between the light source and the solar cell for evaluation. Further, it is preferable to reach a solar cell whose energy per unit area is evaluated to be on the order of 1 Joule/cm2 to 10'Njoule/cm'.

またさらに、評価用太陽電池の光入射面にIO2当たり
10′。個/秒以上l028個/秒以下の光子か到達す
ることが好ましい。
Furthermore, 10' per IO2 on the light incident surface of the solar cell for evaluation. It is preferable that at least 1028 photons/second or less arrive.

光照射時間は、1ナノ秒以上10秒以下の履射時間であ
ることが好ましく、また照射光量がピーク時の90%に
達した時からピーク時の90%に下降した時までの時間
り月0ピコ秒以上100ミリ秒であることが好ましい。
The light irradiation time is preferably 1 nanosecond or more and 10 seconds or less, and the time from the time when the irradiation light amount reaches 90% of the peak time to the time when it decreases to 90% of the peak time. Preferably, the time period is 0 picoseconds or more and 100 milliseconds.

さらに好ましくは、1マイクロ秒以上IOミリ秒以下で
ある。
More preferably, it is 1 microsecond or more and IO milliseconds or less.

上述のように、多量の光子をアモルファス材料にてなる
太陽電池に対して大量の光子を入射させること?こより
、該太陽電池の劣化を促進できるとともに、該劣化試験
をごく短時間で評価することができ、光量が多いにもか
かわらず、試料である太陽電池の温度の上昇を防止する
ことができるという利点がある。
As mentioned above, is it possible to make a large number of photons incident on a solar cell made of an amorphous material? This not only accelerates the deterioration of the solar cell, but also allows the deterioration test to be evaluated in a very short period of time, and prevents the temperature of the solar cell sample from rising despite the large amount of light. There are advantages.

[発明の効果] 以」二詳述したように本発明によれば、波長I90nm
以上11000n以下の電磁波を含む光を、平均電力1
02ワツト/C1!2以上の照射エネルギーを10秒以
下の時間で1回又は複数回繰り返し評価される半導体装
置に対して照射する光源を備えたので、従来例に比較し
て短時間でしかもより大きな照射エネルギーで評価され
る半導体装置に対して照射することができる。従って、
上記半導体装置の温度が上昇することなく上記半導体装
置を劣化させることができ、上記光劣化試験を行うこと
ができるとともに、複数回繰り返し照射することによっ
て、上記光劣化試験の促進試験を行うことができるとい
う利点がある。
[Effects of the Invention] As described in detail below, according to the present invention, the wavelength I is 90 nm.
The average power of 1
Equipped with a light source that irradiates the semiconductor device to be evaluated once or multiple times in less than 10 seconds with irradiation energy of 0.02 watts/C1!2 or more, it can be evaluated in a shorter time and more efficiently than conventional methods. It is possible to irradiate semiconductor devices that are evaluated with high irradiation energy. Therefore,
The semiconductor device can be degraded without the temperature of the semiconductor device increasing, the photodegradation test can be performed, and the accelerated photodegradation test can be performed by repeatedly irradiating the semiconductor device multiple times. It has the advantage of being possible.

Claims (5)

【特許請求の範囲】[Claims] (1)波長190nm以上1000nm以下の電磁波を
含む光を、平均電力10^2ワット/cm^2以上の照
射エネルギーを10秒以下の時間で1回又は複数回繰り
返し評価される半導体装置に対して照射する光源を備え
たことを特徴とする半導体装置の信頼性試験装置。
(1) For semiconductor devices that are repeatedly evaluated with light containing electromagnetic waves with a wavelength of 190 nm or more and 1000 nm or more and an irradiation energy of 10^2 watts/cm^2 or more for a time of 10 seconds or less, one or more times. A reliability testing device for semiconductor devices, characterized by comprising a light source for irradiation.
(2)上記光源の電磁波の波長分布が可視光領域に極大
値を持ちかつ1回の発光によって、10^−^7ジュー
ル以上10^5ジュール以下のエネルギーを放出するこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
の信頼性試験装置。
(2) A patent claim characterized in that the wavelength distribution of the electromagnetic waves of the light source has a maximum value in the visible light region, and that energy of 10^-^7 joules or more and 10^5 joules or less is emitted by one light emission. A reliability testing device for a semiconductor device according to item 1.
(3)上記光源の光の照射によって半導体装置の光入射
面に1cm^2当たり10^2^0個/秒以上10^2
^8個/秒以下の光子が到達することを特徴とする特許
請求の範囲第1項記載の半導体装置の信頼性試験装置。
(3) By irradiating the light from the light source, the light incident surface of the semiconductor device receives at least 10^2^0 particles/second per 1 cm^2.
2. The reliability testing device for a semiconductor device according to claim 1, wherein ^8 photons/second or less arrive at the device.
(4)上記1回の光照射時間が、1ナノ秒以上10秒以
下であり、照射光量がピーク時の0.9倍に達した時か
ら、ピーク時の0.9倍に下降した時までの時間が10
ピコ秒以上100ミリ秒以下であることを特徴とする第
3項記載の半導体装置の信頼性試験装置。
(4) The above-mentioned one-time light irradiation time is 1 nanosecond or more and 10 seconds or less, and from the time when the irradiation light amount reaches 0.9 times the peak value to the time when it decreases to 0.9 times the peak value. time is 10
4. The reliability testing apparatus for a semiconductor device according to claim 3, wherein the reliability testing apparatus is at least picoseconds and at most 100 milliseconds.
(5)赤外光除去フィルター、可視光通過フィルター、
及び紫外光通過フィルターのうち少なくとも1つを上記
光源と評価される半導体装置の間に設置することを特徴
とする上記第1項記載の半導体装置の信頼性試験装置。
(5) Infrared light removal filter, visible light passing filter,
2. The reliability testing device for a semiconductor device according to item 1, wherein at least one of the above-mentioned light source and the semiconductor device to be evaluated is installed between the light source and the semiconductor device to be evaluated.
JP62039386A 1987-02-23 1987-02-23 Semiconductor photoelectric conversion element reliability tester Expired - Fee Related JPH0812225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039386A JPH0812225B2 (en) 1987-02-23 1987-02-23 Semiconductor photoelectric conversion element reliability tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039386A JPH0812225B2 (en) 1987-02-23 1987-02-23 Semiconductor photoelectric conversion element reliability tester

Publications (2)

Publication Number Publication Date
JPS63206670A true JPS63206670A (en) 1988-08-25
JPH0812225B2 JPH0812225B2 (en) 1996-02-07

Family

ID=12551566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039386A Expired - Fee Related JPH0812225B2 (en) 1987-02-23 1987-02-23 Semiconductor photoelectric conversion element reliability tester

Country Status (1)

Country Link
JP (1) JPH0812225B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117128A (en) * 1983-11-30 1985-06-24 Iwasaki Electric Co Ltd Pretesting method of weather proof test
JPS61134680A (en) * 1984-12-06 1986-06-21 Ushio Inc Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117128A (en) * 1983-11-30 1985-06-24 Iwasaki Electric Co Ltd Pretesting method of weather proof test
JPS61134680A (en) * 1984-12-06 1986-06-21 Ushio Inc Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor

Also Published As

Publication number Publication date
JPH0812225B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
TWI452943B (en) Solar simulator and multijunction photovoltaic devices measurement method
JP5902791B2 (en) Manufacturing method of solar cell
EP3312963B1 (en) System and method for managing the power output of a photovoltaic cell
EP2850441B1 (en) Photovoltaic element evaluation method, measurement system configuration and process for using a measurement system configuration
US20110241719A1 (en) Solar cell measurement system and solar simulator
CN102221669B (en) Measuring system for solar cell and sunlight simulator
EP0180780A1 (en) Noncontact dynamic tester for integrated circuits
JP7303202B2 (en) How to improve ohmic contact behavior between contact grid and emitter layer in silicon solar cells
US5864166A (en) Bistable photoconductive switches particularly suited for frequency-agile, radio-frequency sources
Wu et al. Light induced defects in a-Si: H: Saturation or equilibrium?
JPS63206670A (en) Apparatus for testing reliability of semiconductor device
Whitfield et al. Diamond photoconductors: operational lifetime and radiation hardness under deep-UV excimer laser irradiation
EP2137771B1 (en) Photovoltaic module comprising layer with conducting spots
Pravettoni et al. Characterization of high‐efficiency c‐Si CPV cells
Flaisher et al. Quantitative separation of mechanisms for power dissipation in solar cells by photoacoustic and photovoltaic measurements
Ernst et al. A 5 cm single-discharge CO2 laser having high power output
JP2019012740A (en) Measuring method and measuring apparatus of bulk carrier lifetime of photoinduction carrier
JPS61134680A (en) Measuring method of volt-ampere characteristic of photoelectromotive force semiconductor
Dennis Saturation in solar cells from ultra-fast pulsed-laser illumination
Ihlemann et al. Plasma and plume effects on UV laser ablation of polymers
Buso et al. Laboratory PV generator for MPPT dynamic response testing
Fafard et al. The “fill-factor bias measurement” for advanced triple-junction solar cell characterization and quality control
JP2019012728A (en) Semiconductor inspection device and semiconductor inspection method
JP5582203B2 (en) Voltage / current characteristic measuring method, voltage / current characteristic measuring apparatus, and solar simulator
Winter et al. Correction procedures for the flasher calibration of PV devices resulting in reduced restrictions and uncertainties

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees