JPS61133671A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61133671A
JPS61133671A JP25519484A JP25519484A JPS61133671A JP S61133671 A JPS61133671 A JP S61133671A JP 25519484 A JP25519484 A JP 25519484A JP 25519484 A JP25519484 A JP 25519484A JP S61133671 A JPS61133671 A JP S61133671A
Authority
JP
Japan
Prior art keywords
source
gate electrode
mask
etching
drain regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25519484A
Other languages
Japanese (ja)
Inventor
Naotaka Uchitomi
内富 直隆
Yoshiaki Kitaura
北浦 義昭
Nobuyuki Toyoda
豊田 信行
Akimichi Hojo
北條 顕道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25519484A priority Critical patent/JPS61133671A/en
Publication of JPS61133671A publication Critical patent/JPS61133671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce series resistance effectively, by etching a part of the surface of an operating layer with a gate electrode as a mask after the gate electrode is formed and before or after the ions are implanted into source and drain regions. CONSTITUTION:By using a mask, an n type operating layer 13 is formed on a GaAs substrate 11. Then, a heat resisting metal film 14 is formed on the operating layer 13. Patterning of the film 14 is performed by anisotropic dry etching and a gate electrode 14' is formed. At this time, the etching is not stopped under the state the surface of the substrate is exposed, and over-etching is performed. The surface of the substrate including the operating layer 13 is etched. Then, by using a mask, ions are implanted, and high-concentration ion implanted layers 16 and 17 (source and drain regions) are formed. Thus, a normally OFF type GaAs MESFET, in which series resistance between the gate and the source is small, can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に係り、特にGaASシ
ョットキーゲートグー界効果トランジスタ(MESFE
T)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device, particularly a GaAS Schottky gate field effect transistor (MESFE).
T).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

GaAsMESFETは高周波増幅器や発振器などを構
成する個別半導体素子として広く使われている。また最
近では、GaAS高速論理回路の基本素子としても重要
な役割を果たしつつある。
GaAs MESFETs are widely used as individual semiconductor elements constituting high frequency amplifiers, oscillators, and the like. Recently, they are also playing an important role as basic elements of GaAS high-speed logic circuits.

中でもノーマリ・オフ型MESFETは、DCFL(D
irect  CoupledFET  LoQic)
高速論理回路における重要な構成要素であり、その高性
能化が高速論理回路を製造する上での鍵である。
Among them, the normally-off MESFET is DCFL (D
direct Coupled FET LoQic)
It is an important component in high-speed logic circuits, and its high performance is the key to manufacturing high-speed logic circuits.

GaAsMESFETの性能指数は、C(I8/ローで
記述される。CりSはゲート・ソース間容量であり、g
sは相互コンダクタンスである。従ってCIJSを減ら
し、01を大きくすることによって性能指数は改善され
る。geに着目すると、FETの実質的なga+は am−oso/(1+og+o ・ Rs)となる。0
10はFETのチャネル部の特性から決まる真性相互コ
ンダクタンスであり、これが引き出し得る最大のgmで
ある。R8はゲート・ソース間の直列抵抗である。
The figure of merit of a GaAs MESFET is written as C(I8/low), where C is the gate-source capacitance, and g
s is mutual conductance. Therefore, the figure of merit is improved by reducing CIJS and increasing 01. Focusing on ge, the actual ga+ of the FET is am-oso/(1+og+o·Rs). 0
10 is the intrinsic mutual conductance determined from the characteristics of the channel portion of the FET, and is the maximum gm that can be extracted. R8 is a series resistance between the gate and source.

第2図は従来の一般的なGaAsMESFETの構成を
示している。21は半絶縁性GaAS基板であり、その
表面部にn型動作層22が形成され、この動作層22表
面にショットキー障壁を構成するゲート電極23及びオ
ーミック接触するドレイン、ソース電極24.25が形
成されている。
FIG. 2 shows the configuration of a conventional general GaAs MESFET. Reference numeral 21 designates a semi-insulating GaAS substrate, on the surface of which an n-type active layer 22 is formed, and on the surface of this active layer 22, a gate electrode 23 forming a Schottky barrier and drain and source electrodes 24 and 25 in ohmic contact are formed. It is formed.

この従来の構成では、ゲート・ソース間の直列抵抗R9
が大きく、上記式から、gmがgmoより小さいものと
なってしまう。従ってこのR8をいかに小さくするかが
、大きい相互コンダクタンスを得てFETの高周波特性
を改善するための鍵である。
In this conventional configuration, the series resistance R9 between the gate and source is
is large, and from the above equation, gm becomes smaller than gmo. Therefore, how to reduce R8 is the key to obtaining a large mutual conductance and improving the high frequency characteristics of the FET.

MESFETの直列抵抗R8を低減する方法として、セ
ルファライン法が知られている。これにはいくつかの方
法があるが、その一つの方法により得られたMESFE
Tの構成を第3図に示す。
A self-line method is known as a method for reducing the series resistance R8 of the MESFET. There are several methods for this, but the MESFE obtained by one of them
The configuration of T is shown in FIG.

これは半絶縁性GaAs基板31にn型動作層32を形
成し、その表面にゲート電極33を形成した後、ゲート
電極33をマスクとして高濃度イオン注入によりソース
、ドレイン領域34.35を形成したものである。36
.37はソース、ドレイン電極である。この方法では、
ソース、ドレイン領域34.35がゲート電極33に近
接して形成されるため、直列抵抗R8が小さいものとな
る。
In this method, an n-type active layer 32 is formed on a semi-insulating GaAs substrate 31, a gate electrode 33 is formed on the surface of the n-type active layer 32, and then source and drain regions 34 and 35 are formed by high concentration ion implantation using the gate electrode 33 as a mask. It is something. 36
.. 37 are source and drain electrodes. in this way,
Since the source and drain regions 34 and 35 are formed close to the gate electrode 33, the series resistance R8 becomes small.

しかしこの方法によると、ゲート耐圧が低下する、とい
う別の問題が生じる。このため、ソース。
However, according to this method, another problem arises in that the gate breakdown voltage decreases. For this reason, the source.

ドレインの高濃度イオン注入には自ずと限界がある。There are naturally limits to high-concentration ion implantation for the drain.

このような問題を解決するセルファライン法によるME
SFETとして、第4図、第5図に示すものが知られて
いる。第4図のものは、半絶縁性GaAs基板41に動
作層42を形成し、その表面にマスク44を用いてゲー
ト電極43をパターン形成した後、ゲート電極43にサ
イドエツチングを施し、マスク44をそのまま用いてイ
オン注入してソース、ドレイン領域45.46を形成し
たものである。これにより、ゲート電極43とソース、
ドレイン領域45.46の間に一定の間隔を設けている
。第5図のものは、半絶縁性GaASM板51に動作層
52を形成し、その表面にゲート電極を形成した後、通
常より高い加速エネルギーで高濃度イオン注入してソー
ス、ドレイン領域54.55を形成したものである。こ
れにより表面の濃度を余り高くすることなく、低抵抗ソ
ース、ドレイン領域54.55を形成して、ゲート耐圧
の低下を防止している。
ME using the self-line method solves these problems.
As SFETs, those shown in FIGS. 4 and 5 are known. In the case shown in FIG. 4, an active layer 42 is formed on a semi-insulating GaAs substrate 41, a gate electrode 43 is patterned on its surface using a mask 44, and then side etching is performed on the gate electrode 43, and a mask 44 is removed. The source and drain regions 45 and 46 were formed by ion implantation using the structure as it was. As a result, the gate electrode 43 and the source,
A constant spacing is provided between the drain regions 45,46. In the case shown in FIG. 5, an active layer 52 is formed on a semi-insulating GaASM plate 51, a gate electrode is formed on the surface of the active layer 52, and then high-concentration ions are implanted with acceleration energy higher than usual in source and drain regions 54,55. was formed. As a result, the low resistance source and drain regions 54 and 55 are formed without increasing the surface concentration too much, thereby preventing a decrease in gate breakdown voltage.

しかしながら、これらの第4図、第5図の方法もそれぞ
れ難点がある。即ち、第4図の方法では、ゲート電極4
3をサイドエツチングするため、マスクとのパターン変
換差が大きくなり、しきい値のばらつき等に大きい影響
を与える。また第5図の方法では、直列抵抗R8に支配
的に寄与する動作層表面部の低抵抗化がなされず、また
深い部分でのソース、ドレイン領域の不純物の横方向拡
散に起因すると思われる短チヤネル効果を生じ易くなる
However, the methods shown in FIGS. 4 and 5 each have their own drawbacks. That is, in the method shown in FIG.
3 is side-etched, the difference in pattern conversion with the mask becomes large, which has a large effect on variations in threshold values and the like. Furthermore, in the method shown in FIG. 5, the resistance of the surface portion of the active layer, which contributes dominantly to the series resistance R8, is not lowered, and short circuits are caused by the lateral diffusion of impurities in the source and drain regions in deep portions. Channel effects are more likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は上記の如き難点を解決し、十分なゲート耐圧を
保ちながら直列抵抗R5を効果的に低減して高性能化を
可能としたセルファライン型GaAsMEl:5FET
の製造方法を提供することを目的とする。
The present invention solves the above-mentioned difficulties and provides a self-line type GaAsMEl:5FET that effectively reduces the series resistance R5 while maintaining sufficient gate withstand voltage, thereby making it possible to improve performance.
The purpose is to provide a manufacturing method for.

〔発明の概要〕[Summary of the invention]

本発明は、動作層表面に耐熱性金属によるゲート電極を
形成し、このゲート電極をマスクとして高濃度イオン注
入を行なってソース、ドレイン領域を形成するGaAs
MESFETの製造方法において、ゲート電極形成後で
ソース、ドレイン領域の高濃度イオン注入工程前、また
はソース、ドレイン領域の高濃度イオン注入工程後に、
ゲート電極をマスクとして動作層表面を一部エッチング
する工程を加えたことを特徴とする。
In the present invention, a gate electrode made of a heat-resistant metal is formed on the surface of the active layer, and high-concentration ion implantation is performed using the gate electrode as a mask to form source and drain regions.
In the MESFET manufacturing method, after forming the gate electrode and before the high concentration ion implantation process for the source and drain regions, or after the high concentration ion implantation process for the source and drain regions,
It is characterized by the addition of a step of partially etching the surface of the active layer using the gate electrode as a mask.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大きい相互フンダクタンスを有し、か
つ大きいゲート耐圧を有するセルファライン型GaAs
MESFETを得ることができる。
According to the present invention, self-line type GaAs having a large mutual fundance and a large gate breakdown voltage can be used.
MESFET can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下第1図(a)〜(0)を参照して本発明の詳細な説
明する。
The present invention will be described in detail below with reference to FIGS. 1(a) to 1(0).

まず第1図(a)に示すように、半絶縁性GaAS基板
11にマスク12を用いて3i+イオンを50KeVで
2x10”/cd注入し、850℃で15分アニールす
ることにより、選択的にn型動作層13を形成する。次
にマスク12を除去し、第1図(b)に示すように、耐
熱性金属として窒化タングステン(WN )膜14を反
応性スパッタによって3000人形成する。そしてフォ
トレジスト(図示せず)をマスクとして、CF4と02
の混合ガスによる異方性ドライエツチングによりWN膜
14をバターニングして、第1図(C)に示すようにゲ
ート電極14′を形成する。このとき、第1図(C)の
ように基板表面が露出した状態でエツチングを止めず、
オーバーエツチングを行なうことにより、第1図(d)
に示すように、動作層13を含む基板表面を100人程
度エツチングする。これにより、ゲート電極14′の両
側の段差によりゲート長が僅かに長くなるが、ゲート長
が1〜0.5μmの場合、基板表面のエツチング量を3
0〜200人の範囲に選べば、実質的なゲート長の増加
は無視することができる。この後第1図(e)に示すよ
うに、素子領域以外の部分にマスク15を形成し、これ
とゲート電極14′をマスクとして再びS1+イオンを
100KeVで1X1014/CIA注入し゛て、ゲー
ト電極14′にセルファラインされた高濃度イオン注入
層16.17を形成する。そしてマスク15を除去して
、第1図(f)に示すように基板全面にPSGlll 
Bを堆積し、800℃で10分間熱処理して活性化され
たn+型ソース、ドレイン領域16”、17−を形成す
る。この後PSGIt!18を除去し、第1図(q)に
示すように、AuGe/AUからなるソース、ドレイン
電極19.20を形成する。
First, as shown in FIG. 1(a), 3i+ ions are implanted at 2x10"/cd at 50KeV into a semi-insulating GaAS substrate 11 using a mask 12, and by annealing at 850°C for 15 minutes, selective n A mold operation layer 13 is formed. Next, the mask 12 is removed, and as shown in FIG. 1(b), a tungsten nitride (WN) film 14 is formed as a heat-resistant metal by reactive sputtering. Using a resist (not shown) as a mask, CF4 and 02
The WN film 14 is patterned by anisotropic dry etching using a mixed gas to form a gate electrode 14' as shown in FIG. 1(C). At this time, without stopping etching with the substrate surface exposed as shown in Figure 1(C),
By performing over-etching, Fig. 1(d)
As shown in FIG. 2, the surface of the substrate including the active layer 13 is etched by about 100 people. As a result, the gate length becomes slightly longer due to the step difference on both sides of the gate electrode 14', but when the gate length is 1 to 0.5 μm, the amount of etching on the substrate surface can be reduced by 3
If a range of 0 to 200 people is selected, the substantial increase in gate length can be ignored. After that, as shown in FIG. 1(e), a mask 15 is formed in a portion other than the element region, and using this and the gate electrode 14' as a mask, S1+ ions are again implanted at 100 KeV at 1X1014/CIA, and the gate electrode 14 is A self-lined high-concentration ion implantation layer 16 and 17 is formed at . Then, the mask 15 is removed and PSGll is applied to the entire surface of the substrate as shown in FIG. 1(f).
B is deposited and heat-treated at 800°C for 10 minutes to form activated n+ type source and drain regions 16" and 17-. After this, PSGIt! 18 is removed, and as shown in FIG. 1(q), Then, source and drain electrodes 19 and 20 made of AuGe/AU are formed.

以上のようにして本実施例によれば、ゲート・ソース間
の直列抵抗Rsの小さい、ノーマリ・オフ型のセルファ
ライン型GaAsMESFETが得られる。このMES
FETは、第2図に示すセルファライン型でないMES
FETに比べて相互コンダクタンスgmが約3倍大きい
230m5/mm程度のものが得られた。また第3図に
示す従来のセルファライン型MESFETに比べて、ゲ
ート耐圧は大きく、約10V以上と良好であった。
As described above, according to this embodiment, a normally-off self-lined GaAs MESFET with a small series resistance Rs between the gate and source can be obtained. This MES
The FET is a non-self-line type MES shown in Figure 2.
A transconductance gm of about 230 m5/mm, which is about three times larger than that of an FET, was obtained. Furthermore, compared to the conventional self-line type MESFET shown in FIG. 3, the gate breakdown voltage was large and good at about 10 V or more.

またゲート耐圧向上のためゲート電極の横方向エツチン
グを行なう第4図のものに比べて、しきい値のばらつき
は小さく、第5図の構造で見られた短チヤネル効果につ
いては、ゲート長が0.5μmまでは認められなかった
Furthermore, compared to the structure shown in Fig. 4 in which the gate electrode is laterally etched to improve the gate breakdown voltage, the variation in the threshold value is smaller, and the short channel effect observed in the structure shown in Fig. 5 can be avoided when the gate length is 0. A thickness of up to .5 μm was not observed.

なお本発明は上記実施例に限られない。例えばゲート電
極金属として、硅化タングステン(WS i )など他
の耐熱性金属を用いることができる。また、基板表面を
エツチングする工程は、上記*施例ではソース、ドレイ
ンの高濃度イオン注入の前にゲート電極エツチングに引
き続いて行なったが、ソース、ドレインの高濃度イオン
注入の後に行なってもよい。
Note that the present invention is not limited to the above embodiments. For example, other heat-resistant metals such as tungsten silicide (WS i ) can be used as the gate electrode metal. In addition, the step of etching the substrate surface was performed after the gate electrode etching before the high concentration ion implantation of the source and drain in the *example mentioned above, but it may be performed after the high concentration ion implantation of the source and drain. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜l)は本発明の一実施例のGaAsME
SFETの製造工程を示す図、第2図〜第5図は従来の
GaAsMESFETを示す図である。 11・・・半絶縁性GaAS基板、13・・・n型動作
層、14・・・WN膜、14′・・・ゲート電極、16
゜17・・・高濃度イオン注入層、16−.17−・・
・ソース、ドレイン領域、19.20・・・ソース、ド
レイン電極。 出願人代理人 弁理士 鈴江武彦 一           − ^           ^ 0              °0 ν           V 第2図 第3図 第4図 第5図
Figures 1(a) to 1) show GaAsMEs according to an embodiment of the present invention.
FIGS. 2 to 5, which are diagrams showing the manufacturing process of SFET, are diagrams showing a conventional GaAs MESFET. DESCRIPTION OF SYMBOLS 11... Semi-insulating GaAS substrate, 13... N-type operation layer, 14... WN film, 14'... Gate electrode, 16
゜17...High concentration ion implantation layer, 16-. 17-...
- Source, drain region, 19.20...source, drain electrode. Applicant's agent Patent attorney Takehiko Suzue - ^ ^ 0 °0 ν V Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)動作層が形成された半絶縁性GaAs基板に、耐
熱性金属を用いたゲート電極を形成し、このゲート電極
をマスクとして高濃度イオン注入によりソース、ドレイ
ン領域を形成する半導体装置の製造方法において、前記
ゲート電極形成後で前記ソース、ドレイン領域の高濃度
イオン注入工程前、または前記ソース、ドレイン領域の
高濃度イオン注入工程後に前記ゲート電極をマスクとし
て前記動作層表面を一部エッチングすることを特徴とす
る半導体装置の製造方法。
(1) Manufacturing a semiconductor device in which a gate electrode made of a heat-resistant metal is formed on a semi-insulating GaAs substrate on which an active layer is formed, and source and drain regions are formed by high-concentration ion implantation using this gate electrode as a mask. In the method, the surface of the active layer is partially etched using the gate electrode as a mask after forming the gate electrode and before the high concentration ion implantation process for the source and drain regions, or after the high concentration ion implantation process for the source and drain regions. A method for manufacturing a semiconductor device, characterized in that:
(2)前記動作層表面のエッチング量は30〜200Å
である特許請求の範囲第1項記載の半導体装置の製造方
法。
(2) The amount of etching on the surface of the active layer is 30 to 200 Å
A method for manufacturing a semiconductor device according to claim 1.
JP25519484A 1984-12-03 1984-12-03 Manufacture of semiconductor device Pending JPS61133671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25519484A JPS61133671A (en) 1984-12-03 1984-12-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25519484A JPS61133671A (en) 1984-12-03 1984-12-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61133671A true JPS61133671A (en) 1986-06-20

Family

ID=17275333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25519484A Pending JPS61133671A (en) 1984-12-03 1984-12-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61133671A (en)

Similar Documents

Publication Publication Date Title
US4992387A (en) Method for fabrication of self-aligned asymmetric field effect transistors
JPS62136883A (en) Manufacture of self-aligning field effect transistor
US4997779A (en) Method of making asymmetrical gate field effect transistor
JPS61133671A (en) Manufacture of semiconductor device
JPH0622247B2 (en) Field effect semiconductor device
JPS59111372A (en) Manufacture of semiconductor device
JPS62132369A (en) Schottky gate field effect transistor
JPS62130567A (en) Manufacture of schottky gate field effect transistor
JP2989333B2 (en) Method for manufacturing field effect transistor
JPS6240781A (en) Manufacture of schottky gate field effect transistor
JP3038720B2 (en) Method for manufacturing field effect transistor
JPH081910B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPS59195874A (en) Manufacture of field-effect transistor
JPH0439773B2 (en)
JPH0354851B2 (en)
JPS62291070A (en) Manufacture of semiconductor device
JPS61251078A (en) Manufacture of compound semiconductor device
JPH06260510A (en) Field effect transistor and its manufacturing method
JPH03283627A (en) Manufacture of field-effect semiconductor device
JPH06302621A (en) Fabrication of semiconductor device
JPH081911B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPS61295669A (en) Manufacture of gaas semiconductor device
JPS61220477A (en) Manufacture of gallium-arsenide schottky-barrier-junction-gate type field effect transistor
JPH058590B2 (en)
JPS62243371A (en) Manufacture of semiconductor device