JPH06302621A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH06302621A
JPH06302621A JP11649193A JP11649193A JPH06302621A JP H06302621 A JPH06302621 A JP H06302621A JP 11649193 A JP11649193 A JP 11649193A JP 11649193 A JP11649193 A JP 11649193A JP H06302621 A JPH06302621 A JP H06302621A
Authority
JP
Japan
Prior art keywords
photoresist
impurity
gate electrode
layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11649193A
Other languages
Japanese (ja)
Inventor
Hiroshige Touno
太栄 東野
Yasoo Harada
八十雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11649193A priority Critical patent/JPH06302621A/en
Publication of JPH06302621A publication Critical patent/JPH06302621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a predetermined asymmetrical impurity concentration gradient on opposite sides of a gate electrode by additionally providing a process where an insulating layer is formed only on one side of the gate electrode for impurity doping. CONSTITUTION:A photoresist 2 is applied on the surface of a semi-insulating GaAs substrate 1 and a window is formed in a predetermined region, and thereafter first impurity ion implantation is performed to form a low concentration impurity layer 3. A SiO2 film 4 is formed on the surface from which the photoresist 2 is removed and a photoresist 5 is formed on a drain electrode formation region located thereon. The SiO2 film 4 in a region where the photoresist 5 is not existent is removed by making use of anisotropic RIE. A high melting point metal 6 is vapor-deposited on opposite sides of a remaining SiO2 film 4 and second impurity ion implantation is performed to form an intermediate concentration impurity layer 8. Further, as SiN film is formed and third ion implantation is performed to form two stage and one stage impurity concentration gradients on the sides of the electrode formation regions of a drain and a source. Thus, concentration distribution is strictly controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能化を目指す電界
効果トランジスタ等の半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device such as a field effect transistor aiming at high performance.

【0002】[0002]

【従来の技術】近年、電界効果トランジスタは、動作の
高速化,低消費電力化,低雑音化,高効率化を指向し
て、その諸特性の改善・向上が進められている。中でも
高効率化を図る上で重要となるのは、最大ドレイン電
流,相互コンダクタンス及びゲート・ドレイン間逆耐電
圧であり、ソース抵抗を低減し、高いドレイン電圧を確
保することにより、高効率化を実現しようとしている。
2. Description of the Related Art In recent years, field effect transistors have been improved and improved in various characteristics in order to speed up operation, reduce power consumption, reduce noise, and increase efficiency. Of these, the maximum drain current, transconductance, and reverse gate-drain withstand voltage are important for achieving high efficiency. By reducing the source resistance and ensuring a high drain voltage, high efficiency can be achieved. Trying to make it happen.

【0003】図6は、従来の半導体装置の製造方法を示
す断面構造図であり、位置合わせが不要なため多用され
ている自己整合プロセスにより、GaAsショットキゲ
ート電極を使用した電界効果トランジスタを製造する場
合について説明する。まず半絶縁性の基板41上に能動層
42を形成した後、耐熱性金属、例えばW合金からなるゲ
ート電極43を形成する(図6(a))。そしてこのゲート電
極43をマスクとしてソース・ドレイン領域に不純物のイ
オン注入を行い、さらに熱処理を行ってn+ 層44, 45を
形成する(図6(b))。次いでn+ 層44, 45上にソース電
極46, ドレイン電極47を夫々形成する(図6(c))。
FIG. 6 is a sectional structural view showing a conventional method for manufacturing a semiconductor device, and a field effect transistor using a GaAs Schottky gate electrode is manufactured by a self-alignment process which is often used because alignment is unnecessary. The case will be described. First, the active layer is formed on the semi-insulating substrate 41.
After forming 42, a gate electrode 43 made of a heat resistant metal such as a W alloy is formed (FIG. 6A). Then, impurity ions are implanted into the source / drain regions using the gate electrode 43 as a mask, and further heat treatment is performed to form n + layers 44 and 45 (FIG. 6B). Next, the source electrode 46 and the drain electrode 47 are formed on the n + layers 44 and 45, respectively (FIG. 6C).

【0004】このような方法により得られた電界効果ト
ランジスタは、n+ 層45とゲート電極43とが接している
ため、ソース抵抗はある程度小さくなっているが、ゲー
ト・ドレイン間逆耐電圧が低いという欠点がある。そこ
で図7に示す如く、n+ 層44, 45をゲート電極43から所
定距離だけ離した構造が用いられているが、この場合は
上述のものとは逆に、ゲート・ドレイン間逆耐電圧は所
望量得られるがソース抵抗が大きいという欠点がある。
In the field effect transistor obtained by such a method, since the n + layer 45 and the gate electrode 43 are in contact with each other, the source resistance is reduced to some extent, but the reverse withstand voltage between the gate and the drain is low. There is a drawback that. Therefore, as shown in FIG. 7, a structure in which the n + layers 44 and 45 are separated from the gate electrode 43 by a predetermined distance is used. In this case, however, the reverse withstand voltage between the gate and the drain is opposite to that described above. Although a desired amount can be obtained, there is a drawback that the source resistance is large.

【0005】以上のようにゲート電極の両側の不純物層
構造が対称的な電界効果トランジスタにおいて高効率化
を実現することは非常に困難であった。そこで、前述の
ようにゲート・ドレイン間逆耐電圧はある程度高く、ソ
ース抵抗は小さい電界効果トランジスタとして、ゲート
電極のドレイン電極側とソース電極側とで不純物層構造
が異なる電界効果トランジスタが提案されており、例え
ばゲート電極からソース電極下のn+ 層までの距離と、
ドレイン電極下のn+ 層までの距離とを異ならせるもの
がある。その製造方法としては不純物の注入を斜め方向
から行う斜め注入法が提案されている(電子通信学会技
術研究報告,Vol.86,No.46,ED86-9, pp23〜28) 。この
斜め注入法は、ゲート電極下の低濃度の不純物層を形成
し、さらにT字形のゲート電極を形成した後、所定の角
度にてソース領域側からイオン注入を行う。そうすると
ソース電極側ではゲート電極に近接する位置まで注入が
行われてn+ 層が形成されるが、ドレイン電極側ではゲ
ート電極の廂部により遮られて廂部の端部より遠い位置
までしか注入が行われない。ここでゲート電極からソー
ス電極下のn+ 層までの距離と、ドレイン電極下のn+
層までの距離とは、電界効果トランジスタの前述の特性
に大きな影響を及ぼすため厳密に制御する必要がある。
このようにゲート電極の両側で不純物層の構造を異なら
せた電界効果トランジスタを、上述のような斜め注入法
以外の方法で制御しようとすると、多数のマスクを必要
とする等、製造工程数が大幅に増大し、実用化には不都
合である。
As described above, it has been very difficult to realize high efficiency in a field effect transistor in which the impurity layer structures on both sides of the gate electrode are symmetrical. Therefore, as described above, as a field effect transistor having a high reverse withstand voltage between the gate and the drain and a small source resistance, a field effect transistor having a different impurity layer structure on the drain electrode side and the source electrode side of the gate electrode has been proposed. The distance from the gate electrode to the n + layer below the source electrode,
In some cases, the distance to the n + layer under the drain electrode is different. As the manufacturing method, an oblique injection method has been proposed in which impurities are injected obliquely (Technical report of IEICE, Vol.86, No.46, ED86-9, pp23-28). In this oblique implantation method, a low-concentration impurity layer under the gate electrode is formed, a T-shaped gate electrode is further formed, and then ion implantation is performed from the source region side at a predetermined angle. Then, on the source electrode side, the n + layer is formed by injecting to a position close to the gate electrode, but on the drain electrode side, the n + layer is blocked and is injected only to a position far from the end of the inflated part. Is not done. Wherein the distance from the gate electrode to the n + layer under the source electrode, under the drain electrode n +
The distance to the layer has a great influence on the above-described characteristics of the field-effect transistor, and thus must be strictly controlled.
When a field effect transistor having different impurity layer structures on both sides of the gate electrode is controlled by a method other than the oblique implantation method as described above, a large number of masks are required, and the number of manufacturing steps is reduced. It greatly increases and is inconvenient for practical use.

【0006】[0006]

【発明が解決しようとする課題】しかしながら斜め注入
法により実際に量産を行った場合、注入口を振ることに
より各電界効果トランジスタに対する注入角度が異なる
ため、全ての電界効果トランジスタにおいてn+ 層の形
成領域を厳密に制御することは非常に困難であり、各電
界効果トランジスタ間の特性にばらつきが生じるという
問題がある。本発明は、斯かる事情に鑑みてなされたも
のであり、ゲート電極の一側にのみ絶縁層を形成して不
純物の注入を行う工程を加えることにより、できるだけ
少ない工程数にてゲート電極の両側に、所要の非対称な
不純物濃度勾配を形成することが可能な半導体装置の製
造方法を提供することを目的とする。
However, when mass production is actually carried out by the oblique implantation method, since the implantation angle for each field effect transistor is different by swinging the injection port, the n + layer is formed in all field effect transistors. It is very difficult to strictly control the region, and there is a problem that the characteristics among the field effect transistors vary. The present invention has been made in view of such circumstances, and by adding a step of forming an insulating layer only on one side of a gate electrode and injecting impurities, both sides of the gate electrode can be manufactured with the least number of steps. Another object of the present invention is to provide a semiconductor device manufacturing method capable of forming a required asymmetric impurity concentration gradient.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法は、基板に不純物を注入して低濃度の不純物
層を形成した後、ゲート電極を形成し、該ゲート電極を
マスクとしてさらに不純物を注入して高濃度の不純物層
を形成し、次いでソース電極,ドレイン電極を形成し
て、半導体装置を製造する方法において、前記低濃度の
不純物層を形成した後、ソース領域に絶縁層を形成し、
該絶縁層の側部に接した態様でゲート電極を形成し、こ
れら絶縁層及びゲート電極をマスクとして不純物を注入
して中濃度の不純物層を形成し、これにより得られる不
純物の濃度勾配部及びゲート電極直下を除く領域にさら
に不純物を注入してより高濃度の不純物層を形成し、ソ
ース電極,ドレイン電極をソース領域,ドレイン領域に
夫々形成することを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, impurities are implanted into a substrate to form a low-concentration impurity layer, a gate electrode is formed, and the gate electrode is used as a mask. In a method of manufacturing a semiconductor device, in which impurities are injected to form a high-concentration impurity layer, and then a source electrode and a drain electrode are formed, an insulating layer is formed in a source region after forming the low-concentration impurity layer. Formed,
A gate electrode is formed so as to be in contact with a side portion of the insulating layer, impurities are injected by using the insulating layer and the gate electrode as a mask to form an intermediate concentration impurity layer, and an impurity concentration gradient portion obtained by this and It is characterized in that an impurity is further injected into a region other than directly under the gate electrode to form a higher concentration impurity layer, and a source electrode and a drain electrode are formed in the source region and the drain region, respectively.

【0008】[0008]

【作用】本発明にあっては、ゲート電極の一側にのみ絶
縁層を形成して不純物の注入を行う工程を加えることに
より、ゲート電極の両側における不純物濃度分布を別々
に制御することが可能となる。そしてこの絶縁層の厚
み,形成回数及び不純物の注入回数を異ならせることに
より、厳密に濃度分布を制御することができる。これに
より例えばソース抵抗が小さく、ドレイン耐圧が高い電
界効果トランジスタを製造することが可能であり、半導
体装置の高性能化を図れる。
According to the present invention, the impurity concentration distribution on both sides of the gate electrode can be controlled separately by adding a step of forming an insulating layer only on one side of the gate electrode and implanting impurities. Becomes The concentration distribution can be strictly controlled by making the thickness of the insulating layer, the number of times of formation, and the number of times of implantation of impurities different. Thereby, for example, it is possible to manufacture a field effect transistor having a low source resistance and a high drain breakdown voltage, and it is possible to improve the performance of a semiconductor device.

【0009】[0009]

【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1,図2,図3は、本発明に係
る半導体装置の製造方法の第1実施例を示す断面構造図
である。まず半絶縁性のGaAs基板1の表面にフォト
レジスト(例えば東京応化(株)製:OEBR)2を塗
布し、所要領域に窓開けを行った後、不純物である28
+ の1回目のイオン注入を行って低濃度の不純物層3
を形成する(図1(a))。この注入条件は、加速電圧40K
eV,ドーズ量5×1012cm-2である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. 1, FIG. 2 and FIG. 3 are sectional structural views showing a first embodiment of the method for manufacturing a semiconductor device according to the present invention. First, a photoresist (for example, OEBR manufactured by Tokyo Ohka Co., Ltd.) 2 is coated on the surface of a semi-insulating GaAs substrate 1, and a window is opened in a required area, and then 28 S which is an impurity is applied.
The first ion implantation of i + is performed to perform the low concentration impurity layer 3
Are formed (FIG. 1 (a)). This injection condition is acceleration voltage 40K
The eV and dose amount are 5 × 10 12 cm -2 .

【0010】その後、残りのフォトレジスト2を除去し
た表面にプラズマCVD法によりSiO2 (酸化ケイ
素)膜4を約4000Å形成し、その上の所要領域にフォト
レジスト5を形成する。そして異方性を有する反応性イ
オンエッチング(RIE)によりフォトレジスト5が存
在しない領域のSiO2 膜4を除去する(図1(b))。
Thereafter, a SiO 2 (silicon oxide) film 4 is formed on the surface from which the remaining photoresist 2 has been removed by a plasma CVD method in an amount of about 4000 Å, and a photoresist 5 is formed in a required region thereon. Then, the SiO 2 film 4 in the region where the photoresist 5 does not exist is removed by anisotropic reactive ion etching (RIE) (FIG. 1B).

【0011】そしてフォトレジスト5を除去した表面
に、GaAs基板に対しショットキ接合が可能な、WS
iN(窒化タングステンシリコン),WN(窒化タング
ステン)等の高融点金属6をスパッタ法により蒸着し
(図1(c))、この高融点金属6のうちSiO2 膜4の両
側部のみを残し、他の部分はRIEにより除去する(図
1(d))。次に不純物層3の両外側領域にフォトレジスト
7を形成した後、2回目のイオン注入を行ってフォトレ
ジスト7と高融点金属6との間の領域に中濃度の不純物
層8を形成する(図1(e))。この注入条件は、加速電圧
55KeV,ドーズ量2×1012cm-2である。
Then, on the surface from which the photoresist 5 has been removed, the Schottky junction with the GaAs substrate is possible, WS
A refractory metal 6 such as iN (tungsten silicon nitride) or WN (tungsten nitride) is vapor-deposited by a sputtering method (FIG. 1C), and only the both sides of the SiO 2 film 4 of the refractory metal 6 are left, The other part is removed by RIE (FIG. 1 (d)). Next, a photoresist 7 is formed on both outer side regions of the impurity layer 3, and then a second ion implantation is performed to form an intermediate concentration impurity layer 8 in a region between the photoresist 7 and the refractory metal 6 ( Figure 1 (e)). This injection condition is the acceleration voltage
It is 55 KeV and the dose amount is 2 × 10 12 cm -2 .

【0012】さらにSiO2 膜4及びフォトレジスト7
を除去した表面にプラズマCVD法によりSiN膜20を
約2000Å形成し(図2(f))、高融点金属6の外側に接し
た部分のみを残して他の部分をRIEにより除去する
(図2(g))。さらにSiO2 膜4を除去し、不純物層8
の両外側領域にフォトレジスト21を形成した後、3回目
のイオン注入を行って、高融点金属6,SiN膜20及び
フォトレジスト21が存在しない領域に高濃度の不純物層
22を形成する(図2(h))。この注入条件は、加速電圧90
KeV,ドーズ量5×1013cm-2である。そしてフォトレ
ジスト21を除去した後、プラズマCVD法により全面に
SiN膜23を約3000Å形成し(図2(i))、注入した不純
物を活性化するために 850℃, 5秒間の熱処理を施す。
Further, the SiO 2 film 4 and the photoresist 7
A SiN film 20 of about 2000 liters is formed on the surface from which the metal has been removed by the plasma CVD method (FIG. 2 (f)), and other portions are removed by RIE, leaving only the portion in contact with the outside of the refractory metal 6 (FIG. 2 (f)). (g)). Further, the SiO 2 film 4 is removed to remove the impurity layer 8
After forming the photoresist 21 on both outer side regions of the substrate, a third ion implantation is performed to form a high concentration impurity layer in the region where the refractory metal 6, SiN film 20 and the photoresist 21 do not exist.
22 is formed (FIG. 2 (h)). This injection condition is 90 V
KeV, dose amount 5 × 10 13 cm -2 . Then, after removing the photoresist 21, a SiN film 23 is formed on the entire surface by a plasma CVD method (FIG. 2 (i)), and heat treatment is performed at 850 ° C. for 5 seconds to activate the implanted impurities.

【0013】そしてフォトレジスト24を全面に塗布, 形
成し、ソース・ドレイン領域のSiN膜23及びフォトレ
ジスト24を除去した後、AuGe/Ni層25を蒸着し
(図3(j))、リフトオフ法によりフォトレジスト24及び
その上に形成されたAuGe/Ni層25を除去する。そ
してH2 雰囲気中にて 450℃,120秒間の熱処理を行うこ
とにより、ソース電極27, ドレイン電極26の両オーミッ
ク電極を形成する(図3(k))。以上の如き本発明方法に
よると、ゲート電極のドレイン電極26側で2段階、ソー
ス電極27側で1段階の濃度勾配が形成されるので、ゲー
ト・ドレイン間逆耐電圧は所望量得られ、且つソース抵
抗も小さい電界効果トランジスタを製造することができ
る。
Then, a photoresist 24 is applied and formed on the entire surface, the SiN film 23 in the source / drain regions and the photoresist 24 are removed, and then an AuGe / Ni layer 25 is vapor-deposited (FIG. 3 (j)), followed by a lift-off method. Then, the photoresist 24 and the AuGe / Ni layer 25 formed thereon are removed. Then, heat treatment is performed at 450 ° C. for 120 seconds in an H 2 atmosphere to form both ohmic electrodes of the source electrode 27 and the drain electrode 26 (FIG. 3 (k)). According to the method of the present invention as described above, a two-step concentration gradient is formed on the drain electrode 26 side of the gate electrode and a one-step concentration gradient is formed on the source electrode 27 side, so that the desired reverse gate-drain withstand voltage can be obtained, and A field effect transistor having a small source resistance can be manufactured.

【0014】図4,図5は、本発明方法の第2実施例を
示す断面構造図であり、図1(a) 〜図1(e) に示す工程
は同等であるため、中濃度の不純物層8を形成した後の
工程のみを示す。図1(e) に示すフォトレジスト7を除
去した後、プラズマCVD法によりSiN膜30を約4000
Å形成し(図4(f))、高融点金属6の外側に接した部分
のみを残して他の部分をRIEにより除去する(図4
(g))。さらにSiO2 膜4を除去し、不純物層8の両外
側領域にフォトレジスト31を形成した後、3回目のイオ
ン注入を行って、高融点金属6,SiN膜30及びフォト
レジスト31が存在しない領域に中濃度の第2の不純物層
32を形成する(図4(h))。この注入条件は、加速電圧70
KeV,ドーズ量4×1012cm-2である。
FIGS. 4 and 5 are sectional structural views showing a second embodiment of the method of the present invention. Since the steps shown in FIGS. 1 (a) to 1 (e) are the same, impurities of medium concentration are formed. Only the steps after forming layer 8 are shown. After removing the photoresist 7 shown in FIG. 1 (e), the SiN film 30 is removed to about 4000 by plasma CVD.
Å Formed (FIG. 4 (f)), leaving only the portion in contact with the outside of the refractory metal 6 and removing the other portion by RIE (FIG. 4).
(g)). Further, the SiO 2 film 4 is removed, and a photoresist 31 is formed on both outer regions of the impurity layer 8. After that, a third ion implantation is performed to remove the refractory metal 6, SiN film 30 and the photoresist 31 from the region. Second impurity layer of medium concentration
32 is formed (FIG. 4 (h)). This injection condition is the acceleration voltage 70
KeV, dose amount 4 × 10 12 cm -2 .

【0015】そしてフォトレジスト31を除去した後、プ
ラズマCVD法により全面にSiN膜33を約3000Å形成
する。そして不純物層32の両外側領域にフォトレジスト
34を形成した後、4回目のイオン注入を行って、高融点
金属6,SiN膜30, これらの両側部及びフォトレジス
ト34が存在しない領域に高濃度の不純物層35を形成する
(図4(i))。この注入条件は、加速電圧90KeV,ドー
ズ量5×1013cm-2である。次いでフォトレジスト34を除
去した後、注入した不純物を活性化するために 850℃,
5秒間の熱処理を施す。そしてフォトレジスト36を全面
に塗布, 形成し、ソース・ドレイン領域のSiN膜33及
びフォトレジスト36を除去する。その後AuGe/Ni
層37を蒸着し(図5(j))、リフトオフ法によりフォトレ
ジスト36及びその上に形成されたAuGe/Ni層37を
除去する。そしてH2 雰囲気中にて450℃,120秒間の熱
処理を行うことにより、ソース電極39, ドレイン電極38
の両オーミック電極を形成する(図5(k))。本実施例に
おいては、ゲート電極のドレイン電極38側で3段階、ソ
ース電極39側で2段階の濃度勾配が形成され、ゲート・
ドレイン間逆耐電圧は所望量得られ、且つソース抵抗も
小さい電界効果トランジスタを製造することができる。
After removing the photoresist 31, a SiN film 33 is formed on the entire surface by plasma CVD to a thickness of about 3000 liters. Then, photoresist is applied to both outer regions of the impurity layer 32.
After forming the 34, the fourth ion implantation is performed to form the high-concentration impurity layer 35 in the refractory metal 6, the SiN film 30, both sides thereof and the region where the photoresist 34 does not exist (see FIG. i)). The implantation conditions are an acceleration voltage of 90 KeV and a dose amount of 5 × 10 13 cm -2 . Then, after removing the photoresist 34, at 850 ° C. to activate the implanted impurities,
Heat treatment is performed for 5 seconds. Then, a photoresist 36 is applied and formed on the entire surface, and the SiN film 33 and the photoresist 36 in the source / drain regions are removed. Then AuGe / Ni
A layer 37 is vapor-deposited (FIG. 5 (j)), and the photoresist 36 and the AuGe / Ni layer 37 formed thereon are removed by a lift-off method. Then, by performing heat treatment at 450 ° C. for 120 seconds in an H 2 atmosphere, the source electrode 39 and the drain electrode 38
Both ohmic electrodes are formed (FIG. 5 (k)). In this embodiment, a three-step concentration gradient is formed on the drain electrode 38 side of the gate electrode and a two-step concentration gradient is formed on the source electrode 39 side.
A desired amount of reverse withstand voltage between drains can be obtained, and a field effect transistor having a small source resistance can be manufactured.

【0016】[0016]

【発明の効果】以上のように本発明に係る半導体装置の
製造方法は、ゲート電極の一側にのみ絶縁層を形成して
不純物の注入を行う工程を加えることにより、ゲート電
極の両側における不純物層を容易に所要の非対称な構造
とすることが可能となる。そしてこの絶縁層の厚み,形
成回数及び不純物の注入回数を異ならせることにより、
所望の濃度分布を得ることができるため、ゲート・ドレ
イン間逆耐電圧及びソース抵抗を所要の値とすることが
可能となり、高性能の半導体装置を比較的少ない製造工
程にて製造することができる等、本発明は優れた効果を
奏する。
As described above, in the method of manufacturing a semiconductor device according to the present invention, by adding a step of forming an insulating layer only on one side of the gate electrode and implanting impurities, impurities on both sides of the gate electrode are added. The layers can easily be made to have the required asymmetric structure. By varying the thickness of the insulating layer, the number of times of formation, and the number of times of implantation of impurities,
Since the desired concentration distribution can be obtained, the reverse withstand voltage between the gate and the drain and the source resistance can be set to required values, and a high-performance semiconductor device can be manufactured with relatively few manufacturing steps. Etc., the present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体装置の製造方法の第1実施
例を示す断面構造図である。
FIG. 1 is a sectional structural view showing a first embodiment of a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明に係る半導体装置の製造方法の第1実施
例を示す断面構造図である。
FIG. 2 is a sectional structural view showing a first embodiment of the method of manufacturing a semiconductor device according to the present invention.

【図3】本発明に係る半導体装置の製造方法の第1実施
例を示す断面構造図である。
FIG. 3 is a sectional structural view showing a first embodiment of the method of manufacturing a semiconductor device according to the present invention.

【図4】本発明に係る半導体装置の製造方法の第2実施
例を示す断面構造図である。
FIG. 4 is a sectional structural view showing a second embodiment of the method of manufacturing a semiconductor device according to the present invention.

【図5】本発明に係る半導体装置の製造方法の第2実施
例を示す断面構造図である。
FIG. 5 is a sectional structural view showing a second embodiment of the method of manufacturing a semiconductor device according to the present invention.

【図6】従来の半導体装置の製造方法を示す断面構造図
である。
FIG. 6 is a sectional structural view showing a conventional method for manufacturing a semiconductor device.

【図7】従来の半導体装置を示す断面構造図である。FIG. 7 is a cross-sectional structure diagram showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 基板 2,5,7,21, 24 フォトレジスト 3,8,22,不純物層 4 SiO2 膜 6 高融点金属 20 SiN膜 25 AuGe/Ni膜 27 ソース電極 26 ドレイン電極1 substrate 2, 5, 7, 21, 24 photoresist 3, 8, 22, impurity layer 4 SiO 2 film 6 refractory metal 20 SiN film 25 AuGe / Ni film 27 source electrode 26 drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板に不純物を注入して低濃度の不純物
層を形成した後、ゲート電極を形成し、該ゲート電極を
マスクとしてさらに不純物を注入して高濃度の不純物層
を形成し、次いでソース電極,ドレイン電極を形成し
て、半導体装置を製造する方法において、前記低濃度の
不純物層を形成した後、ソース領域に絶縁層を形成し、
該絶縁層の側部に接した態様でゲート電極を形成し、こ
れら絶縁層及びゲート電極をマスクとして不純物を注入
して中濃度の不純物層を形成し、これにより得られる不
純物の濃度勾配部及びゲート電極直下を除く領域にさら
に不純物を注入してより高濃度の不純物層を形成し、ソ
ース電極,ドレイン電極をソース領域,ドレイン領域に
夫々形成することを特徴とする半導体装置の製造方法。
1. An impurity is implanted into a substrate to form a low-concentration impurity layer, a gate electrode is formed, and then the gate electrode is used as a mask to further implant impurities to form a high-concentration impurity layer. In a method of manufacturing a semiconductor device by forming a source electrode and a drain electrode, an insulating layer is formed in a source region after forming the low concentration impurity layer,
A gate electrode is formed so as to be in contact with a side portion of the insulating layer, impurities are injected by using the insulating layer and the gate electrode as a mask to form an intermediate concentration impurity layer, and an impurity concentration gradient portion obtained by this and A method of manufacturing a semiconductor device, comprising further implanting an impurity into a region except directly under the gate electrode to form a higher concentration impurity layer, and forming a source electrode and a drain electrode in the source region and the drain region, respectively.
JP11649193A 1993-04-19 1993-04-19 Fabrication of semiconductor device Pending JPH06302621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11649193A JPH06302621A (en) 1993-04-19 1993-04-19 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11649193A JPH06302621A (en) 1993-04-19 1993-04-19 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06302621A true JPH06302621A (en) 1994-10-28

Family

ID=14688447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11649193A Pending JPH06302621A (en) 1993-04-19 1993-04-19 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06302621A (en)

Similar Documents

Publication Publication Date Title
JPH08264562A (en) Semiconductor device and fabrication thereof
JPH01205086A (en) Production of self-arrangement refractory gate equipped with self-limit undercut of injection mask
JPH01133375A (en) Manufacture of mesfet with self-aligning gate
JPH02253632A (en) Manufacture of field effect transistor
JPH02148738A (en) Manufacture of field effect transistor
JPS59229876A (en) Manufacture of schottky gate type field effect transistor
JP2677401B2 (en) Method of manufacturing self-aligned gate FET
JP2553699B2 (en) Method for manufacturing semiconductor device
JPH0475351A (en) Manufacture of chemical compound semiconductor device
JPH0817184B2 (en) Method for manufacturing compound semiconductor device
KR0161201B1 (en) Production method for ion-implanted mosfet comprising self-aligned lightly doped drain structure and t-gat
JPH06302621A (en) Fabrication of semiconductor device
US5640029A (en) Field-effect transistor and method of producing same
JPS622666A (en) Field effect transistor
JP3030123B2 (en) Method for manufacturing semiconductor device
JPS6260269A (en) Manufacture of field effect transistor
JP3151101B2 (en) Method for manufacturing field effect transistor
JP3032458B2 (en) Method for manufacturing field effect transistor
JPS6258154B2 (en)
JP3035969B2 (en) Method for manufacturing compound semiconductor device
JPS61163662A (en) Manufacture of field-effect transistor
JPS6260268A (en) Manufacture of field effect transistor
JPH02181440A (en) Manufacture of field-effect transistor
JPH0439772B2 (en)
JPS61144877A (en) Production of semiconductor device