JPS6113326B2 - - Google Patents

Info

Publication number
JPS6113326B2
JPS6113326B2 JP56150078A JP15007881A JPS6113326B2 JP S6113326 B2 JPS6113326 B2 JP S6113326B2 JP 56150078 A JP56150078 A JP 56150078A JP 15007881 A JP15007881 A JP 15007881A JP S6113326 B2 JPS6113326 B2 JP S6113326B2
Authority
JP
Japan
Prior art keywords
weight
dielectric constant
zno
dielectric
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56150078A
Other languages
Japanese (ja)
Other versions
JPS5851406A (en
Inventor
Yukio Higuchi
Masayoshi Katsube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP56150078A priority Critical patent/JPS5851406A/en
Publication of JPS5851406A publication Critical patent/JPS5851406A/en
Publication of JPS6113326B2 publication Critical patent/JPS6113326B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高誘電率で高いQ値を有する高周波
用誘電体磁器組成物に関するものである。 最近数cm以下の波長、すなわちマイクロ波、ミ
リ波(以下マイクロ波と総称する)を取り扱う高
周波回路の技術の進展に伴ない、回路の小形化が
図かられている。 この高周波回路には従来より空胴共振器、アン
テナなどが使用されているが、これらはマイクロ
波の波長と同程度の大きさになるため、小形化へ
の障害となつていた。この問題を解決するため
に、波長そのものを短縮するという方法が考えら
れてきたが、これを実現するには誘電体磁器を使
用する方法がある。 このような材料としてはTiO2系のものがよく
使用されており、たとえばCaTiO3−MgTiO3
La2O3・2TiO2、BaO−TiO2などの誘電体磁器で
共振器が構成されている。しかしながら、これら
の材料ではマイクロ波で使用するときに要求され
る特性、すなわち、高誘電率であること、高いQ
値を有すること、誘電率の温度変化特性が安定し
ていることなどをすべて満足させ得る十分な結果
が得られていない。 このような要求に答えるために、TiO2−ZrO2
−SnO2を主成分とし、ZnO、Co2O3またはZnO、
NiOを添加含有させたものが提案された。しかし
NPO(誘電率の温度変化率が0%であるという
意味)で7GHzの周波数におけるQ値が6000、
7000とそれぞれ小さな値のものしか得られていな
い。 したがつて、この発明は上述した従来の欠点を
解消し、NPOにおいて高いQ値を有する高周波
用誘電体磁器組成物を提供することを目的とす
る。 またこの発明は高い誘電率を有する高周波用誘
電体磁器組成物を提供することを目的とする。 さらにこの発明は組成比率を変化させることに
より、NPOを中心にして任意の誘電率の温度変
化率を有する高周波用誘電体磁器組成物を提供す
ることを目的とする。 すなわち、この発明の要旨とするところは、
TiO222〜43重量%、ZrO238〜58重量%、SnO29
〜26重量%を主成分とし、これにZnOを7重量%
以下、Ta2O5を5重量%以下含有してなるもので
ある。 上記した組成範囲に限定した理由は次のとおり
である。すなわち、TiO2が22重量%未満では誘
電率(ε)が低下し、43重量%を越えると誘電率
の温度係数(TC)がプラス側で大きくなりすぎ
る。またZrO2が38重量%未満になり、あるいは
58重量%を越えると誘電率の温度係数(TC)が
プラス側で大きくなりすぎる。またSnO2が9重
量%未満では誘電率の温度係数(TC)がプラス
側で大きくなりすぎるとともにQが低下し、26重
量%を越えると誘電率の温度係数(TC)がマイ
ナス側で大きくなりすぎる。 次に添加物のうちZnOが7重量%を越えると誘
電率、Qが低下し、またTa2O5が5重量%を越え
るとQが低下する。特にTa2O5は結晶成長を均一
にさせる働きがあるため、結晶内の格子不整の増
加を抑制し、その結果Qを改善する効果を有す
る。 以下、この発明を実施例に従つて詳述する。 原料として高純度のTiO2、ZrO2、SnO2
ZnO、Ta2O5を用い、第1表の組成比率の磁器が
得られるように秤量し、16時間湿式混合した。次
いで脱水、乾燥し、得られた混合原料を2500Kg/
cm2の圧力で直径12mm、厚み6mmの円板に成形し
た。引きつづき成形物を自然雰囲気中1360℃の温
度で3時間焼成して磁器試料を得た。 各磁器試料について25℃、7GHzにおける誘電
率(ε)、Q、および共振周波数の温度係数
(TC)の各電気的特性を測定し、その結果を第1
表に表わした。 第1表中※印はこの発明範囲外のものであり、
それ以外はすべてこの発明範囲内のものである。
また第1表中には参考例して、TiO2−ZrO2
SnO2の主成分に、ZnO、NiOまたはZnO、Co2O3
を添加したものについて同様に電気的特性を測定
し、その結果も示した。
The present invention relates to a high frequency dielectric ceramic composition having a high dielectric constant and a high Q value. Recently, as technology for high-frequency circuits that handle wavelengths of several centimeters or less, that is, microwaves and millimeter waves (hereinafter collectively referred to as microwaves), has progressed, efforts have been made to miniaturize the circuits. Cavity resonators, antennas, and the like have traditionally been used in these high-frequency circuits, but since these are about the same size as the microwave wavelength, they have been an obstacle to miniaturization. In order to solve this problem, a method of shortening the wavelength itself has been considered, but one way to achieve this is to use dielectric ceramics. TiO 2 -based materials are often used as such materials; for example, CaTiO 3 −MgTiO 3
The resonator is made of dielectric ceramic such as La 2 O 3 .2TiO 2 or BaO-TiO 2 . However, these materials do not meet the properties required for microwave use, namely high dielectric constant and high Q.
However, sufficient results have not been obtained to satisfy all the requirements, such as having a high dielectric constant value and stable temperature change characteristics of dielectric constant. In order to meet these demands, TiO 2 −ZrO 2
−SnO 2 as the main component, ZnO, Co 2 O 3 or ZnO,
A product containing added NiO was proposed. but
NPO (meaning that the temperature change rate of dielectric constant is 0%) has a Q value of 6000 at a frequency of 7GHz,
Only small values of 7000 were obtained. Therefore, it is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide a high frequency dielectric ceramic composition having a high Q value in NPO. Another object of the present invention is to provide a high frequency dielectric ceramic composition having a high dielectric constant. A further object of the present invention is to provide a high frequency dielectric ceramic composition having an arbitrary temperature change rate of dielectric constant centered on NPO by changing the composition ratio. In other words, the gist of this invention is:
TiO2 22-43 wt%, ZrO2 38-58 wt%, SnO2 9
~26% by weight as the main component, plus 7% by weight of ZnO
Hereinafter, the material contains Ta 2 O 5 in an amount of 5% by weight or less. The reason for limiting the composition to the above composition range is as follows. That is, when TiO 2 is less than 22% by weight, the dielectric constant (ε) decreases, and when it exceeds 43% by weight, the temperature coefficient (TC) of the dielectric constant becomes too large on the positive side. Also, ZrO 2 is less than 38% by weight, or
If it exceeds 58% by weight, the temperature coefficient (TC) of the dielectric constant becomes too large on the positive side. Furthermore, if SnO 2 is less than 9% by weight, the temperature coefficient of dielectric constant (TC) becomes too large on the positive side and the Q decreases, and if it exceeds 26% by weight, the temperature coefficient of dielectric constant (TC) becomes large on the negative side. Too much. Next, when ZnO among the additives exceeds 7% by weight, the dielectric constant and Q decrease, and when Ta 2 O 5 exceeds 5% by weight, Q decreases. Particularly, since Ta 2 O 5 has the function of making crystal growth uniform, it has the effect of suppressing the increase in lattice misalignment within the crystal and improving Q as a result. Hereinafter, this invention will be explained in detail according to examples. High purity TiO 2 , ZrO 2 , SnO 2 as raw materials,
ZnO and Ta 2 O 5 were weighed and wet-mixed for 16 hours to obtain porcelain having the composition ratio shown in Table 1. Next, it is dehydrated and dried, and the resulting mixed raw material is weighed at 2500 kg/
It was molded into a disk with a diameter of 12 mm and a thickness of 6 mm using a pressure of cm 2 . Subsequently, the molded product was fired in a natural atmosphere at a temperature of 1360° C. for 3 hours to obtain a porcelain sample. The electrical properties of the dielectric constant (ε), Q, and temperature coefficient of resonance frequency (TC) at 25℃ and 7GHz were measured for each ceramic sample, and the results were used in the first
It is shown in the table. Items marked with * in Table 1 are outside the scope of this invention.
All others are within the scope of this invention.
Also, in Table 1, as a reference example, TiO 2 −ZrO 2
The main components of SnO 2 include ZnO, NiO or ZnO, Co 2 O 3
The electrical characteristics were similarly measured for the sample to which .

【表】【table】

【表】 第1表の誘電率(ε)とQの値は誘電体共振法
により測定したものである。またTCは共振周波
数(fp)の温度変化率を表わしたもので、測定
は+25℃〜+85℃の温度範囲で測定した。 共振周波数(fp)の温度変化率〔TC(fp)〕
は次式より求めたもので、誘電率(ε)の温度変
化率〔TC(ε)〕と温度変化による磁器の線膨脹
率(α)とからなつている。 TC(fp)=−1/2TC(ε)−α また、試料番号13と参考例1について結晶粒径
および抗折強度を測定したところ、試料番号13の
ものは結晶粒径5〜10μm、抗折強度1200Kg/
cm2、参考例1のものは結晶粒径10〜30μm、抗折
強度900Kg/cm2であり、Ta2O5を含有させること
によつて結晶粒径が小さく、強度の大きい磁器が
得られる。 上記した実施例から明らかなようにこの発明に
よれば、共振周波数の温度係数(TC)が0のと
きにおいて、従来公知の組成のものにくらべて誘
電率が高く、Qの大きな値のものが得られてい
る。また組成比率を変えることによりNPOを中
心にして任意の共振周波数の温度係数(TC)が
得られているため、高周波回路に組み込んだとき
他の電子部品との温度補償作用を持たせることが
できる。したがつて、高周波領域で使用する誘電
体共振器やアンテナ、あるいは基板などに有用な
高周波用誘電体磁器組成物を提供することができ
る。
[Table] The dielectric constant (ε) and Q values in Table 1 were measured by the dielectric resonance method. Further, TC represents the temperature change rate of the resonant frequency (f p ), and the measurement was performed in a temperature range of +25°C to +85°C. Temperature change rate of resonance frequency (f p ) [TC(f p )]
is calculated from the following formula, and consists of the temperature change rate of dielectric constant (ε) [TC(ε)] and the coefficient of linear expansion of porcelain due to temperature change (α). TC (f p ) = -1/2 TC (ε) - α In addition, when we measured the crystal grain size and bending strength of sample number 13 and reference example 1, we found that sample number 13 had a crystal grain size of 5 to 10 μm, Flexural strength 1200Kg/
cm 2 , Reference Example 1 has a crystal grain size of 10 to 30 μm and a bending strength of 900 Kg/cm 2 , and by incorporating Ta 2 O 5 , a porcelain with a small crystal grain size and high strength can be obtained. . As is clear from the above embodiments, according to the present invention, when the temperature coefficient (TC) of the resonant frequency is 0, the dielectric constant is higher than that of the conventionally known composition, and the Q value is large. It has been obtained. In addition, by changing the composition ratio, the temperature coefficient (TC) of any resonant frequency can be obtained centering on NPO, so when it is incorporated into a high frequency circuit, it can have a temperature compensation effect with other electronic components. . Therefore, it is possible to provide a high frequency dielectric ceramic composition useful for dielectric resonators, antennas, substrates, etc. used in high frequency regions.

Claims (1)

【特許請求の範囲】[Claims] 1 TiO222〜43重量%、ZrO238〜58重量%、
SnO29〜26重量%を主成分とし、これにZnOを7
重量%以下、Ta2O5を5重量%以下添加含有して
なる高周波用誘電体磁器組成物。
1 TiO2 22-43% by weight, ZrO2 38-58% by weight,
The main component is 9-26% by weight of SnO2 , and 7% by weight of ZnO.
A high frequency dielectric ceramic composition containing Ta 2 O 5 in an amount of not more than 5% by weight.
JP56150078A 1981-09-22 1981-09-22 High frequency dielectric porcelain composition Granted JPS5851406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150078A JPS5851406A (en) 1981-09-22 1981-09-22 High frequency dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150078A JPS5851406A (en) 1981-09-22 1981-09-22 High frequency dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS5851406A JPS5851406A (en) 1983-03-26
JPS6113326B2 true JPS6113326B2 (en) 1986-04-12

Family

ID=15489030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150078A Granted JPS5851406A (en) 1981-09-22 1981-09-22 High frequency dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPS5851406A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665041A (en) * 1985-05-10 1987-05-12 Murata Manufacturing Co., Ltd. Dielectric ceramic composition for high frequencies
JPH0747857Y2 (en) * 1988-08-24 1995-11-01 ティーディーケイ株式会社 Coil device

Also Published As

Publication number Publication date
JPS5851406A (en) 1983-03-26

Similar Documents

Publication Publication Date Title
US4102696A (en) Dielectric ceramic composition for high frequencies
JPS6259076B2 (en)
JPS6113326B2 (en)
JPS6410467B2 (en)
US4717694A (en) Dielectric ceramic composition for high frequencies
JPH0952762A (en) Aluminous ceramic composition
JPS5951096B2 (en) dielectric porcelain composition
JPS5951088B2 (en) dielectric porcelain material
JPH0568044B2 (en)
JPS58126610A (en) Dielectric porcelain composition
JPS61256775A (en) Dielectric porcelain composition for high frequency
JP3205029B2 (en) High frequency dielectric ceramic composition
JPH0126123B2 (en)
JPS603801A (en) Dielectric porcelain composition
JPS6141863B2 (en)
JPS6196603A (en) Dielectric ceramic composition
JPS6054269B2 (en) dielectric porcelain composition
JPS61259405A (en) Dielectric ceramic composition for high frequency
JPH0764630B2 (en) Dielectric porcelain composition
JPS62276706A (en) Dielectric ceramic composition
JPH0757708B2 (en) High frequency dielectric ceramic composition
JPH0548563B2 (en)
JPH0253883B2 (en)
JPS6348131B2 (en)
JPH0372165B2 (en)