JPS6196603A - Dielectric ceramic composition - Google Patents
Dielectric ceramic compositionInfo
- Publication number
- JPS6196603A JPS6196603A JP59216648A JP21664884A JPS6196603A JP S6196603 A JPS6196603 A JP S6196603A JP 59216648 A JP59216648 A JP 59216648A JP 21664884 A JP21664884 A JP 21664884A JP S6196603 A JPS6196603 A JP S6196603A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric ceramic
- oxide
- present
- dielectric
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は誘電体磁器組成物、とくに酸化バリウム(Ba
O)、酸化亜鉛(ZnO)、酸化タンタル(T a 2
0 s )、酸化コバルト(COo)および酸化ニオブ
(Nb2Q6)の成分で構成される誘電体共振器用磁器
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to dielectric ceramic compositions, particularly barium oxide (Ba
O), zinc oxide (ZnO), tantalum oxide (T a 2
0 s ), cobalt oxide (COo), and niobium oxide (Nb2Q6).
従来例の構成とその問題点
近年、波長が数センチメートル以下のマイクロ波やミリ
波(以下これらをマイクロ波と総称する)を取扱う高周
波回路の技術の進展にともないこの回路を小形化しあわ
せて全体の価格を低減することが積極的に進められてい
る。これまではこの高周波回路には空胴共振器、アンテ
ナなどが使用されてきたが、これらの大きさはマイクロ
波の波長と同程度になるだめ小形化に対する障害となっ
ていた。これを解決するために誘電率の大きい誘電体磁
器を使用することによって波長そのものを短縮する方法
がとられてきた。このような用途に適する材料として、
たとえばMgTi0−CaTiO3系、MqT103
CaTiO3−La2032T102系、最近ではB
a (Zn1/lAT a% )03−B a (Z
n17NbV )03系などの複合ペロブスカイト型の
誘電体磁器が開発されている。このBa(ZnlATa
%)03−Ba(ZnV3Nb%)o3系の誘電体磁器
材料は、比誘電率が30〜4oで比較的大きくすること
ができ高周波回路の小形化の点からは効果的である。し
かし乍ら、用途によっては周辺回路素子との整合上から
誘電体共振器の共振周波数の温度係数を負に大きく変化
させる必要があり、この点からみればBa(Zn17’
3Ta213)03−Ba (Zn1/1aNb213
)03系の材料では共振周波数の温度係数が正側に変化
してこのような要求を満足させることはできなかった。Conventional configuration and its problems In recent years, with the advancement of high-frequency circuit technology that handles microwaves and millimeter waves (hereinafter collectively referred to as microwaves) with wavelengths of several centimeters or less, this circuit has been miniaturized and the entire circuit has been Active efforts are being made to reduce the price of Until now, cavity resonators, antennas, etc. have been used in these high-frequency circuits, but the size of these devices has become comparable to the wavelength of microwaves, creating an obstacle to miniaturization. To solve this problem, a method has been used to shorten the wavelength itself by using dielectric ceramics with a high dielectric constant. As a material suitable for such uses,
For example, MgTi0-CaTiO3 system, MqT103
CaTiO3-La2032T102 series, recently B
a (Zn1/lAT a%)03-B a (Z
Composite perovskite dielectric ceramics such as n17NbV )03 series have been developed. This Ba(ZnlATa
%)03-Ba(ZnV3Nb%)o3-based dielectric ceramic material has a relative dielectric constant of 30 to 4o, which can be made relatively large, and is effective from the point of view of miniaturization of high frequency circuits. However, depending on the application, it may be necessary to significantly change the temperature coefficient of the resonant frequency of the dielectric resonator in a negative manner for matching with peripheral circuit elements, and from this point of view, Ba(Zn17'
3Ta213)03-Ba (Zn1/1aNb213
)03 series materials, the temperature coefficient of the resonant frequency changes to the positive side, making it impossible to satisfy such requirements.
発明の1的
本発明は上記の欠点を改善するためになされたものであ
り、比誘電率と無負荷Qが大きくさらに共振周波数の温
度係数が安定した値をもち用途に応じてこの温度係数を
負側に細かく変化させうる誘電体磁器を提供するもので
ある。One aspect of the invention The present invention has been made to improve the above-mentioned drawbacks, and has a large relative dielectric constant and no-load Q, and also has a stable temperature coefficient of the resonant frequency. The present invention provides a dielectric ceramic that can be finely changed to the negative side.
発明の構成
本発明者らは前記の要望をみたす材料について種々検討
した結果、(1−x)Ba(Zn′V3Ta2IA)0
3−xBa(Col/5Nb2II3)03 で表わさ
れる組成において、0<X<1(モル分率)の範囲にあ
る組成物が本発明の目的に適うすぐれた高周波用誘電体
磁器になることを見出した。Structure of the Invention As a result of various studies on materials that meet the above requirements, the present inventors found that (1-x)Ba(Zn'V3Ta2IA)0
It has been found that, in the composition represented by 3-xBa(Col/5Nb2II3)03, a composition in the range of 0<X<1 (mole fraction) can be an excellent dielectric ceramic for high frequencies that meets the purpose of the present invention. Ta.
1 実施例の説明
出発原料には化学的に高純度のB a C03t Z
n O+Ta2o6.COoおよびNb2o5を所定の
組成になるよう秤量し、めのうボールを備えたポリエチ
レン製のボールミルで純水とともに湿式混合した。1 Description of Examples Starting materials include chemically highly purified B a C03t Z
n O+Ta2o6. COo and Nb2o5 were weighed to have a predetermined composition, and wet-mixed with pure water in a polyethylene ball mill equipped with an agate ball.
この混合物をボールミルからとり出して乾燥したのち空
気中において1100℃の温度で2時間仮焼した。仮焼
物は純水とともに前記のボールミル中で湿式粉砕した。This mixture was taken out from the ball mill, dried, and then calcined in air at a temperature of 1100° C. for 2 hours. The calcined product was wet-milled together with pure water in the ball mill described above.
粉砕泥しようを濾過乾燥したのち、粉末にバインダーと
して濃度6%のポリビニールアルコール溶液8重量%を
添加して均質としたのち、32メツシユのふるいを通し
て整粒した。整粒粉体は金型と油圧プレスを用いて成形
圧力aooKy/cniで直径j3mtt厚さ約5yt
mの円板に成形した。成形体を高純度のアルミナさや鉢
の中に入れ、組成に応じて空気中において1300〜1
660℃の範囲内の温度で2時間保持して焼成し誘電体
磁器を得た。この磁器から直径5鵡厚さ2閣の円板磁器
素子を切り出し、誘電体共振器法による測定から共振周
波数と無負荷Q(Qu)と比誘電率(εr)を求めた。After filtering and drying the crushed slurry, 8% by weight of a polyvinyl alcohol solution with a concentration of 6% was added to the powder as a binder to make it homogeneous, and the powder was sized through a 32-mesh sieve. The sized powder is molded using a mold and a hydraulic press at a pressure of aooKy/cni with a diameter of J3mtt and a thickness of approximately 5yt.
It was molded into a disk of m. The molded body is placed in a high-purity alumina sheath pot, and depending on the composition, it is heated to 1300 to 1
The dielectric porcelain was obtained by holding and firing at a temperature within the range of 660° C. for 2 hours. A disk porcelain element with a diameter of 5 mm and a thickness of 2 mm was cut out from this porcelain, and the resonant frequency, no-load Q (Qu), and relative dielectric constant (εr) were determined from measurements using the dielectric resonator method.
共振周波数の温度依存性は一30℃から70℃の範囲で
測定し温度係数τfを求めた。共振周波数は10〜12
GHzの範囲であった。このようにして得られた結果を
表に示す。なお、表において*印をした試料は本発明の
範囲外の比較例であり、これ以外の試料が本発明範囲内
の実施例である。The temperature dependence of the resonance frequency was measured in the range of -30°C to 70°C, and the temperature coefficient τf was determined. Resonant frequency is 10-12
It was in the GHz range. The results thus obtained are shown in the table. Note that the samples marked with * in the table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention.
表
表から明らかなように、本発明の範囲内の誘電体磁器は
マイクロ波周波数帯において比誘電率を大きくすること
ができるとともに無負荷Qも大きい値を示し、しかも安
定した負の温度特性を示している。従って、本発明の誘
電体磁器は発振器や共振器の温度依存性を安定化し温度
係数を細かく制御するのに有用であり、SHF帯での使
用に適した小形で高性能の電子回路部品を作ることがで
きる0
本発明の組成範囲を限定した理由を説明すると、Ba(
CoμNb%)03量(x)が零のときは比誘電率とQ
uの向上および共振周波数の温度係数τfの負側への改
善効果が認められなくなるので本発明の範囲から除かれ
る。また、x = 1の磁器は比誘電率とQuの改善効
果が見られなくなるために本発明の範囲から除かれる。As is clear from the table, the dielectric ceramic within the scope of the present invention can have a large relative permittivity in the microwave frequency band, exhibit a large no-load Q value, and have stable negative temperature characteristics. It shows. Therefore, the dielectric ceramic of the present invention is useful for stabilizing the temperature dependence of oscillators and resonators and finely controlling the temperature coefficient, and creating small, high-performance electronic circuit components suitable for use in the SHF band. To explain the reason for limiting the composition range of the present invention, Ba(
CoμNb%)03 When the amount (x) is zero, the relative dielectric constant and Q
Since the effect of improving u and improving the temperature coefficient τf of the resonant frequency to the negative side is no longer recognized, it is excluded from the scope of the present invention. Furthermore, ceramics with x = 1 are excluded from the scope of the present invention because the effect of improving relative dielectric constant and Qu is not observed.
発明の効果
本発明の誘電体磁器組成物はマイクロ波周波数帯におい
て比誘電率が大きく、無負荷Qが犬きく、さらに共振周
波数の温度係数を負側に細かく変化させることができる
とともに安定した値をもたせることができるので発振器
や共振器などの温度依有性を安定化するのに有用である
。また、比誘電率が大きくて低損失であるのでSHF帯
での使用に適し、小形で高性能の電子回路部品を作るこ
とができる。さらに材料の組成を変えることによって必
要なτf を選ぶことができるので誘電体共振器を組立
てたとき周囲の金属板による温度特性におよぼす影響を
なくする温度補償作用をも、たせることかできる。また
、本発明の誘電体磁器組成物は誘電体共振器のみならず
マイクロ波用の基板や誘電体調整棒などの用途にも有用
な素材を提供することができ工業的に利用価値の大きい
ものであるOEffects of the Invention The dielectric ceramic composition of the present invention has a large dielectric constant in the microwave frequency band, a high no-load Q, and the temperature coefficient of the resonant frequency can be changed finely to the negative side while maintaining a stable value. It is useful for stabilizing the temperature dependence of oscillators and resonators. In addition, since it has a large relative dielectric constant and low loss, it is suitable for use in the SHF band, and small, high-performance electronic circuit components can be made. Furthermore, since the necessary τf can be selected by changing the composition of the material, it is also possible to provide a temperature compensation effect that eliminates the influence of surrounding metal plates on the temperature characteristics when the dielectric resonator is assembled. In addition, the dielectric ceramic composition of the present invention can provide a material useful not only for dielectric resonators but also for microwave substrates, dielectric adjustment rods, etc., and has great industrial utility value. O is
Claims (1)
と酸化ニオブからなり、その組成式を(1−x)Ba(
Zn1/3Ta2/3)O_3−xBa(Co1/3N
b2/3)O_3と表わしたとき、その成分組成がモル
分率で0<x<1の範囲にあることを特徴とする誘電体
磁器組成物。It consists of barium oxide, zinc oxide, tantalum oxide, cobalt oxide, and niobium oxide, and its composition formula is (1-x)Ba(
Zn1/3Ta2/3)O_3-xBa(Co1/3N
b2/3) A dielectric ceramic composition characterized in that its component composition, expressed as O_3, is in the range of 0<x<1 in terms of molar fraction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59216648A JPS6196603A (en) | 1984-10-16 | 1984-10-16 | Dielectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59216648A JPS6196603A (en) | 1984-10-16 | 1984-10-16 | Dielectric ceramic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6196603A true JPS6196603A (en) | 1986-05-15 |
JPH0253884B2 JPH0253884B2 (en) | 1990-11-20 |
Family
ID=16691733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59216648A Granted JPS6196603A (en) | 1984-10-16 | 1984-10-16 | Dielectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196603A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158612A (en) * | 1984-12-29 | 1986-07-18 | 太陽誘電株式会社 | Dielectric ceramic composition |
-
1984
- 1984-10-16 JP JP59216648A patent/JPS6196603A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158612A (en) * | 1984-12-29 | 1986-07-18 | 太陽誘電株式会社 | Dielectric ceramic composition |
JPH0353721B2 (en) * | 1984-12-29 | 1991-08-16 | Taiyo Yuden Kk |
Also Published As
Publication number | Publication date |
---|---|
JPH0253884B2 (en) | 1990-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5937526B2 (en) | dielectric magnetic composition | |
JPH0952762A (en) | Aluminous ceramic composition | |
JPS6196603A (en) | Dielectric ceramic composition | |
JPH0126123B2 (en) | ||
JPS6056306A (en) | Dielectric porcelain composition | |
JPS58126610A (en) | Dielectric porcelain composition | |
JPS58185482A (en) | Dielectric ceramic composition | |
JPS5860668A (en) | Dielectric ceramic composition | |
JPS5951088B2 (en) | dielectric porcelain material | |
JPS603801A (en) | Dielectric porcelain composition | |
JPS5951095B2 (en) | dielectric porcelain composition | |
JPS6236325B2 (en) | ||
JPS6119004A (en) | Dielectric porcelain composition | |
JPS61122153A (en) | Dielectric ceramic composition | |
JPS59224005A (en) | Dielectric porcelain composition | |
JPS6151703A (en) | Dielectric porcelain composition | |
JPS6256606B2 (en) | ||
JPS6117083B2 (en) | ||
JPS58185481A (en) | Dielectric ceramic composition | |
JPS6343338B2 (en) | ||
JPS60218704A (en) | Dielectric porcelain composition | |
JPS6256607B2 (en) | ||
JPH0346923B2 (en) | ||
JPS59223271A (en) | Dielectric ceramic composition | |
JPS6348133B2 (en) |