JPS6259076B2 - - Google Patents

Info

Publication number
JPS6259076B2
JPS6259076B2 JP57098876A JP9887682A JPS6259076B2 JP S6259076 B2 JPS6259076 B2 JP S6259076B2 JP 57098876 A JP57098876 A JP 57098876A JP 9887682 A JP9887682 A JP 9887682A JP S6259076 B2 JPS6259076 B2 JP S6259076B2
Authority
JP
Japan
Prior art keywords
weight
dielectric constant
dielectric
high frequency
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57098876A
Other languages
Japanese (ja)
Other versions
JPS58217465A (en
Inventor
Yukio Higuchi
Masayoshi Katsube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP57098876A priority Critical patent/JPS58217465A/en
Publication of JPS58217465A publication Critical patent/JPS58217465A/en
Publication of JPS6259076B2 publication Critical patent/JPS6259076B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高誘電率で高いQ値を有する高周波
用誘電体磁器組成物に関するものである。 最近数cm以下の波長、すなわちマイクロ波、ミ
リ波(以下マイクロ波と総称する)を取り扱う高
周波回路の技術の進展に伴ない、回路の小形化が
図かられている。 この高周波回路には従来より空洞共振器、アン
テナなどが使用されているが、これらはマイクロ
波の波長と同程度の大きさになるため、小形化へ
の障害となつていた。この問題を解決するため
に、波長そのものを短縮するという方法が考えら
れてきたが、これを実現するには誘電体磁器を使
用する方法がある。 このような材料としてはTiO2系のものがよく
使用されており、たとえばCaTiO3−MgTiO3
La2O3・2TiO2,BaO−TiO2などの誘電体磁器で
共振器が構成されている。しかしながら、これら
の材料ではマイクロ波で使用するときに要求され
る特性、すなわち、高誘電率であること、高いQ
値を有すること、誘電率の温度変化特性が安定し
ていることなどをすべて満足させ得る十分な結果
が得られていない。 したがつて、この発明は上述した従来の欠点を
解消した高周波用誘電体磁器組成物を提供するこ
とを目的とする。 またこの発明は高い誘電率を有する高周波用誘
電体磁器組成物を提供することを目的とする。 さらにこの発明は組成比率を変化させることに
より、NPOを中心にして任意の誘電率の温度変
化率を有する高周波用誘電体磁器組成物を提供す
ることを目的とする。 すなわち、この発明の要旨とするところは、
TiO222〜43重量%、ZrO238〜58重量%、SnO29
〜26重量%を主成分とし、これにNiOを10重量%
以下、Ta2O5を5重量%以下含有してなるもので
ある。 上記した組成範囲に限定した理由は次のとおり
である。すなわち、TiO2が22重量%未満では誘
電率(ε)が低下し、43重量%を越えると誘電率
の温度係数(TC)がプラス側で大きくなりすぎ
る。またZrO2が38重量%未満になり、あるいは
58重量%を越えると誘電率の温度係数(TC)が
プラス側で大きくなりすぎる。またSnO2が9重
量%未満では誘電率の温度係数(TC)がプラス
側で大きくなりすぎるとともにQが低下し、26重
量%を越えると誘電率の温度係数(TC)がマイ
ナス側で大きくなりすぎる。 次に添加物のうちNiOが10重量%を越えるとQ
が低下し、またTa2O5が5重量%を越えるとQが
低下する。特にTa2O5は結晶成長を均一にさせる
働きがあるため、結晶内の格子不整の増加を抑制
し、その結果Qを改善する効果を有する。 以下、この発明を実施例に従つて詳述する。 原料として高純度のTiO2,ZrO2,SnO2
NiO,Ta2O5を用い、第1表の組成比率の磁器が
得られるように秤量し、16時間湿式混合した、次
いで脱水、乾燥し、得られた混合原料を2500Kg/
cm2の圧力で直径12mm、厚み6mmの円板に成形し
た。引きつづき成形物を自然雰囲気中1360℃の温
度で3時間焼成して磁器試料を得た。 各磁器試料について25℃、7GHzにおける誘電
率(ε)、Q、および共振周波数の温度係数
(TC)の各電気的特性を測定し、その結果を第1
表に表わした。 第1表中※印はこの発明範囲外のものであり、
それ以外はすべてこの発明範囲内のものである。
The present invention relates to a high frequency dielectric ceramic composition having a high dielectric constant and a high Q value. Recently, as technology for high-frequency circuits that handle wavelengths of several centimeters or less, that is, microwaves and millimeter waves (hereinafter collectively referred to as microwaves), has progressed, efforts have been made to miniaturize the circuits. Cavity resonators, antennas, and the like have traditionally been used in these high-frequency circuits, but these have been an obstacle to miniaturization because their size is about the same as the wavelength of the microwave. In order to solve this problem, a method of shortening the wavelength itself has been considered, but one way to achieve this is to use dielectric ceramics. TiO 2 -based materials are often used as such materials; for example, CaTiO 3 −MgTiO 3
The resonator is constructed of dielectric ceramics such as La 2 O 3 .2TiO 2 and BaO-TiO 2 . However, these materials do not meet the properties required for microwave use, namely high dielectric constant and high Q.
However, sufficient results have not been obtained to satisfy all the requirements, such as having a high dielectric constant value and stable temperature change characteristics of dielectric constant. Therefore, it is an object of the present invention to provide a high frequency dielectric ceramic composition which eliminates the above-mentioned conventional drawbacks. Another object of the present invention is to provide a high frequency dielectric ceramic composition having a high dielectric constant. A further object of the present invention is to provide a high frequency dielectric ceramic composition having an arbitrary temperature change rate of dielectric constant centered on NPO by changing the composition ratio. In other words, the gist of this invention is:
TiO2 22-43 wt%, ZrO2 38-58 wt%, SnO2 9
~26% by weight as the main component, plus 10% by weight of NiO
Hereinafter, the material contains Ta 2 O 5 in an amount of 5% by weight or less. The reason for limiting the composition to the above composition range is as follows. That is, when TiO 2 is less than 22% by weight, the dielectric constant (ε) decreases, and when it exceeds 43% by weight, the temperature coefficient (TC) of the dielectric constant becomes too large on the positive side. Also, ZrO 2 is less than 38% by weight, or
If it exceeds 58% by weight, the temperature coefficient (TC) of the dielectric constant becomes too large on the positive side. Furthermore, if SnO 2 is less than 9% by weight, the temperature coefficient of dielectric constant (TC) becomes too large on the positive side and the Q decreases, and if it exceeds 26% by weight, the temperature coefficient of dielectric constant (TC) becomes large on the negative side. Too much. Next, if NiO exceeds 10% by weight among additives, Q
Q decreases, and when Ta 2 O 5 exceeds 5% by weight, Q decreases. Particularly, since Ta 2 O 5 has the function of making crystal growth uniform, it has the effect of suppressing the increase in lattice misalignment within the crystal and improving Q as a result. Hereinafter, this invention will be explained in detail according to examples. High purity TiO 2 , ZrO 2 , SnO 2 as raw materials,
NiO, Ta 2 O 5 were weighed to obtain porcelain having the composition ratio shown in Table 1, wet mixed for 16 hours, then dehydrated and dried, and the resulting mixed raw material was weighed at 2500 kg/
It was molded into a disk with a diameter of 12 mm and a thickness of 6 mm using a pressure of cm 2 . Subsequently, the molded product was fired in a natural atmosphere at a temperature of 1360° C. for 3 hours to obtain a porcelain sample. The electrical properties of the dielectric constant (ε), Q, and temperature coefficient of resonance frequency (TC) at 25℃ and 7GHz were measured for each ceramic sample, and the results were used in the first
It is shown in the table. Items marked with * in Table 1 are outside the scope of this invention.
Everything else is within the scope of this invention.

【表】 第1表の誘電率(ε)とQの値は誘電体共振法
により測定したものである。またTCは共振周波
数()の温度変化率を表わしたもので、測定
は+25℃〜+85℃の温度範囲で測定した。 共振周波数()の温度変化率〔TC(
)〕は次式より求めたもので、誘電率(ε)の
温度変化率〔TC(ε)〕と温度変化による磁器の
線膨張率(α)とからなつている。 TC()=1/2TC(ε)−α また、試料番号13について結晶粒径および抗折
強度を測定したところ、結晶粒径5〜10μm、抗
折強度1200Kg/cm2であり、Ta2O5を含有させるこ
とによつて結晶粒径が小さく、強度の大きい磁器
が得られている。 なお、試料番号4,10については焼結が下可能
であつたため、電気的特性の測定は行わなかつ
た。 上記した実施例から明らかなようにこの発明に
よれば、共振周波数の温度係数(TC)がOのと
きにおいて、Qが7800もの大きな値のものが得ら
れている。また組成比率を変えることにより
NPOを中心にして任意の共振周波数の温度係数
(TC)が得られているため、高周波回路に組込ん
だとき他の電子部品との温度補償作用を持たせる
ことができる。したがつて、高周波領域で使用す
る誘電体共振器やアンテナ、あるいは基板などに
有用な高周波用誘電体磁器組成物を提供すること
ができる。
[Table] The dielectric constant (ε) and Q values in Table 1 were measured by the dielectric resonance method. Further, TC represents the temperature change rate of the resonance frequency ( 0 ), and the measurement was performed in a temperature range of +25°C to +85°C. Temperature change rate of resonance frequency ( 0 ) [TC(
0 )] is obtained from the following equation, and is composed of the temperature change rate [TC(ε)] of the dielectric constant (ε) and the linear expansion coefficient (α) of the porcelain due to temperature change. TC ( 0 ) = 1/2TC (ε) - α In addition, when the crystal grain size and bending strength of sample number 13 were measured, the crystal grain size was 5 to 10 μm, the bending strength was 1200 Kg/cm 2 , and Ta 2 By including O 5 , porcelain with small crystal grain size and high strength can be obtained. Incidentally, since sintering was possible for samples Nos. 4 and 10, the electrical characteristics were not measured. As is clear from the above embodiments, according to the present invention, when the temperature coefficient (TC) of the resonance frequency is O, a Q as large as 7800 is obtained. Also, by changing the composition ratio
Since the temperature coefficient (TC) of any resonant frequency has been obtained centering on the NPO, it can have a temperature compensation effect with other electronic components when incorporated into a high frequency circuit. Therefore, it is possible to provide a high frequency dielectric ceramic composition useful for dielectric resonators, antennas, substrates, etc. used in high frequency regions.

Claims (1)

【特許請求の範囲】[Claims] 1 TiO222〜43重量%、ZrO238〜58重量%、
SnO29〜26重量%を主成分とし、これにNiOを10
重量%以下、Ta2O5を5重量%以下添加含有して
なる高周波用誘電体磁器組成物。
1 TiO2 22-43% by weight, ZrO2 38-58% by weight,
The main component is 9-26% by weight of SnO2 , and 10% by weight of NiO.
A high frequency dielectric ceramic composition containing Ta 2 O 5 in an amount of not more than 5% by weight.
JP57098876A 1982-06-08 1982-06-08 High frequency dielectric ceramic composition Granted JPS58217465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098876A JPS58217465A (en) 1982-06-08 1982-06-08 High frequency dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098876A JPS58217465A (en) 1982-06-08 1982-06-08 High frequency dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS58217465A JPS58217465A (en) 1983-12-17
JPS6259076B2 true JPS6259076B2 (en) 1987-12-09

Family

ID=14231369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098876A Granted JPS58217465A (en) 1982-06-08 1982-06-08 High frequency dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS58217465A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665041A (en) * 1985-05-10 1987-05-12 Murata Manufacturing Co., Ltd. Dielectric ceramic composition for high frequencies
JPH02192460A (en) * 1988-06-20 1990-07-30 Sanyo Electric Co Ltd Dielectric porcelain composition for microwave
JP2804531B2 (en) * 1989-08-11 1998-09-30 三洋電機株式会社 Method for producing dielectric ceramic composition for microwave

Also Published As

Publication number Publication date
JPS58217465A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
JPS6259076B2 (en)
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JPS6113326B2 (en)
JPS6410467B2 (en)
JPH0952762A (en) Aluminous ceramic composition
JPS5951088B2 (en) dielectric porcelain material
JPS6056306A (en) Dielectric porcelain composition
JPH0126123B2 (en)
JPS61256775A (en) Dielectric porcelain composition for high frequency
JPS58126610A (en) Dielectric porcelain composition
JPS603801A (en) Dielectric porcelain composition
JPS6141863B2 (en)
JPS6054269B2 (en) dielectric porcelain composition
JPS6196603A (en) Dielectric ceramic composition
JPS61259405A (en) Dielectric ceramic composition for high frequency
JPS6343338B2 (en)
JPS59223271A (en) Dielectric ceramic composition
JPH0757708B2 (en) High frequency dielectric ceramic composition
JPH0231029B2 (en)
JPS6348131B2 (en)
JPH0253883B2 (en)
JPH0346923B2 (en)
JPH0372165B2 (en)
JPS6117083B2 (en)
JPH0764630B2 (en) Dielectric porcelain composition