JPS61132844A - Optical beam scanner - Google Patents

Optical beam scanner

Info

Publication number
JPS61132844A
JPS61132844A JP25461284A JP25461284A JPS61132844A JP S61132844 A JPS61132844 A JP S61132844A JP 25461284 A JP25461284 A JP 25461284A JP 25461284 A JP25461284 A JP 25461284A JP S61132844 A JPS61132844 A JP S61132844A
Authority
JP
Japan
Prior art keywords
light
wafer
scattered light
light beam
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25461284A
Other languages
Japanese (ja)
Inventor
Hajime Inoue
肇 井上
Takao Kanai
孝夫 金井
Yoshiisa Sezaki
吉功 瀬崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP25461284A priority Critical patent/JPS61132844A/en
Publication of JPS61132844A publication Critical patent/JPS61132844A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To detect a minute defect with a high accuracy by providing a lens means for condensing a light reflected irregularly by a defective part of the surface of an object to be inspected, and a photoelectric converting means, and condensing efficiently an absolute quantity of a scattered light. CONSTITUTION:A titled scanner is provided with a cylindrical lens 30 which has a wider size than an effective scan width on the surrace of a wafer 10 in the vicinity of the wafer 10, also does not photodetect a regularly reflected lilght by the surface of the wafer 10 but photodetects only an irregularly reflected scattered light, and also condenses the photodetected scattered light, in parallel to the optical beam scanning direction of the surface of the wafer 10. Subsequently, the cylindrical lens 30 is connected to a photomultiplier tube 40 through an optical fiber flux 31. In this state, all scattered lights 5 contained in a solid angle theta1 reflected irregularly from a defective part 4 of the wafer 10 are condensed by the cylindrical lens 30 and inputted to the photomutiplier tube 40, and a minute scattered light is detected. In this way, a defect of the wafer 10 can be detected with a high accuracy.

Description

【発明の詳細な説明】 巌1ul五1次! 本発明は光ビーム走査装置に関し、より詳しくは、被検
物たとえば半導体ウェハ等の基板表面の欠陥を検査する
ため、光ビームによってその表面を走査し、欠陥部から
の散乱光を検出するようにした光ビーム走査装置に関す
るものである。
[Detailed description of the invention] Iwao 1ul 51st order! The present invention relates to a light beam scanning device, and more particularly, the present invention relates to a light beam scanning device that scans the surface of a substrate such as a semiconductor wafer for defects by scanning the surface with a light beam and detecting scattered light from the defective portion. This invention relates to a light beam scanning device.

!l ウェハ等の被検物の表面欠陥をレーザ等の光ビーム走査
によって検出するとき、正反射光の減少を検知して表面
上の欠陥を検出する方法と比較して表面上のキズ、ゴミ
等の欠陥部によって発生する散乱光を検出して行う方式
がS/N比の高さゆえに有利である。この方式を採る場
合、光学系の構成の簡易さ及び正反射光の処理の容易性
並びに散乱光を取り出すための自由度を大きくできるこ
とから、lI21!lに示すように、被検査面(1)に
対し走査光ビーム(2)の入射面(3)を直交させるよ
うに構成する場合が多い。
! l When detecting surface defects on a test object such as a wafer by scanning a light beam such as a laser, it is possible to detect scratches, dirt, etc. on the surface compared to a method that detects defects on the surface by detecting a decrease in specularly reflected light. The method of detecting the scattered light generated by the defective part is advantageous because of its high S/N ratio. When this method is adopted, the structure of the optical system is simple, the specularly reflected light can be easily processed, and the degree of freedom for extracting the scattered light can be increased, so lI21! As shown in FIG. 1, the scanning light beam (2) is often configured so that the incident surface (3) of the scanning light beam (2) is orthogonal to the surface to be inspected (1).

このような場合、被検査面(1)の欠陥部(4)である
乱反射された散乱光(5)の強度は、通常、走査光ビー
ム(2)に比べ極めて微弱である。このように散乱光(
5)が極めて微弱であるのに加えて、光ビーム走査特有
のこととして、走査M(7)のス)ローフ(走査幅)と
いう問題がある。この走査幅の全域をカバーできるよう
にするため、例えば1次元CODカメラ岬な用いて散乱
光を検出しようとするときには、その結像レンズを走査
M(7)から大きな距離をおいて設けねばならない、こ
の場合、そもそも散乱光が微弱なうえに結像レンズに入
る散乱光の絶対量が極めて少なくなるので、検出精度に
は自づと限界がある。
In such a case, the intensity of the scattered light (5) that is diffusely reflected from the defective portion (4) of the surface to be inspected (1) is usually extremely weak compared to the scanning light beam (2). In this way, scattered light (
In addition to the fact that 5) is extremely weak, there is a problem unique to light beam scanning: the slope (scanning width) of scanning M(7). In order to cover the entire scanning width, for example, when trying to detect scattered light using a one-dimensional COD camera, the imaging lens must be placed at a large distance from the scanning M(7). In this case, the scattered light is weak to begin with, and the absolute amount of the scattered light that enters the imaging lens is extremely small, so there is a limit to the detection accuracy.

他方、走査幅をカバーできる光電素子アレイなどの光電
変換手段で直接散乱光を受光しようとする場合を考える
と、受けとる散乱光の絶対量を少しでも増加させるため
に、光!変換手段を走査面になるべく接近させて配置し
たいが、他方で光電変換手段は一定の物理的な大きさを
もつことから、走査光ビーム(2)の邪魔にならないよ
うにするため、走査面から必ず一定の距離をおいた箇所
に設けねばならないという制約があろ、したがって、か
かる光電変換手段では微弱な散乱光を効率よ(受光する
ことは困難である。また、接近して設置するにしても、
光電変換手段に接続されその出力信号を処理する回路部
との関係も考慮しなければならない。
On the other hand, if we consider the case where we try to directly receive scattered light with a photoelectric conversion means such as a photoelectric element array that can cover the scanning width, we need to increase the absolute amount of received scattered light even a little. Although it is desirable to arrange the conversion means as close as possible to the scanning surface, on the other hand, since the photoelectric conversion means has a certain physical size, it is necessary to place the conversion means as close as possible to the scanning surface so that it does not interfere with the scanning light beam (2). There is a restriction that the photoelectric conversion means must be installed at a certain distance, so it is difficult for such photoelectric conversion means to efficiently receive weak scattered light. ,
The relationship with the circuit section connected to the photoelectric conversion means and processing its output signal must also be considered.

一方、被検査面(1)が広く、欠陥サイズも例えばミリ
オーダであるときには、特に問題にはならないけれども
、被検査面(1)が小さくて狭く、欠陥サイズがミクロ
ンオーダともなると、散乱光の処理に特有の工夫が求め
られることとなる1例えば、3インチ−ないし6インチ
φの半導体ウェハに係る表面欠陥は、ミクロンオーダの
検出精度が要求され、さらに、高集積化の試みに応じて
線幅が2μ、1μ、サブミクロンと進展してくると、検
出すべき最小欠陥サイズもサブミクロンオーダとなる。
On the other hand, if the surface to be inspected (1) is wide and the defect size is, for example, on the order of millimeter, this will not be a particular problem, but if the surface to be inspected (1) is small and narrow and the defect size is on the order of microns, the scattered light For example, surface defects on semiconductor wafers of 3 inches to 6 inches in diameter require detection accuracy on the micron order. As the defect size progresses to 2μ, 1μ, and submicron, the minimum defect size to be detected also becomes submicron order.

走査幅の問題を克服し、かつ微弱な散乱光の強度を直接
検出してサブミクロンの表面欠陥を検出するには特有の
工夫が求められる。
A unique technique is required to overcome the scanning width problem and directly detect the intensity of the weak scattered light to detect submicron surface defects.

が  し ゛   る 本発明は、走査幅に係る問題を克服するとともに、極め
て微細な欠陥までも高精度に検出できるように散乱光の
絶対量をいかに多く光電変換手段に入力できるかの問題
を解決しようとするものである。
The present invention overcomes the problem related to the scanning width, and also solves the problem of how much absolute amount of scattered light can be input to the photoelectric conversion means so that even the smallest defects can be detected with high precision. This is what I am trying to do.

ぼ    るための 上記問題点を解決するための手段として、本発明は、載
置されたウェハ等の基板を保持して一方方向に移動する
被検物搬送手段と、被検物搬送手段の移動方向と交差す
る方向に偏向される光ビームにより被検物の表面を走査
線順次に走査する尤ビーム走査手段と、被検物の表面に
おける光ビーム走査方向と平行に近接配置され、被検物
の表面で乱反射した散乱光を受けかつ集光するための集
光レンズと、集光レンズからの光を電気信号に変換する
光電変換手段とを備えてなることを基本的な特徴とする
ものである。
As a means for solving the above-mentioned problem of the substrate climbing, the present invention provides a test object transport means that holds a mounted substrate such as a wafer and moves it in one direction, and a test object transport means that moves the test object transport means in one direction. a beam scanning means for sequentially scanning the surface of the object to be inspected with a light beam deflected in a direction crossing the direction; The basic feature is that it is equipped with a condensing lens for receiving and condensing the scattered light diffusely reflected on the surface of the condenser, and photoelectric conversion means for converting the light from the condensing lens into an electrical signal. be.

作1− 上記構成において、被検物の表面で乱反射した散乱光は
、光ビーム走査方向に平行に近接して配置された集光レ
ンズに大きな文体角をもって入射し、さらにこの集光レ
ンズにより効率良く集光され、充電変換手段に入力され
るため、非常に微少な欠陥でも精度良く検出することが
できる。
Work 1 - In the above configuration, the scattered light that is diffusely reflected on the surface of the object to be inspected enters the condensing lens arranged close to and parallel to the light beam scanning direction at a large stylistic angle, and is further efficiently Since the light is well focused and input to the charge conversion means, even extremely minute defects can be detected with high accuracy.

寒ム且 以下、本発明を図面に示す実施例によって具体的に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically explained with reference to embodiments shown in the drawings.

第1図は、半導体ウェハの表面状態を検査するための光
ビーム走査装置のv4成を示す実施例であり・ 被検物としての半導体ウェハ(10)は、X方向に移動
する搬送ステージ(11)に載置され、一定の速度たと
えば5輪a/S″t’X方向に搬送される。
FIG. 1 is an embodiment showing a V4 configuration of a light beam scanning device for inspecting the surface condition of a semiconductor wafer. A semiconductor wafer (10) as an object to be inspected is placed on a transfer stage (11 ) and transported at a constant speed, for example, in the five-wheel a/S″t'X direction.

光と−ム走査手段(12)は、例えば上下二つの定盤(
13)、(14)上に構成され、光源としては、例えば
波長633n−のHe−Neレーザ(15)を用いてい
る、He−Neレーザ(15)の射出光ビームは、反射
ミラー(16)、(17)により180°偏向されビー
ムエキスパンダ(18)に入射する。このビームエキス
パンダ(18)でビーム径を拡大′l−れた光ビームは
、反射ミラー(19)によって下向きに偏向され、定盤
(13)の孔(13m)を通り、さらに反射ミラー(2
0)で水平に偏向され、振動ミラー(21)に入射する
。I鈷ミラー(21)は、たとえば200 Hzt’振
動し、光ビームを水平面内で左右に振る。41動ミフー
(21)で左右に振られた光ビームは、結像レンズ(2
2)により半導体ウェハ(1G)および後述するグレー
ティング(2))上のビーム径が所定のビーム径になる
ように収斂されながら、反射ミラー(23)に向かう。
The light and beam scanning means (12) includes, for example, two upper and lower surface plates (
13) and (14), for example, a He-Ne laser (15) with a wavelength of 633n- is used as the light source. , (17), the beam is deflected by 180° and enters the beam expander (18). The light beam whose beam diameter has been expanded by the beam expander (18) is deflected downward by the reflection mirror (19), passes through the hole (13m) in the surface plate (13), and is further deflected by the reflection mirror (2).
0) and enters the vibrating mirror (21). The I-shaped mirror (21) vibrates at, for example, 200 Hzt' and swings the light beam left and right in a horizontal plane. The light beam swung left and right by the moving Mihu (21) passes through the imaging lens (21).
2), the beam is converged to a predetermined beam diameter on a semiconductor wafer (1G) and a grating (2), which will be described later, while heading toward a reflecting mirror (23).

しかる後、光ビームは、反射ミラー(23)により直角
下向きに偏向され、定盤(14)の長孔(14a)を通
って、半導体ウェハ(10)の表面上で所定ビーム径に
結像されて、その表面を、所定の走査幅でもって走査す
る。
Thereafter, the light beam is deflected downward at a right angle by a reflecting mirror (23), passes through the elongated hole (14a) of the surface plate (14), and is imaged to a predetermined beam diameter on the surface of the semiconductor wafer (10). Then, the surface is scanned with a predetermined scanning width.

なお、結像レンズ(22)と反射ミラー(23)の中間
には、ハーフミラ−(25)が設けられ、光ビームの一
部を反射ミラー(26)を介してグレーティング(27
)に導いている。グレーティング(27)の背面には7
すト七ンサアレイ(28)が付設され、この7オト七ン
サ7レイ(28)の出力を図示しない信号処理系の基準
クロックとして用いている。
A half mirror (25) is provided between the imaging lens (22) and the reflection mirror (23), and a part of the light beam is directed to the grating (27) via the reflection mirror (26).
). 7 on the back of the grating (27)
A seven-point sensor array (28) is attached, and the output of this seven-point sensor array (28) is used as a reference clock for a signal processing system (not shown).

また、ウェハ(10)表面の光ビーム走査方向と平行に
ウェハ(10)と近接してシリンドリカルレンズ(3G
)が設けられている。このシリンドリカルレン・ズ(3
0)は、光ビームによるウェハ(10)表面上の有効走
査幅よりも広い寸法をもち、ウェハ(10)表面で正反
射した光は受光しないで正反射された散乱光のみを受光
するとともに、受光した散乱光を集光する。
In addition, a cylindrical lens (3G
) is provided. This cylindrical lens (3
0) has a dimension wider than the effective scanning width on the surface of the wafer (10) by the light beam, and does not receive the light specularly reflected on the surface of the wafer (10), but only receives the specularly reflected scattered light. Collects the received scattered light.

ウェハ(10)表面上の欠陥部(キX、ホコリ等)で8
L反射された散乱光は、シリンドリカルレンX(30)
に集光され、光7フイパ東(31)の入射窓(31W)
に集光される。
Wafer (10) Defects (X, dust, etc.) on the surface cause 8
The scattered light reflected by L is cylindrical lene X (30)
The light is focused at the entrance window (31W) of Optical 7 Fipa East (31).
The light is focused on.

導光手段としての光ファイバ東(31)は、入射窓(3
1W)の反対III?、ヘッドオン形の光電子増倍管(
40)の頭部形状に適合するように集束され、導光した
散乱光を頭部窓(40W)から光電子増倍管(40)へ
射出する。
The optical fiber east (31) as a light guiding means is connected to the entrance window (3
1W) Opposite III? , head-on photomultiplier tube (
40), and the guided scattered light is emitted from the head window (40W) to the photomultiplier tube (40).

光電子増倍管(40)は、よく知られているように、光
電変換手段としては最も検出感度が高くかつ時間応答に
優れている。したがって、微弱な散乱光の検出及び高速
の信号処理には最適である。導光手段としての光7アイ
パ東(31)は、この光電子増倍管(40)を使用で塾
るように設けられたものである。よって、もし、それほ
どの検出精度が要求されないなら、シリンドリカルレン
ズ(30)の集光結像位置に直播7すトダイオード7レ
イを設けるようにしてもよい。
As is well known, the photomultiplier tube (40) has the highest detection sensitivity and excellent time response as a photoelectric conversion means. Therefore, it is optimal for detection of weak scattered light and high-speed signal processing. The optical 7-eye light guide (31) serving as a light guiding means is provided so as to use this photomultiplier tube (40). Therefore, if high detection accuracy is not required, a direct-seeding diode 7 ray may be provided at the condensing and imaging position of the cylindrical lens (30).

第3図は第1図の部分拡大図であり、この図に示すよう
に、散乱光(50)は、欠陥部(4o)から放射状に分
布するが、欠陥部(4e)からシリンドリカルレンズ(
30)の受光面を臨む文体角(θ1)内に含まれる散乱
光(50)を逃すことなくそのすべてを集光して、光フ
ァイバ束(31)を介して光電子増倍管(40)に入力
するようにしている。
FIG. 3 is a partially enlarged view of FIG. 1. As shown in this figure, the scattered light (50) is distributed radially from the defective part (4o), but from the defective part (4e) to the cylindrical lens (
All of the scattered light (50) included within the stylistic angle (θ1) facing the light receiving surface of 30) is collected without being missed and sent to the photomultiplier tube (40) via the optical fiber bundle (31). I am trying to input it.

第4図は、本発明に係る装置の他の実施例を示すもので
、ここではシリンドリカルレンズを複数個使用するもの
を示している0例示に係る如く、第1のシリンドリカル
レンズ(30m)と第2ンリンドリ力ルレンズ(30b
)からなるレンズ系で構成すると、1個を用いる場合に
比べ、(レンズ系の有効幅)/(焦点距離)の比を大き
くとれ、それだけレンズ系の受光画角(θ8)が大きく
とれる。仮に、第31!Iのシリンドリカルレンr(3
0)と同一の焦点距離のものを用いるとすると、受光−
角(θ2)は(θ1)のほぼ倍になり、受光可能な飲g
L光の絶対量は倍以上になる。また、光ビーム走査位置
から光7フイパ東(31)の入射窓(31W)に至る距
離については、#&3図の実施例に対し半分となるので
、合わせで、装置自体の小型化も図ることができる。
FIG. 4 shows another embodiment of the apparatus according to the present invention, in which a plurality of cylindrical lenses are used. As shown in FIG. 2-inch lens (30b)
), the ratio of (effective width of the lens system)/(focal length) can be made larger than when one lens system is used, and the light receiving angle of view (θ8) of the lens system can be made larger accordingly. Temporarily, the 31st! Cylindrical rene r(3
0), the received light is -
The angle (θ2) is almost twice that of (θ1), and the angle that can receive light is
The absolute amount of L light will more than double. In addition, the distance from the light beam scanning position to the entrance window (31W) of Optical 7 Fipa East (31) is half that of the embodiment shown in Figures # & 3, so the device itself can also be made smaller. I can do it.

また、第3図、第4図に意識で示す如く、シリンドリカ
ルレンズ(30)、光7アイバ東(31)、光電子増倍
管(40)等から成るピックアップ用光学系に対向する
位置に所要曲率の凹面鏡を配設し、受光可能な散乱光の
絶対量を多(しても良く、さらにはかかる四面鏡に代え
てピックアップ用光学系を別途対向配置しても良いこと
は勿論である。
In addition, as shown consciously in Figures 3 and 4, the required curvature is applied to the position facing the pickup optical system consisting of the cylindrical lens (30), optical 7-Iva Higashi (31), photomultiplier tube (40), etc. It goes without saying that a concave mirror may be provided to increase the absolute amount of scattered light that can be received, and furthermore, a pick-up optical system may be separately disposed facing the four-sided mirror instead of the four-sided mirror.

以上の実施例では、被検物を半導体ウェハとしているが
、これに限らずハードマスク用乾板等の場合でもよい、
また、本発明に係る装置は光ビー゛   ム走査によっ
て散乱光の強度を直接検出するもの一般(例えば文書・
図面・写真等の光電走査装置など)に適用できることは
言うまでもない、尚、上記した実施例は反射性の被検物
に係るものを示したけれども、応用例として、透過性の
被検物に係るもので、その表面ないし内部の欠陥を回折
光もしくは散乱光を介して検出する場合にも、形を替え
同様に適用することができる。
In the above embodiments, the test object is a semiconductor wafer, but it is not limited to this, and may be a dry plate for a hard mask, etc.
Furthermore, the device according to the present invention is applicable to general devices that directly detect the intensity of scattered light by scanning a light beam (for example, documents, etc.).
Needless to say, it can be applied to photoelectric scanning devices for drawings, photographs, etc.).Although the above embodiments are related to reflective test objects, as an application example, it can also be applied to transmissive test objects. The present invention can also be applied in the same way to detect defects on the surface or inside of objects using diffracted light or scattered light.

さらに、第1図の実施例では、光学系を定盤(13)と
(14)に分割して配置したが、単一の定盤上にまとめ
で配置しても良いことは勿論である。
Further, in the embodiment shown in FIG. 1, the optical system is arranged separately on the surface plates (13) and (14), but it goes without saying that they may be arranged all together on a single surface plate.

また、本発明の装置は、平板上のものだけでなく、円筒
状のものまたは直線状の走査線に交叉して平坦なまたは
適宜にわん自した搬送路に沿って送られるシート状のも
のをも7を査できることはいうまでもない。
In addition, the apparatus of the present invention can handle not only flat objects but also cylindrical objects or sheet-like objects that are fed along a flat or suitably curved conveyance path that intersects with a linear scanning line. It goes without saying that you can also check 7.

及凰a然邑 以上の説明から明らかなように、本発明は、散乱光の絶
対量をいかに多く捕集するかの問題を解決しえたもので
あり、これによって、簡単な構成でありながら従来量等
の散乱光検出方式に比べ、その検出精度を太き(向上で
鯵る効果がある。
As is clear from the above explanation, the present invention solves the problem of how to collect as much absolute amount of scattered light as possible. Compared to the method of detecting scattered light such as the amount of light, this method has the effect of greatly improving the detection accuracy.

ちなみに、第4図に基づく■像読取装置によれば、半導
体ウニ八表面の欠陥をビームスボッ)、−2径が50μ
mで0.5μ−まで検出可能となっている。
By the way, according to the image reading device based on FIG.
It is possible to detect up to 0.5 μm.

*た、7r)ダイオード7レイ等の光電変換素子アレイ
を走査面に近接して配置する方法と比較しても、その応
答性が格段によく、さらに一対の楕円ミラーを走査面上
の走査光ビームに近接配置して走査面からの散乱光を集
光し、該集光された散乱光を走査光ビームに近接して設
けられた光電変換素子により光電変換する方法と比較し
ても、その製作および調整が容易となる利息を有する。
*7r) Compared to the method of arranging a photoelectric conversion element array such as a diode 7-ray in close proximity to the scanning surface, its response is much better, and a pair of elliptical mirrors are also used to direct the scanning light on the scanning surface. Even when compared with a method in which the scattered light from the scanning surface is collected by placing it close to the scanning light beam, and the collected scattered light is photoelectrically converted by a photoelectric conversion element provided close to the scanning light beam, It has an interest that makes it easy to manufacture and adjust.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例の斜視図、第2図は本発
明の詳細な説明するための図、第3図及び14図は実施
例の要部側面図である。 11・・・搬送ステーゾ、15・・・He−Neレーザ
、21 ・・・振動ミ2−124 ・・・走査線、30
.30a。 30b・・・シリンドリカルレンズ、40・・・光電子
増倍管、s、so−・・散乱光、    ′特許出願人
 大日本スクリーン製造株式会社代理人 弁理士 前 
川 幾 泊 −2〔
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a diagram for explaining the invention in detail, and FIGS. 3 and 14 are side views of essential parts of the embodiment. DESCRIPTION OF SYMBOLS 11... Conveyance stator, 15... He-Ne laser, 21... Vibration Mi 2-124... Scanning line, 30
.. 30a. 30b...Cylindrical lens, 40...Photomultiplier tube, s, so-...Scattered light, 'Patent applicant Dainippon Screen Mfg. Co., Ltd. Agent Patent attorney Former
Kawa Iku Tomari-2 [

Claims (4)

【特許請求の範囲】[Claims] (1)被検物を一方方向に移動する被検物搬送手段と、 上記被検物搬送手段の移動方向と交差する方向に光ビー
ムが上記被検物表面を走査する光ビーム走査手段と、 被検物表面における光ビーム走査方向と平行に配置され
、被検物表面の欠陥部で乱反射した光を受けかつ集光す
るレンズ手段と、 上記レンズ手段からの光を電気信号に変換する光電変換
手段とを備えてなることを特徴とする光ビーム走査装置
(1) a test object transport means for moving the test object in one direction; a light beam scanning means for scanning the surface of the test object with a light beam in a direction intersecting the moving direction of the test object transport means; lens means arranged parallel to the light beam scanning direction on the surface of the test object to receive and condense the light diffusely reflected by the defective portion of the surface of the test object; and a photoelectric converter that converts the light from the lens means into an electrical signal. A light beam scanning device comprising: means.
(2)レンズ手段と光電変換手段との間に、レンズ手段
により集光された散乱光を光電変換手段に導くための導
光手段をさらに備える特許請求の範囲第(1)項記載の
光ビーム走査装置。
(2) The light beam according to claim (1), further comprising a light guiding means between the lens means and the photoelectric conversion means for guiding the scattered light collected by the lens means to the photoelectric conversion means. scanning device.
(3)導光手段が光ファイバ束である特許請求の範囲第
(2)項記載の光ビーム走査装置。
(3) The light beam scanning device according to claim (2), wherein the light guide means is an optical fiber bundle.
(4)光電変換手段が光電子増倍管である特許請求の範
囲第(1)項ないし第(3)項のいずれかに記載の光ビ
ーム走査装置。
(4) The light beam scanning device according to any one of claims (1) to (3), wherein the photoelectric conversion means is a photomultiplier tube.
JP25461284A 1984-11-30 1984-11-30 Optical beam scanner Pending JPS61132844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25461284A JPS61132844A (en) 1984-11-30 1984-11-30 Optical beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25461284A JPS61132844A (en) 1984-11-30 1984-11-30 Optical beam scanner

Publications (1)

Publication Number Publication Date
JPS61132844A true JPS61132844A (en) 1986-06-20

Family

ID=17267451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25461284A Pending JPS61132844A (en) 1984-11-30 1984-11-30 Optical beam scanner

Country Status (1)

Country Link
JP (1) JPS61132844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105038A (en) * 1985-11-01 1987-05-15 Hitachi Electronics Eng Co Ltd Photodetection system for inspecting instrument for glass substrate surface
JPH01277812A (en) * 1988-04-30 1989-11-08 Laser Tec Kk Microscopic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105038A (en) * 1985-11-01 1987-05-15 Hitachi Electronics Eng Co Ltd Photodetection system for inspecting instrument for glass substrate surface
JPH01277812A (en) * 1988-04-30 1989-11-08 Laser Tec Kk Microscopic device

Similar Documents

Publication Publication Date Title
US4886975A (en) Surface examining apparatus for detecting the presence of foreign particles on two or more surfaces
KR100658246B1 (en) Multiple beam scanner for an inspection system
US5448364A (en) Particle detection system with reflective line-to-spot collector
US5317380A (en) Particle detection method and apparatus
KR100898963B1 (en) Inspection systems performing two-dimensional imaging with line light spot
JPH11326040A (en) Sensor having wide divergence optical system and detector
JP2005528593A (en) Imaging method and apparatus
JP3453128B2 (en) Optical scanning device and defect detection device
JPS61132844A (en) Optical beam scanner
JP4961615B2 (en) Photomask inspection method and apparatus
JP2539182B2 (en) Foreign matter inspection method on semiconductor wafer
JP2776823B2 (en) Optical detector
JP3218726B2 (en) Foreign matter inspection device
JPH04142410A (en) Shape recognizing device
JP2009042128A (en) Height measuring device
JPH095045A (en) Photo/detector
JPH0552517A (en) Speckle displacement meter
JPH0643111A (en) Inspecting apparatus for defect
JP2021167794A (en) Defect inspection apparatus, defect inspection method, and scattered light detection system
JPH05107043A (en) Visual inspecting apparatus
JPH0317506A (en) Inputting apparatus for three-dimensional image
JPS62274248A (en) Surface stage measuring instrument
JPS62105038A (en) Photodetection system for inspecting instrument for glass substrate surface
JPH0875431A (en) Electronic parts inspection device
JPH0333714A (en) Scanner