JPH01277812A - Microscopic device - Google Patents

Microscopic device

Info

Publication number
JPH01277812A
JPH01277812A JP10543388A JP10543388A JPH01277812A JP H01277812 A JPH01277812 A JP H01277812A JP 10543388 A JP10543388 A JP 10543388A JP 10543388 A JP10543388 A JP 10543388A JP H01277812 A JPH01277812 A JP H01277812A
Authority
JP
Japan
Prior art keywords
sample
lens
objective lens
scanning direction
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10543388A
Other languages
Japanese (ja)
Inventor
Daikichi Awamura
粟村 大吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LASER TEC KK
Original Assignee
LASER TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LASER TEC KK filed Critical LASER TEC KK
Priority to JP10543388A priority Critical patent/JPH01277812A/en
Publication of JPH01277812A publication Critical patent/JPH01277812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reproduce a stereoscopic and sharp image by disposing an objective lens in such a manner that the optical axis thereof has a prescribed angle with the optical axis of a condenser lens and allowing the luminous flux from the objective lens to enter image sensors by each line. CONSTITUTION:A sample 7 is two-dimensionally scanned in a main scanning direction and the auxiliary scanning direction intersecting orthogonally therewith by a spot-like light beam entering at 45 deg. incident angle. The objective lens 10 is so disposed as to face the condenser lens 6 at 45 deg. angle with the normal of the incident face of the sample 7 and the reflected light from the sample 7 is condensed by the lens 10. The luminous flux from the lens 10 is allowed to enter like a very small spot onto the linear image sensors 12 via an imaging lens 11. Since the sensor 12 have a charge accumulation effect, the image distortion is eliminated even if the unequal scanning speed in the main scanning direction is generated by an acousto-optical element 3. The surface condition of the sample is thereby three-dimensionally reproduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、観察すべき試料を立体的に再現できる顕微鏡
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microscope device that can three-dimensionally reproduce a sample to be observed.

(従来の技術) スポット状に集束した光ビームにより試料を2次元的に
走査し、試料からの反射光又は透過光を光電変換装置で
受光し、この光電出力信号に基いて画像再生を行なうビ
ーム走査型顕微鏡装置が実用化されており、例えば本願
人が提案した特願昭60−76611号公報に記載され
ている。この本願人の提案による顕微鏡装置では、レー
ザ光源から放射した光ビームを主走査用偏向袋W&び副
走査用偏向装置によって2次元的に偏向し、この偏向光
ビームを対物レンズによってスポット状に集束して試料
に向けて投射し、これにより試料をスポット状光ビーム
によって2次元的に走査している。そして、試料からの
反射光を同一対物レンズで集光し、対物レンズからの光
束をリニアイメージセンサ上に投影し、リニアイメージ
センサの各受光素子に蓄積された電荷を所定の読出周波
数で読出して光電出力信号を発生させている。この本願
人が提案したビーム走査型顕微鏡装置は、リニアイメ−
ジセンサの電荷蓄積効果を利用し各素子に蓄積された電
荷を所定の読出周波数で読出す構成としているから、主
走査速度にムラ等が生じて画像歪みのない鮮明な画像を
再現でき大きな利点を達成できる。
(Prior art) A beam that scans a sample two-dimensionally with a light beam focused into a spot, receives reflected light or transmitted light from the sample with a photoelectric conversion device, and reproduces an image based on this photoelectric output signal. A scanning microscope device has been put into practical use, and is described, for example, in Japanese Patent Application No. 60-76611 proposed by the applicant. In this microscope device proposed by the applicant, a light beam emitted from a laser light source is two-dimensionally deflected by a main scanning deflection bag W and a sub-scanning deflection device, and this deflected light beam is focused into a spot by an objective lens. The spot light beam is projected onto the sample, thereby scanning the sample two-dimensionally with the spot-shaped light beam. Then, the reflected light from the sample is focused by the same objective lens, the luminous flux from the objective lens is projected onto the linear image sensor, and the charges accumulated in each light receiving element of the linear image sensor are read out at a predetermined readout frequency. Generating a photoelectric output signal. The beam scanning microscope device proposed by the applicant is a linear imager.
The structure utilizes the charge accumulation effect of the sensor to read out the charges accumulated in each element at a predetermined readout frequency, so it has the great advantage of being able to reproduce clear images without image distortion due to unevenness in the main scanning speed. It can be achieved.

(発明が解決しようとする課題) 上述した顕微鏡装置は、試料入射面に対する法線の延長
上に1個の対物レンズを配置し、この対物レンズにより
試料に向けて光ビーム投射すると共に試料からの光束を
集光するように構成されている。このため、試料の平面
像を鮮明に再現できるが、試料を立体的に再現しにくい
難点があった。
(Problems to be Solved by the Invention) The above-mentioned microscope device has one objective lens arranged on the extension of the normal line to the sample entrance plane, and uses this objective lens to project a light beam toward the sample and to emit light from the sample. It is configured to condense a luminous flux. For this reason, although a two-dimensional image of the sample can be clearly reproduced, it is difficult to reproduce the sample three-dimensionally.

すなわち、試料表面に凹凸がある場合、この凹部又は凸
部の存在は明瞭に再現されるが、凸部又は凹部を立体的
に再現しにくく、凹部か凸部かの判断に若干の経験的技
術が必要とされていた。また、観察すべき試料によって
は、試料の側面から見た画像情報を得たいとする要望も
強く、この要請を満たす必要性もある。
In other words, when there are irregularities on the sample surface, the presence of these depressions or protrusions can be clearly reproduced, but it is difficult to reproduce the protrusions or depressions three-dimensionally, and some empirical techniques are required to determine whether they are depressions or protrusions. was needed. Furthermore, depending on the sample to be observed, there is a strong desire to obtain image information viewed from the side of the sample, and there is a need to satisfy this demand.

さらに、1個の対物レンズを用い、この対物レンズを照
明用のビーム投射用集光レンズ及び試料から発する光束
を集光する対物レンズとして兼用する構成では、対物レ
ンズの開口数に限界があり、画像の解像力及び明るさの
観点からも開口数を増大したいとする要請も強(なって
いる。
Furthermore, in a configuration in which one objective lens is used and this objective lens is used both as a condensing lens for beam projection for illumination and as an objective lens for condensing a luminous flux emitted from a sample, there is a limit to the numerical aperture of the objective lens. There is also a strong demand to increase the numerical aperture from the viewpoint of image resolution and brightness.

従って、本発明の目的は上述した欠点を除去し、試料表
面を立体的に再現できると共に大きな開口数が得られる
顕微鏡装置を提供するものである。
Accordingly, an object of the present invention is to eliminate the above-mentioned drawbacks and provide a microscope apparatus that can three-dimensionally reproduce a sample surface and obtain a large numerical aperture.

(課題を解決するための手段及び作用)本発明による顕
微鏡装置は、光ビームを放射する光源と、光源から発す
る光ビームを所定の走査周波数で主走査方向に偏向する
偏向手段と、偏向ビームを試料に向けてスポットとして
投射する集光レンズと、集光レンズの光軸に対して0°
及び180°の角度以外の角度を持って配置され、試料
からの光束を集光する少なくとも1個の対物レンズと、
複数の素子が主走査方向と対応する方向に一次元的に配
列され対物レンズから発光する光束を受光して所定の読
出周波数で光電出力信号を出力するリニアイメージセン
サと、前記試料を主走査方向と直交する方向に駆動する
試料駆動装置とを具えることを特1衣とする。
(Means and Effects for Solving the Problems) A microscope apparatus according to the present invention includes a light source that emits a light beam, deflection means that deflects the light beam emitted from the light source in the main scanning direction at a predetermined scanning frequency, and A condenser lens that projects a spot toward the sample, and a 0° angle to the optical axis of the condenser lens.
and at least one objective lens arranged at an angle other than 180° and condensing the light beam from the sample;
A linear image sensor in which a plurality of elements are arranged one-dimensionally in a direction corresponding to the main scanning direction and receives a light beam emitted from an objective lens and outputs a photoelectric output signal at a predetermined readout frequency; A special feature is that the sample drive device is provided with a sample drive device that is driven in a direction orthogonal to the sample drive device.

このように、本発明ではスポット状照明光を投射す゛る
集光レンズと試料からの光束を集光する対物レンズとを
用い、対物レンズの光軸が集光レンズの光軸に対して所
定の角度をなすように配置すると共に、対物レンズから
の光束をリニアイメージセンサ上に1ライン毎に入射さ
せる。この結果、試料を種々の方向から見た立体的な画
像として再現できると共に、画像歪のない鮮明な画像を
再生できる。さらに、1個の集光レンズのまわりに複数
個の対物レンズを配置すれば、複数の方向から見た画像
を同時に再生することができると共に対物レンズ系の開
口数を等価的に増大させることができる。
In this way, the present invention uses a condenser lens that projects spot illumination light and an objective lens that condenses the light beam from the sample, and the optical axis of the objective lens is set at a predetermined angle with respect to the optical axis of the condenser lens. The linear image sensor is arranged so as to form a linear image sensor, and the light beam from the objective lens is made incident on the linear image sensor line by line. As a result, it is possible to reproduce three-dimensional images of the sample viewed from various directions, and also to reproduce clear images without image distortion. Furthermore, by arranging multiple objective lenses around one condenser lens, images viewed from multiple directions can be simultaneously reproduced and the numerical aperture of the objective lens system can be equivalently increased. can.

(実施例) 第1図は本発明による顕微鏡装置の一例の構成を示す線
図である。レーザ光源1から放射された光ビームをエキ
スパンダ2により拡大平行光束とし、この拡大平行光束
を音響光学素子3に入射させる。この音響光学素子3は
光ビームを主走査方向に高速振動させるものであり、高
速振動する光ビームにより試料はX方向(紙面と直交す
る方向)に高速走査されることになる。この音響光学素
子3により偏向された光ビームはリレーレンズ4及び5
を経て集光レンズ6に入射し、この集光レンズによって
微小スポット状に集束されて試料7に入射する。この集
光レンズ6は、その光軸が試料7の入射面の法線に対し
て例えば45°の角度をなすように配置する。試料7は
試料台8に装着され、この試料台8を試料駆動装置9に
より主走査方向と直交するX方向(紙面方向)に例えば
608gの鋸歯波で偏向する。この試料駆動装置9はア
ーム9a及びモータ9b及び回転を振動に変換する変換
機構を有し、モータ9bの回転を変換機構を介して振動
に変換し、この振動によりアーム9aを紙面内で矢印a
及びb方向に振動させることにより試料7及び試料台8
を所定のレートで紙面内で往復移動させる。尚、試料7
の移動量はアーム9aのアーム長に比べて極めて微小な
距離であるため試料7の移動はほぼ直線移動とみなすこ
とができ、焦点状態に何んら悪影響を及ぼすことはない
。従って、試料7は45°の入射角で入射するスポット
状光ビームにより主走査方向およびこれと直交する副走
査方向に2次元的に走査されることになる。
(Example) FIG. 1 is a diagram showing the configuration of an example of a microscope apparatus according to the present invention. A light beam emitted from a laser light source 1 is expanded into a parallel light beam by an expander 2, and this expanded parallel light beam is made incident on an acousto-optic element 3. This acousto-optic element 3 vibrates a light beam at high speed in the main scanning direction, and the sample is scanned at high speed in the X direction (direction perpendicular to the plane of the paper) by the high speed vibrating light beam. The light beam deflected by this acousto-optic element 3 is transmitted through relay lenses 4 and 5.
The light enters the condenser lens 6 through the condenser lens, and is focused into a minute spot by the condenser lens, and then enters the sample 7. The condensing lens 6 is arranged so that its optical axis forms an angle of, for example, 45° with respect to the normal to the incident surface of the sample 7. The sample 7 is mounted on a sample stage 8, and the sample stage 8 is deflected by a sample drive device 9 in the X direction (direction of the paper) perpendicular to the main scanning direction with a sawtooth wave of, for example, 608 g. This sample driving device 9 has an arm 9a, a motor 9b, and a conversion mechanism that converts the rotation into vibration.The rotation of the motor 9b is converted into vibration via the conversion mechanism, and the vibration causes the arm 9a to move in the direction indicated by the arrow a in the paper.
The sample 7 and the sample stage 8 are vibrated in the direction b and
is moved back and forth within the paper at a predetermined rate. Furthermore, sample 7
Since the amount of movement is extremely small compared to the arm length of the arm 9a, the movement of the sample 7 can be regarded as almost linear movement, and will not have any adverse effect on the focal state. Therefore, the sample 7 is two-dimensionally scanned in the main scanning direction and the sub-scanning direction perpendicular thereto by the spot light beam incident at an incident angle of 45°.

本例では、試料からの反射光を集光して試料の光学情報
を得るものとする。試料7の入射面の法線に対して45
°の角度を以て集光レンズ6と対向するように対物レン
ズIOを配置し、この対物レンズ10によって試料7か
らの反射光を集光する。そして、対物レンズ10からの
光束を結像レンズ11を介してリニアイメージセンサ1
2上に微小スポット状に入射させる。このリニアイメー
ジセンサ12は結像レンズ11の結像位置に配置され、
試料7からの反射光を主走査方向の1ライン毎に受光す
るように各受光素子がX方向と対応する方向に一次元的
に配列され、試料7からの反射光を各素子により受光し
て光電変換を行なう。そして、各素子に蓄積された電荷
を所定の読出周波数で読出して光電出力信号を発生する
。このリニアイメージセンサ12は電荷蓄積効果を有し
ているから、試料7の画素とリニアイメージセンサを構
成する各受光素子とが常に1対1の対応関係になり、音
響光学素子3による主走査方向の走査速度ムラが生じて
も受光量が若干変化するにすぎず、従って、画像歪みが
発生する不都合を解消できる。このように構成すれば、
試料の側面方向から見た画像情報も再現され、試料の表
面状態を立体的に再生することができる。
In this example, it is assumed that optical information about the sample is obtained by condensing reflected light from the sample. 45 to the normal to the plane of incidence of sample 7
An objective lens IO is arranged so as to face the condensing lens 6 at an angle of .degree., and the reflected light from the sample 7 is condensed by the objective lens 10. Then, the light beam from the objective lens 10 is passed through the imaging lens 11 to the linear image sensor 1.
2 in the form of a minute spot. This linear image sensor 12 is arranged at the imaging position of the imaging lens 11,
Each light receiving element is arranged one-dimensionally in a direction corresponding to the X direction so as to receive the reflected light from the sample 7 line by line in the main scanning direction, and each element receives the reflected light from the sample 7. Performs photoelectric conversion. Then, the charges accumulated in each element are read out at a predetermined readout frequency to generate a photoelectric output signal. Since this linear image sensor 12 has a charge accumulation effect, there is always a one-to-one correspondence between the pixels of the sample 7 and each light-receiving element constituting the linear image sensor, and the acousto-optic element 3 Even if scanning speed unevenness occurs, the amount of received light changes only slightly, and therefore, the inconvenience of image distortion can be eliminated. If you configure it like this,
Image information viewed from the side of the sample is also reproduced, making it possible to reproduce the surface state of the sample three-dimensionally.

第2図は駆動回路の一例の構成を示す回路図である。垂
直及び水平同期信号■及びHを形成する同期回路20を
クロック発生回路21に接続して水平同期信号Hを供給
する。クロック発生回路21では、供給されてくる水平
同期信号Hに基いてリニアイメージセンサ12の各素子
に蓄積された電荷を読出すためのクロックパルスを形成
し、この読出し用のクロックパルスをリニアイメージセ
ンサ12に供給する。同期回路20には、音響光学素子
3の駆動を制御する音響光学素子駆動回路22を接続し
て水平同期信号Hを供給し、また試料駆動装置9の駆動
を制御する試料駆動回路23を接続して垂直同期信号■
を供給し、更にプロセッサ回路24を接続して垂直同期
信号■及び水平同期信号Hを供給する。
FIG. 2 is a circuit diagram showing the configuration of an example of the drive circuit. A synchronization circuit 20 for forming vertical and horizontal synchronization signals (1) and (H) is connected to a clock generation circuit 21 to supply a horizontal synchronization signal (H). The clock generation circuit 21 forms clock pulses for reading out the charges accumulated in each element of the linear image sensor 12 based on the supplied horizontal synchronizing signal H, and uses the clock pulses for reading out the charges accumulated in each element of the linear image sensor 12. Supply to 12. The synchronization circuit 20 is connected to an acousto-optic element drive circuit 22 that controls the drive of the acousto-optic element 3 to supply a horizontal synchronization signal H, and is also connected to a sample drive circuit 23 that controls the drive of the sample drive device 9. Vertical synchronization signal■
Further, the processor circuit 24 is connected to supply a vertical synchronizing signal (2) and a horizontal synchronizing signal (H).

リニアイメージセンサ12では、試料7からの反射光量
に応じた電荷量が各素子に蓄積されるので、これら電荷
量を読出し用クロックパルスに基いてそれぞれ同期して
読出し、リニアイメージセンサに接続した増巾器25を
介してそれぞれ増巾し、プロセッサ回路24から供給さ
れる垂直同期信号■及び水平同期信号Hを印加して画像
信号を形成する。
In the linear image sensor 12, the amount of charge corresponding to the amount of reflected light from the sample 7 is accumulated in each element, so these amounts of charge are read out in synchronization with each other based on the readout clock pulse. The signals are amplified through the amplification filter 25, and a vertical synchronization signal (2) and a horizontal synchronization signal (H) supplied from the processor circuit 24 are applied to form an image signal.

そして、画像信号をモニタ26に供給して表示したり、
VTR27に記録する。尚、増巾した光電出力信号をフ
レームメモリに一旦記憶してから信号処理を行なっても
よい。
Then, the image signal is supplied to the monitor 26 for display,
Record on VTR27. Note that the signal processing may be performed after the amplified photoelectric output signal is temporarily stored in the frame memory.

第3図は本発明による顕微鏡装置の変形例の構成を示す
線図である。尚、第1図で用いた部材と同一の部材には
同一符号を付して説明する。レーザ光源1から放射した
レーザ光をエキスパンダ2で拡大平行光束とし、音響光
学素子3により主走査方向に偏向する。偏向ビームをリ
レーレンズ4、偏向プリズム30、λ/4板31及びリ
レーレンズ5を経て集光レンズ6に入射させ、この集光
レンズによってスポットとして試料7に投射する。本例
では、集光レンズ6を試料7の入射面の法線の延長上に
配置し、試料7に対してその垂直方向から照明する。こ
の集光レンズ6はビーム投射を行なうと共に試料7で反
射した光束を集光する対物レンズとしての機能も果すも
のとする。さらに、集光レンズ6を中心にして第1及び
第2の対物レンズ32及び33を、それらの光軸が集光
レンズ6の光軸と鋭角をなすように配置し、試料7から
の反射光のうち側方に向けて反射した反射光を第1及び
第2の対物レンズ32及び33で集光する。試料7は試
料台8と共に試料駆動装置9により主走査方向と直交す
る副走査方向に所定のレートで往復移動する。従って、
本例では、スポット状光ビームにより試料7をその垂直
方向から2次元的に走査し、試料7から側方に向けて反
射した反射光及び垂直方向に向けて反射した反射光を集
光して画像再現を行なうことになる。試料7から紙面の
左側に向けて反射した光束は第1対物レンズ32で集光
され、結像レンズ34を経て第1リニアイメージセンサ
35上に微小スポットとして入射する。一方、紙面の右
側に向けて反射した反射光は第2の対物レンズ33で集
光され結像レンズ36を経て第2のリニアイメージセン
サ37上に微小スポットとして入射する。
FIG. 3 is a diagram showing the configuration of a modified example of the microscope apparatus according to the present invention. The same members as those used in FIG. 1 will be described with the same reference numerals. A laser beam emitted from a laser light source 1 is expanded into a parallel beam by an expander 2, and is deflected in the main scanning direction by an acousto-optic element 3. The deflected beam passes through the relay lens 4, the deflection prism 30, the λ/4 plate 31, and the relay lens 5, and enters the condenser lens 6, and is projected onto the sample 7 as a spot by the condenser lens. In this example, the condensing lens 6 is placed on the extension of the normal line to the incident surface of the sample 7, and the sample 7 is illuminated from the direction perpendicular to it. The condensing lens 6 not only projects the beam but also functions as an objective lens that condenses the light beam reflected by the sample 7. Furthermore, the first and second objective lenses 32 and 33 are arranged with the condenser lens 6 at the center so that their optical axes make an acute angle with the optical axis of the condenser lens 6, and the reflected light from the sample 7 is The reflected light reflected laterally is focused by first and second objective lenses 32 and 33. The sample 7 is reciprocated together with the sample stage 8 by a sample drive device 9 at a predetermined rate in a sub-scanning direction perpendicular to the main-scanning direction. Therefore,
In this example, the sample 7 is scanned two-dimensionally from the vertical direction with a spot-shaped light beam, and the reflected light reflected from the sample 7 in the lateral direction and the reflected light reflected in the vertical direction are focused. Image reproduction will be performed. The light beam reflected from the sample 7 toward the left side of the paper is focused by the first objective lens 32, passes through the imaging lens 34, and enters the first linear image sensor 35 as a minute spot. On the other hand, the reflected light reflected toward the right side of the page is focused by the second objective lens 33, passes through the imaging lens 36, and enters the second linear image sensor 37 as a minute spot.

さらに試料7から垂直方向に反射した反射光は集光レン
ズ6によって集光され、リレーレンズ(結像レンズ)5
及びλ/4板31を経て偏光プリズム30に入射し、こ
の偏光プリズムによって反射し第3のリニアイメージセ
ンサ38上に微小スポットとして入射する。そして、各
リニアイメージセンサに生じた電荷を所定の読出周波数
で読出して3個の光電出力信号を発生する。このように
構成すれば、1回のビーム走査によって正面方向及び2
個の側面方向から見た3個の画像を同時に再現すること
ができる。そして、各光電出力信号について信号処理を
行ない3個の画像信号を発生させる。信号処理によって
3個の画像信号を合成すれば、3方向から見た画像情報
として再現でき、対物レンズ系の開口数を等価的に増大
させることができる。
Furthermore, the reflected light reflected in the vertical direction from the sample 7 is collected by a condensing lens 6, and a relay lens (imaging lens) 5
The light passes through the λ/4 plate 31, enters the polarizing prism 30, is reflected by the polarizing prism, and enters the third linear image sensor 38 as a minute spot. Then, the charges generated in each linear image sensor are read out at a predetermined readout frequency to generate three photoelectric output signals. With this configuration, one beam scan can scan the front direction and two directions.
It is possible to simultaneously reproduce three images viewed from one side. Then, signal processing is performed on each photoelectric output signal to generate three image signals. By combining three image signals through signal processing, image information viewed from three directions can be reproduced, and the numerical aperture of the objective lens system can be equivalently increased.

尚、画像再生に際し、操作者の切換操作によって試料の
正面画像、側面画像がそれぞれ別個に再生でき、或は3
方向から見た合成画像として再生することもできる。
In addition, when reproducing images, the front image and side image of the sample can be reproduced separately by switching operations by the operator, or
It can also be played back as a composite image viewed from any direction.

本発明は上述した実施例だけに限定されず種々の変形や
変更が可能である。例えば上述した実施例では試料の反
射画像を再現する構成としたが、勿論透過画像を再現す
ることもできる。
The present invention is not limited to the embodiments described above, and various modifications and changes are possible. For example, in the above-described embodiment, the configuration is such that a reflected image of the sample is reproduced, but it is of course also possible to reproduce a transmitted image.

さらに、上述した実施例では試料像をモノクロ画像とし
て再現したが、赤、緑、青の3個の光源を用い3本の光
ビーム合成して主走査を行なうこ。
Further, in the above embodiment, the sample image was reproduced as a monochrome image, but main scanning is performed by combining three light beams using three light sources of red, green, and blue.

とによりカラー画像を再現することもできる。It is also possible to reproduce color images.

(発明の効果) 以上説明したように本発明によれば、試料に向けてスポ
ット状照明光を投射する集光レンズと試料からの光束を
集光する対物レンズとを用い、対物レンズの光軸が集光
レンズの光軸に対して所定の角度をなすように配置して
いるから、試料を種々の方向から見た画像として再現で
き、従って試料像を立体的に再生することができる。
(Effects of the Invention) As explained above, according to the present invention, the optical axis of the objective lens is Since they are arranged at a predetermined angle with respect to the optical axis of the condensing lens, images of the sample viewed from various directions can be reproduced, and thus the sample image can be reproduced three-dimensionally.

さらに、複数個の対物レンズを用いて試料からの光束を
集光する構成とすれば、種々の方向から見た画像を同時
に再現できると共に、対物レンズ系の開口数を等価的に
増大させることができる。。
Furthermore, by using a configuration in which multiple objective lenses are used to condense the light flux from the sample, images viewed from various directions can be simultaneously reproduced, and the numerical aperture of the objective lens system can be equivalently increased. can. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による顕微鏡装置の一例の構成を示す線
図、 第2図は駆動回路の構成を示す回路図、第3図は本発明
による顕微鏡装置の変形例の構成を示す線図である。 1・・・レーザ光源  2・・・エキスパンダ3・・・
音響光学素子 4.5・・・リレーレンズ 6・・・集光レンズ  7・・・試料 8・・・試料台    9・・・試料駆動装置10・・
・対物レンズ  11・・・結像レンズ12・・・リニ
アイメージセンサ
FIG. 1 is a diagram showing the configuration of an example of the microscope device according to the present invention, FIG. 2 is a circuit diagram showing the configuration of a drive circuit, and FIG. 3 is a diagram showing the configuration of a modified example of the microscope device according to the present invention. be. 1... Laser light source 2... Expander 3...
Acousto-optic element 4.5... Relay lens 6... Condensing lens 7... Sample 8... Sample stage 9... Sample drive device 10...
・Objective lens 11...Imaging lens 12...Linear image sensor

Claims (1)

【特許請求の範囲】[Claims] 1、光ビームを放射する光源と、光源から発する光ビー
ムを所定の走査周波数で主走査方向に偏向する偏向手段
と、偏向ビームを試料に向けてスポットとして投射する
集光レンズと、集光レンズの光軸に対して0°及び18
0°の角度以外の角度を持って配置され、試料からの光
束を集光する少なくとも1個の対物レンズと、複数の素
子が主走査方向と対応する方向に一次元的に配列され、
対物レンズから発する光束を受光して所定の読出周波数
で光電出力信号を出力するリニアイメージセンサと、前
記試料を主走査方向と直交する方向に駆動する試料駆動
装置とを具えることを特徴とする顕微鏡装置。
1. A light source that emits a light beam, a deflection means that deflects the light beam emitted from the light source in the main scanning direction at a predetermined scanning frequency, a condenser lens that projects the deflected beam as a spot toward the sample, and a condenser lens. 0° and 18 to the optical axis of
at least one objective lens arranged at an angle other than 0° and condensing the light beam from the sample, and a plurality of elements arranged one-dimensionally in a direction corresponding to the main scanning direction,
The method is characterized by comprising a linear image sensor that receives a light flux emitted from an objective lens and outputs a photoelectric output signal at a predetermined readout frequency, and a sample drive device that drives the sample in a direction orthogonal to the main scanning direction. Microscope equipment.
JP10543388A 1988-04-30 1988-04-30 Microscopic device Pending JPH01277812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10543388A JPH01277812A (en) 1988-04-30 1988-04-30 Microscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10543388A JPH01277812A (en) 1988-04-30 1988-04-30 Microscopic device

Publications (1)

Publication Number Publication Date
JPH01277812A true JPH01277812A (en) 1989-11-08

Family

ID=14407459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10543388A Pending JPH01277812A (en) 1988-04-30 1988-04-30 Microscopic device

Country Status (1)

Country Link
JP (1) JPH01277812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4326473A1 (en) * 1993-08-06 1995-02-09 European Molecular Biology Lab Embl Scanning microscope for viewing at an angle relative to the illumination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124784A (en) * 1978-03-20 1979-09-27 Ricoh Co Ltd Laser flaw inspector
JPS59137803A (en) * 1983-01-28 1984-08-08 Hitachi Ltd Device for detecting position of component part attached to substrate
JPS59192902A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Position checking device for parts attached to substrate
JPS61132844A (en) * 1984-11-30 1986-06-20 Dainippon Screen Mfg Co Ltd Optical beam scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124784A (en) * 1978-03-20 1979-09-27 Ricoh Co Ltd Laser flaw inspector
JPS59137803A (en) * 1983-01-28 1984-08-08 Hitachi Ltd Device for detecting position of component part attached to substrate
JPS59192902A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Position checking device for parts attached to substrate
JPS61132844A (en) * 1984-11-30 1986-06-20 Dainippon Screen Mfg Co Ltd Optical beam scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4326473A1 (en) * 1993-08-06 1995-02-09 European Molecular Biology Lab Embl Scanning microscope for viewing at an angle relative to the illumination

Similar Documents

Publication Publication Date Title
KR910000617B1 (en) Image pick-up apparatus
JPH0618785A (en) Confocal type laser scanning transmission microscope
US4245240A (en) Color camera having linear scanning arrays and vertical scanning mirror
JP4746311B2 (en) Color laser microscope
US6072627A (en) Stereoscopic image capture device
JP2006308336A (en) Imaging system
JPS639362A (en) Image information reading and recording device
JPH0682173B2 (en) Transmission microscope imager
JP4787012B2 (en) Cross-sectional shape measuring apparatus and cross-sectional shape measuring method
JPS6328407Y2 (en)
JPH01277812A (en) Microscopic device
JPH05288992A (en) Transmission type microscope
JPH0547039B2 (en)
JP2989330B2 (en) Microscope observation device
JPH05224127A (en) Confocal scanning type differential interfere microscope
JP3029004B2 (en) Stereo vision camera
JPH0750260B2 (en) Imaging device
JP2006067171A (en) Color image pickup device
JPH03209415A (en) Microscopic image outputting method and scanning type microscope
JP2613129B2 (en) Confocal scanning microscope
JPS60149269A (en) Television camera
JP2608483B2 (en) Confocal scanning microscope
JPH074005B2 (en) Imaging device
JPH0682174B2 (en) Transmission microscope imager
JPS61118710A (en) Image pickup device