JPS59192902A - Position checking device for parts attached to substrate - Google Patents

Position checking device for parts attached to substrate

Info

Publication number
JPS59192902A
JPS59192902A JP58065321A JP6532183A JPS59192902A JP S59192902 A JPS59192902 A JP S59192902A JP 58065321 A JP58065321 A JP 58065321A JP 6532183 A JP6532183 A JP 6532183A JP S59192902 A JPS59192902 A JP S59192902A
Authority
JP
Japan
Prior art keywords
light
board
reflected light
substrate
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58065321A
Other languages
Japanese (ja)
Inventor
Hozumi Yamamoto
山本 穂積
Yasuo Hachikake
保夫 八掛
Yasuo Takenaka
竹中 泰雄
Koichi Masuda
耕一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP58065321A priority Critical patent/JPS59192902A/en
Publication of JPS59192902A publication Critical patent/JPS59192902A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

PURPOSE:To check the positions of parts automatically by projecting a laser beam from above a substrate and detecting reflected light from the mounted parts by an optical sensor. CONSTITUTION:The laser beam 7 from a laser light source 4 scans on the substrate 2 to be checked on a conveyance stage 10 in an X direction through a projection lens and an oscillating mirror 6. A Y-directional scan is made by moving the stage 10. The reflected light is made incident to a photodetecting element 9 through a condenser lens 8. The difference in height between a component 1 and a making 2-3 is utilized to discriminate between reflected light beams from the both, so the position and falling of the component 1 are checked automatically.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は基板に取付けられた部品の搭載状態の異常の
有無を検査する基板取付部品の位簡の検査装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an inspection device for inspecting the position of board-mounted components for inspecting the presence or absence of abnormalities in the mounting state of components mounted on a board.

〔発明の背景〕[Background of the invention]

家電製品に用いられる基板では、第1図(a)、れるよ
うになり、その取付方法を第1図および第2図(a)〜
(d)によシ説明する。第2図(a)において、基板2
の部品接続位置に導体2−1が印刷されており2つの印
刷導体2−1の間には白色のマーキング2−3が施され
ている。第2図(b・)に示すよ゛うにリフロー半田2
−2が印刷導体2−1の上に塗布される“。第2図(c
)では、このリフ。
The circuit boards used in home appliances are now shown in Figure 1 (a), and the mounting method is shown in Figures 1 and 2 (a) to 2.
(d) will be explained. In FIG. 2(a), the substrate 2
A conductor 2-1 is printed at the component connection position, and a white marking 2-3 is placed between the two printed conductors 2-1. As shown in Figure 2(b), reflow soldering 2
-2 is applied on the printed conductor 2-1".
) Now, this riff.

ロー半田2−2の上に部品1の接続端子1−1が重ねら
れ、この状態で高温炉で溶着させ第2図(j)となる。
The connecting terminal 1-1 of the component 1 is placed on top of the raw solder 2-2, and in this state is welded in a high-temperature furnace, as shown in FIG. 2(j).

このようにチップ部品を使用することは、取付の自動化
が容易で装置の小型化ができるなどの利点があるが、取
付位置の不正確さが生じやすく、場合によっては部品の
脱落さえ起こる。
Although the use of chip components in this manner has advantages such as easy automation of attachment and miniaturization of the device, it is easy for inaccurate attachment positions to occur, and in some cases, components may even fall off.

従来のチップ部品の位置ずれ、脱落の検査方法を第3図
により説明する。
A conventional method for inspecting misalignment and falling off of chip components will be explained with reference to FIG.

第3図において、レーザビーム7はX方向に被検基板2
のX方向の長さ以上の幅を走査し、かつ被検基板2けY
方向に一定速度で搬送されている、受光素子9は受光レ
ンズ8を介して被検基板2に取り付けられたチップ部品
1の核レーザビーム7の反射光7−1を被検基板2より
の反射光7−2とを反射光の到達点の相異により弁別し
受光する。該受光素子9よりの電気信号とあらかじめ知
らされているチップ部品1の位置情報とを比較し、部品
1があるべき位置に反射光7−1が受光されていれば、
チップ部品1が正常に塔載されているとする方法である
In FIG. 3, the laser beam 7 is directed toward the substrate 2 to be tested in the X direction.
Scan a width greater than the length of the test board in the X direction, and
The light-receiving element 9, which is being conveyed at a constant speed in the direction of The light 7-2 is discriminated and received based on the difference in the arrival point of the reflected light. The electric signal from the light receiving element 9 is compared with the position information of the chip component 1 known in advance, and if the reflected light 7-1 is received at the position where the component 1 should be,
This method assumes that the chip component 1 is normally mounted.

チップ抵抗は表面と裏面の色が異なシ表面は白色である
が裏面は黒色であるため、自動塔載された基板のチップ
抵抗の上面は半数が黒色どなっている。このため従来の
方法では、上面が黒色であるチップ抵抗の反射光の強度
が弱く反射光の在存が認められず、検出率が低下する欠
点があシ、自動塔載されたチップ抵抗も検査できる位置
および脱落の自動検査装置が望まれる所以である。
Chip resistors have different colors on their front and back sides; the front side is white, but the back side is black, so half of the top surfaces of the chip resistors on the automatically mounted board are black. For this reason, conventional methods have the drawback that the intensity of the reflected light from the chip resistor whose top surface is black is weak and the presence of reflected light is not recognized, reducing the detection rate.Also, chip resistors mounted automatically are also inspected. This is why an automatic position and dropout inspection device is desired.

〔発明の目的〕[Purpose of the invention]

この発明は上述した自動塔載されたチップ抵抗を含む部
品の位置検査を光学センサにより自動的に検査する装置
を提供することを目的とする。
An object of the present invention is to provide an apparatus for automatically inspecting the position of components including the above-described automatically mounted chip resistor using an optical sensor.

〔発明の概要〕[Summary of the invention]

この発明における基板取付部品の脱落および位置ずれの
検査装置は、基板上方よシレーザビームを投射し、その
反射光によ多部品の存在および位置を認識するもので、
これを第4図乃至第5図により説明する。
The inspection device for dropping and misaligning parts attached to a board according to the present invention projects a laser beam above the board, and uses the reflected light to recognize the presence and position of multiple parts.
This will be explained with reference to FIGS. 4 and 5.

第4図において、6はこの発明に、よる基板取付部品の
位置検査装置における光学系を示すもので、レーザ光源
4より発せられるレーザビーム7は投光レンズ5によシ
絞られ、振動ミラー6により掃引され、搬送ステージ1
0に装着された被検基板2をX方向に走査する。前記被
検基板2のY方向の走査は、搬送ステージ10の移動に
より行なわれる0 被検基板2に投光されるレーザビーム7は必要な分解能
かえられるように投光レンズ5で適当な大きさのスポッ
トに絞られており、チップ部品1または被検基板上のマ
ーキング2−3の上面で反射するが、チップ部品1とマ
ーキング2゜−3とでは反射光の方向および強度が異な
るのでこれを利用してマーキング2−6を弁別する。こ
の場合上記レーザスポット径が小さく、かつマーキング
の形状が部品形状に似せであるのでチップ部品1の位置
ずれも識別する。チップ部品1の識別には予め記憶した
マーキング位置の情報とマーキング2−6からの反射光
とを比較し、マーキング2−3からの反射光であると判
断した場合、チップ部品1は脱落している力・、位置が
ずれていると判定する0 上記反射光の特徴および受光方式を第5図(”a)によ
シ説明する0 第5図(a)に訃いて、レーザビーム7がマーキング2
−6に投射されたときの反射光7−2は受光レンズ8で
集光されて、受光素子9に入射する。しかしチップ部品
の上面1−2よりの反射光7−1(図示は実線)は、被
検基板2とチップ部品の上面1−2の高さの差りを利用
して受光レンズ8と受光素子9の位置関係を適当にとり
、受光素子9に到達しない。これによりチップ部品1と
マーキング2−3の反射光を弁刃1」できる。前述のよ
うに記憶されたマーキング位置情報と上記マーキング2
−6の反射光7−2の検出情報との比較によシチソプ部
品1の有無が識別される。。
In FIG. 4, reference numeral 6 indicates an optical system in a position inspection device for board-mounted parts according to the present invention, in which a laser beam 7 emitted from a laser light source 4 is focused by a projection lens 5, and a vibrating mirror 6 is swept by the transport stage 1.
0 is scanned in the X direction. The scanning of the substrate 2 to be inspected in the Y direction is performed by moving the transport stage 10. The laser beam 7 projected onto the substrate 2 to be inspected is adjusted to an appropriate size by a projection lens 5 so that the required resolution can be changed. The light is focused on a spot and is reflected on the top surface of the chip component 1 or the marking 2-3 on the test board, but since the direction and intensity of the reflected light are different between the chip component 1 and the marking 2-3, this is to distinguish markings 2-6. In this case, since the diameter of the laser spot is small and the shape of the marking is similar to the shape of the component, the positional shift of the chip component 1 can also be identified. To identify the chip component 1, the information on the marking position stored in advance is compared with the reflected light from the marking 2-6, and if it is determined that the reflected light is from the marking 2-3, the chip component 1 has fallen off. 0 The characteristics of the reflected light and the light receiving method will be explained with reference to FIG. 5(a). 2
The reflected light 7-2 projected onto the light receiving lens 7-6 is condensed by the light-receiving lens 8 and enters the light-receiving element 9. However, the reflected light 7-1 (shown as a solid line) from the top surface 1-2 of the chip component is reflected by the light-receiving lens 8 and the light-receiving element using the difference in height between the test board 2 and the top surface 1-2 of the chip component. 9 is appropriately positioned so that the light does not reach the light receiving element 9. This allows the reflected light from the chip component 1 and the markings 2-3 to be reflected by the valve blade 1''. Marking position information stored as described above and marking 2
By comparing the detected information of the reflected light 7-2 of -6 with the detection information, the presence or absence of the Sitisop component 1 is identified. .

ここで、レーザビーム7の投射方向に関して、信号のS
/Nを良好とするために、次の自己慮をブる。すなわち
、第5図(a)においてレーザビーム7の方向を鉛直線
iより、受光素子9と反対側に若干の角度8傾斜させて
おく、これにより部品の側面1−6およびチップ部品1
の取付部の基板部分2−4にレーザビームが投射されず
、有害無用の反射光が生じない。
Here, regarding the projection direction of the laser beam 7, the signal S
To make /N good, consider the following self-considerations. That is, in FIG. 5(a), the direction of the laser beam 7 is tilted at a slight angle 8 from the vertical line i toward the side opposite to the light-receiving element 9. As a result, the side surface 1-6 of the component and the chip component 1
The laser beam is not projected onto the substrate portion 2-4 of the mounting portion, and no harmful or unnecessary reflected light is generated.

〔発明の実施例〕[Embodiments of the invention]

以下この発明による基板取付部品の位置検査装置の実施
例について図により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a position inspection device for board-mounted parts according to the present invention will be described with reference to the drawings.

第4図において、光学系乙については既述したところで
ある。ここでは被検基板2の装置および、Y方向の移動
について述べる。
In FIG. 4, optical system B has already been described. Here, the apparatus and movement of the test substrate 2 in the Y direction will be described.

既述したようにマーキング2−3の識別には記憶された
位置情報を利用するが該位置情報の表示方法は被検基板
2の一隅を原点Oとする座標表示によるもので、したが
って被検基板2ぼ高精度の位置決された状態とすること
が絶対8裡である。これを実現する方法として、第4図
Ω搬送ステージ10に工夫がなされている。すなわち図
示のように長方形の搬送ステージ1002辺10−1.
10−2の高さを他より高くとフで段差を設け、段差の
交点0に基板2の上記−隅を圧着させて高精度の位置決
めを行う。圧着の方法は上記原点0の対角点に押えバネ
10−3を設けこの点で矢印の方向に被検基板2を押し
出すものである。
As mentioned above, the stored position information is used to identify the markings 2-3, but the method of displaying this position information is by displaying coordinates with one corner of the test board 2 as the origin O. Therefore, the test board It is absolutely necessary to achieve a state of positioning with a high degree of accuracy. As a method for realizing this, the Ω transport stage 10 shown in FIG. 4 has been devised. That is, as shown in the figure, the rectangular transport stage 1002 has sides 10-1.
A step is provided so that the height of 10-2 is higher than the others, and the above-mentioned negative corner of the substrate 2 is pressed to the intersection point 0 of the step, thereby achieving highly accurate positioning. The method of crimping is to provide a presser spring 10-3 at a diagonal point of the origin 0 and push out the substrate 2 to be tested in the direction of the arrow at this point.

搬送ステージ10は別途移動機構で精度の高いステップ
送りが行なわれこの制御は公知の技術で行なわれるもの
である。
The transport stage 10 is moved in highly accurate steps by a separate moving mechanism, and this control is performed using a known technique.

次に受光素子9に関する実施例の説明に移る。Next, an explanation will be given of an embodiment regarding the light receiving element 9.

第5図(b)は受光素子9として用いるリニヤアレイセ
ンサを示すもので、中心線Cを走査X方向に一致させて
おき、また受光素子9の有効長が被検基板2の走査方向
の長さに相当するものを使用する。前記した被検基板2
の座標のX座標と、リニヤアレイセンサの受光素点9−
1とが対応でき、記憶された位置情報との比較が行ない
つる。
FIG. 5(b) shows a linear array sensor used as the light receiving element 9, in which the center line C is aligned with the scanning direction Use the equivalent. Test board 2 described above
The X coordinate of the coordinate and the light receiving element point 9- of the linear array sensor
1 and can be compared with the stored position information.

一例として実用された装置の設計数値を挙げると、リニ
ャアレ−イセンサの受光素点p−1のピッチは基板2上
に換算して0.24 mmであシ一方チップ部品1の取
付位置の必要精度は±0.5+nm程度ゼ十分な分解能
が得られている。ついでにX方向の移動ピンチについて
みると、X方向と同様に0.24 mmとし、マーキン
グ2−3の検出には、次に述べるように、?:j7)X
、Y方向のピッチに合せた三リヤ内の16点で行ない、
部品の有無を判定している。
Taking the design values of a device that has been put into practical use as an example, the pitch of the light-receiving element points p-1 of the linear array sensor is 0.24 mm on the substrate 2, while the required accuracy of the mounting position of the chip component 1 is A sufficient resolution of about ±0.5+nm is obtained. Incidentally, regarding the movement pinch in the X direction, it is set to 0.24 mm as in the X direction, and for the detection of marking 2-3, as described below, ? :j7)X
, carried out at 16 points in three rears aligned with the pitch in the Y direction,
The presence or absence of parts is determined.

第6図は被検基板2上のチップ部品1とマー。FIG. 6 shows the chip component 1 and mark on the test board 2.

キング2−3および光学系乙による反射光の検出点p1
〜p16の関係を示すもので、マーキング2−6ノ中心
点pの座標を(Xn、Yn )とし、この値は設計値に
従ってすべてのれについて予め記憶される。
Detection point p1 of reflected light by King 2-3 and optical system B
.about.p16, the coordinates of the center point p of marking 2-6 are (Xn, Yn), and these values are stored in advance for all deviations according to design values.

一方、マーキング2−3の反射光の判定の検出点は16
ケ所とし、受光素子の分解能dおよび、Y方向のピンチ
dを考慮して士d/2離れた、pl”’?p16の16
点について行ない、16点の検出点中、。
On the other hand, the detection points for determining the reflected light of marking 2-3 are 16
16 of pl"'? p16, which is located at a distance of d/2 considering the resolution d of the light receiving element and the pinch d in the Y direction.
Out of 16 detection points.

反射光7−2が、ある複数個あった時マーキング2−6
を検出したと判定する。実施例では4〜9個の範囲とし
だ。マーキング2−6を検出した時・はチップ部品1の
位置ずれか脱落であると識別する。
Marking 2-6 when there are multiple reflected lights 7-2
is determined to have been detected. In the embodiment, the number is in the range of 4 to 9. When the markings 2-6 are detected, it is determined that the chip component 1 is out of position or has fallen off.

第7図はこの発明による基板取付部品の位置検査装置の
実施例における概略ブロック図を示す。光学系3におい
ては既述のようにレーザビーム7の走査によりチップ部
品の有無に対応したマーキングの電気信号が出力される
○信号処理部11においては、第8図に示すフローチャ
ートに従ってマーキングの有無が検出され、プリンタ1
3に出力される。チーブ装置12はマーキイグ位置の設
計値(Xn、Yn)を予め信号処理部11に入力するた
めに用いる。
FIG. 7 shows a schematic block diagram of an embodiment of the position inspection device for board-mounted parts according to the present invention. As described above, in the optical system 3, an electric signal for marking corresponding to the presence or absence of a chip component is output by scanning with the laser beam 7. In the signal processing section 11, the presence or absence of a marking is outputted according to the flowchart shown in FIG. detected and printer 1
3 is output. The chive device 12 is used to input design values (Xn, Yn) of the marquee position into the signal processing section 11 in advance.

第8図において、先ず装置に電源が投入され、上記デー
タ (XnXYn)が記憶される。ついで被検基板が搬
送ステージ10にセットされ、押金口により検査が開始
される。
In FIG. 8, first, the power is turned on to the device and the above data (XnXYn) is stored. Next, the substrate to be inspected is set on the transport stage 10, and inspection is started using the presser opening.

上記電気信号の処理は、レーザビームのX方向の1走査
に行なわれるもので、1走査線上の反射光は受光素子9
の対応する位置の素点にそれぞれ記憶される。このよう
々1走査が終了すると別途設けられた終点センナの信号
により、・搬送ステージ10のY方向の移動が行なわれ
、むの移動中に、チップ部品取付位置の異常チェックが
並行して行なわれる、すなわち、受光素子9は自己走査
機能を有しており、上記記憶された部品位置に対する素
点情報は時系列信号で取り出され、上記し7た(Xn、
 Yn)の記憶情報との比較が行なわれる。比較の結果
マーキングと判定したら部品無しとシ2、その部品番号
を1時記憶し、次のレーザビームの走査に移る○しがし
マーキングと判定しなくともやはり次のレーザビームの
走査に移る。
The above electrical signal processing is performed in one scan of the laser beam in the X direction, and the reflected light on one scan line is sent to the light receiving element 9.
are stored in raw points at corresponding positions. When one scan is completed in this way, the transfer stage 10 is moved in the Y direction by a signal from a separately provided end point sensor, and during the movement, an abnormality check of the chip component mounting position is performed in parallel. That is, the light-receiving element 9 has a self-scanning function, and the raw point information for the stored component position is extracted as a time-series signal.
A comparison is made with the stored information of Yn). If it is determined as a marking as a result of the comparison, the part number is temporarily stored and the next laser beam scan is started. Even if it is not determined as a marking, the next laser beam scan is started.

このようにして、基板全面の走査が終了すると、レーザ
ビームの走査は停止し、上記1時記憶した異常塔載部品
の部品番号をプリントアラ1     トし、検査が終
了する。
When the scanning of the entire surface of the board is completed in this way, the scanning of the laser beam is stopped, the part number of the abnormally mounted part temporarily stored is printed and alerted, and the inspection is completed.

以上において、受光素子9よりのマーキング位置信号と
記憶情報の比較のだめの回路礪成は公知の技術によシ容
易に実現できるので省略する。
In the above description, the circuit construction for comparing the marking position signal from the light receiving element 9 with the stored information can be easily realized using known techniques, and will therefore be omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明における基板取付部品の位
置検査装置によれば、当初述べたよ。
As described above, according to the position inspection device for board-mounted parts according to the present invention, it is possible to achieve the same results as originally described.

うに自動塔載装置を用いて組立てられ、高密度に部品が
集積された基板について、チップ抵抗の表裏に関係なく
、部品の位置ずれまたは脱落などの異常塔載が高速、高
精度で検出されて、゛そのデータがプリントアウトされ
るもので、従来の装置に比べて検出率の高い検査が行な
いえ(a)、(b)、(c)および(d)はチップ部品
をノ・ンダ付けによシ基板に取シ付ける方法を示す同第
3図は従来の検査装置の光学系の配置構成図第4図はこ
の発明による基板取付部品の位置検査。
Abnormal mounting, such as misalignment or falling off of components, can be detected at high speed and with high accuracy on boards assembled using automatic mounting equipment and with components assembled at high density, regardless of whether the chip resistor is on the front or back. , ``The data is printed out, and inspection with a higher detection rate than conventional equipment can be performed. 3 shows the arrangement of the optical system of a conventional inspection device, and FIG. 4 shows the position inspection of a board-mounted component according to the present invention.

装置の一実施例である光学系の概略構成を示す構成図第
5図(a)は第4図におけるレーザビっムの入射光と部
品およびマーキングよりの反射光ならびに該反射光に対
する受光レンズおよび受光素子の配置構成図、第5図(
b)はリニヤアレイセンサによる受光素子の構造と配置
を示す同第6図マーキング位置における部品と該マニキ
ングに対するレーザビームによる反射光を検出する16
点p1〜T”16の関係図第7図はこの発明による井板
取付部品の位置検査装置の実施例における全体のブロッ
ク図、第8図は第7図における検査過程を述べるフロー
チャートである。
FIG. 5(a) is a block diagram showing a schematic configuration of an optical system that is an embodiment of the device. FIG. 5(a) shows the incident light of the laser beam in FIG. Element layout configuration diagram, Figure 5 (
b) shows the structure and arrangement of the light-receiving element using a linear array sensor; FIG.
FIG. 7 is a block diagram of an embodiment of the position inspection device for parts attached to a well plate according to the present invention, and FIG. 8 is a flowchart illustrating the inspection process in FIG. 7.

1・・ ・チップ部品、 2 ・・被検基板、 6・ ・光学系、 4・・・・・レーザ光源、 5・・・・投光レンズ、 6  ・振動ミラー、 7 ・・レーザビーム、 8− 受光レンズ、 9 ・ 受光素子、 10   搬送ス丁−ジ、 11−−信処理部、 第  2  図 (C)          (〆) 羊  4−  肥 羊  y  図 (し) 子  ろ  図 早  7  図1...Chip parts, 2...Test board, 6. Optical system, 4... Laser light source, 5... Light projection lens, 6 ・Vibration mirror, 7...Laser beam, 8- Light receiving lens, 9. Light receiving element, 10 Conveyance stage, 11--signal processing unit, Figure 2 (C)       (〆) Sheep 4- Fertilizer Sheep y diagram (death) Child illustration Early 7 Figure

Claims (1)

【特許請求の範囲】 1 レーザ光源、投光レンズ、振動ミラーよりなり、被
検基板の垂直方向に対しである小さい角度から投光でき
、かつ該被検基板上でX方向に、該基板の長さの範囲に
レーザスポットを走査でき投光部と、上記基板上のマー
キングよシの上記スポットの反射光を受光でき、上記基
板上に取り付けられたチップ部品上面よりの反射光を排
除して受光しない受光レンズとりニヤアレイセンサを用
いた受光素子よりなる受光部とにより構成された光学系
を有し さらに上記被検基板の定められた1隅を高イi
?度に位置決めし7て装着でき、上記X方向のスポット
の走査の終了毎にY方向に移動できる搬送ステージを有
することを特徴とする基板取付部品の位置検査装置。 2 搬送ステージが長方形ででかつ該長方形の2辺に沿
っである一定の幅の部分が他の部分より適当な高さの段
差を有し、該段差の交点に被検基板の上記定められた1
隅を圧着できる押えバネを有することを特徴とする特許
請求範囲第1項に記載した基板取付部品の位置検査装置
[Scope of Claims] 1. Consists of a laser light source, a light projecting lens, and a vibrating mirror, and can project light from a small angle with respect to the vertical direction of the test board, and can project light onto the test board in the X direction. The laser spot can be scanned over a length range, and the light emitting part can receive the reflected light of the spot from the marking on the board, eliminating the reflected light from the top surface of the chip component mounted on the board. The optical system includes a light-receiving lens that does not receive light and a light-receiving section made of a light-receiving element using a near array sensor.
? 7. A position inspection device for a board-attached component, comprising a transport stage that can be positioned and mounted at a time, and that can be moved in the Y direction each time the scanning of the spot in the X direction is completed. 2. The transport stage is rectangular, and a part of a certain width along two sides of the rectangle has a step of an appropriate height compared to the other part, and the above-determined height of the test substrate is placed at the intersection of the steps. 1
The position inspection device for a board-mounted component according to claim 1, characterized in that it has a presser spring capable of crimping the corners.
JP58065321A 1983-04-15 1983-04-15 Position checking device for parts attached to substrate Pending JPS59192902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065321A JPS59192902A (en) 1983-04-15 1983-04-15 Position checking device for parts attached to substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065321A JPS59192902A (en) 1983-04-15 1983-04-15 Position checking device for parts attached to substrate

Publications (1)

Publication Number Publication Date
JPS59192902A true JPS59192902A (en) 1984-11-01

Family

ID=13283524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065321A Pending JPS59192902A (en) 1983-04-15 1983-04-15 Position checking device for parts attached to substrate

Country Status (1)

Country Link
JP (1) JPS59192902A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225117A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical scanning type displacement measuring instrument
JPH01277812A (en) * 1988-04-30 1989-11-08 Laser Tec Kk Microscopic device
JPH04303660A (en) * 1991-01-05 1992-10-27 Man Roland Druckmas Ag Color matching console for quality-controlling printed form
US5166753A (en) * 1989-07-17 1992-11-24 Matsushita Electric Industrial Co., Ltd. Method for inspecting electronic devices mounted on a circuit board
JPH06171069A (en) * 1992-12-04 1994-06-21 Tokyo Kikai Seisakusho Ltd Method and device for automatic registration adjustment
JPWO2008012890A1 (en) * 2006-07-27 2009-12-17 株式会社S&Sエンジニアリング Self-propelled cart horizontal branching device
CN111922401A (en) * 2020-09-22 2020-11-13 维嘉数控科技(苏州)有限公司 PCB edge milling machine positioning assembly, positioning method and PCB edge milling machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225117A (en) * 1987-03-14 1988-09-20 Matsushita Electric Works Ltd Optical scanning type displacement measuring instrument
JPH01277812A (en) * 1988-04-30 1989-11-08 Laser Tec Kk Microscopic device
US5166753A (en) * 1989-07-17 1992-11-24 Matsushita Electric Industrial Co., Ltd. Method for inspecting electronic devices mounted on a circuit board
JPH04303660A (en) * 1991-01-05 1992-10-27 Man Roland Druckmas Ag Color matching console for quality-controlling printed form
JPH06171069A (en) * 1992-12-04 1994-06-21 Tokyo Kikai Seisakusho Ltd Method and device for automatic registration adjustment
JPWO2008012890A1 (en) * 2006-07-27 2009-12-17 株式会社S&Sエンジニアリング Self-propelled cart horizontal branching device
CN111922401A (en) * 2020-09-22 2020-11-13 维嘉数控科技(苏州)有限公司 PCB edge milling machine positioning assembly, positioning method and PCB edge milling machine

Similar Documents

Publication Publication Date Title
US5298977A (en) Visual inspection method for part mounted on printed circuit board
US4677302A (en) Optical system for inspecting printed circuit boards wherein a ramp filter is disposed between reflected beam and photodetector
JPH0572961B2 (en)
JPH061173B2 (en) Curved property inspection device
JPS59192902A (en) Position checking device for parts attached to substrate
JPS63305238A (en) Junction inspecting method of electronic part
JP2000088542A (en) Apparatus and method for inspecting soldering
JPH0221372A (en) Soldering check device
JPS59137803A (en) Device for detecting position of component part attached to substrate
JP2847351B2 (en) Automatic printed wiring board inspection system
JP2648476B2 (en) Parts detection device
JPS6145400B2 (en)
JP3232811B2 (en) Inspection method of mounted printed circuit board
JPS63177045A (en) Detection system for non-soldered part in mounted printed circuit board automatic inspection apparatus
JP2525261B2 (en) Mounted board visual inspection device
JPS63177042A (en) Detection system for non-soldered part in mounted printed circuit board automatic inspection apparatus
KR100204827B1 (en) Lead pin measuring device for an integaraued circuit and its measuring method
JPH06317409A (en) Contour recognizing method and shape inspection method using it
JPH02247513A (en) Inspecting device for hole charging state
JP2578916B2 (en) Inspection method of print pattern
JPH02112707A (en) Printed board inspecting device
JPS62245950A (en) Inspecting method for defective mounting of chip component
JPH0457339A (en) Parts inspection equipment
JP3754144B2 (en) Lead float inspection method
JPH02187607A (en) Method of teaching reference data for mounted printed board inspection device