JPH0317506A - Inputting apparatus for three-dimensional image - Google Patents

Inputting apparatus for three-dimensional image

Info

Publication number
JPH0317506A
JPH0317506A JP15179189A JP15179189A JPH0317506A JP H0317506 A JPH0317506 A JP H0317506A JP 15179189 A JP15179189 A JP 15179189A JP 15179189 A JP15179189 A JP 15179189A JP H0317506 A JPH0317506 A JP H0317506A
Authority
JP
Japan
Prior art keywords
light
linearly polarized
lens
polarized light
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15179189A
Other languages
Japanese (ja)
Inventor
Kunio Sannomiya
三宮 邦夫
Nobuhiro Araki
信博 荒木
Yuji Maruyama
祐二 丸山
Akira Senpuku
仙福 明
Yukifumi Tsuda
津田 幸文
Kazutoshi Iketani
池谷 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15179189A priority Critical patent/JPH0317506A/en
Publication of JPH0317506A publication Critical patent/JPH0317506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to obtain a correct three-dimensional image when the surface of an object has indentation and when a material has gloss by providing polarizing elements on optical paths between a laser light source and the object and between the object and a condenser lens respectively. CONSTITUTION:A laser light 5 from a laser light source 4 is transmitted through a polarizing element 8 by using mirrors 7a to 7c and led to a polygon mirror 6 rotating only a prescribed linearly polarized light, and the prescribed linearly polarized light of the laser light 5 is applied to an object 1 through an ftheta lens 9. A reflected light from the object 1 is reflected by a reflecting mirror 10 and then transmitted through a polarizing element 11 by using the lens 9 and the mirror 6, so that only the component of the prescribed linearly polarized light be taken out, and this component is condensed on a light-sensing element 13 through a condenser lens 12. From the light-sensing element 13, a position signal 14 showing a position whereat the said component is condensed is outputted, and it is subjected to computation in a height computation processing means 15 and then outputted as height data 16.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は二次元的広がりを持った領域の高さデータを読
み取る三次元画像入力装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a three-dimensional image input device that reads height data of a two-dimensional area.

従来の技術 従来より微細な高さを計測する装置として三次元計測機
がある。この三次元計測機はXYテーフルと2軸方向を
計測する接触子があシ被検査物をXYテーブル上に乗せ
接触子を接触させながらX軸、Y軸、Z軸の変位を読み
取る構成になっている。かかる三次元計測機では広がり
を持った領域の高さデータを取得するにはその測定に大
変手間がかかシ、壕た、接触子の大きさにより、XYの
刻みピッチの細かさに制限が発生する。かかる三次元計
測機以外に、三次元画像を入力する装置の従来例として
実装基板検査装置に応用されている構成を第5図に示す
。第5図において、1は対象物、2は対象物1を移動さ
せる搬送手段、3は搬送手段2の移動方向を示す矢印、
4はレーザ光源、5はレーザ光源4からのレーザー光、
6はポリゴンミラ− 7はレーザ光5をポリゴンミラ−
6に送るための鏡、9はfθレンズ、10は対象物の反
射光を集光する反射ミラー、12はその集光レンズ、1
3は位置検出用の受光素子、14は受光素子13からの
位置信号、15は位置信号14を高さ信号に変換する高
さ演算処理手段、16は本装置から出力される高さデー
タである。
BACKGROUND OF THE INVENTION A three-dimensional measuring machine is a device that measures heights more precisely than conventional techniques. This three-dimensional measuring machine has an XY table and a contact for measuring two axes, and the object to be inspected is placed on an XY table and the contact is brought into contact with the object to read the displacement of the X, Y, and Z axes. ing. With such a three-dimensional measuring machine, it takes a lot of time and effort to obtain height data over a wide area, and the fineness of the XY pitch is limited by the size of the trench and contact. Occur. In addition to such a three-dimensional measuring machine, FIG. 5 shows a configuration applied to a mounted board inspection apparatus as a conventional example of a device for inputting three-dimensional images. In FIG. 5, 1 is an object, 2 is a conveying means for moving the object 1, 3 is an arrow indicating the moving direction of the conveying means 2,
4 is a laser light source, 5 is a laser beam from the laser light source 4,
6 is a polygon mirror 7 is a polygon mirror for laser beam 5
6 is a mirror for sending the light to the target, 9 is an fθ lens, 10 is a reflection mirror that collects the reflected light from the object, 12 is the condensing lens, 1
3 is a light receiving element for position detection, 14 is a position signal from the light receiving element 13, 15 is a height calculation processing means for converting the position signal 14 into a height signal, and 16 is height data output from this device. .

以下、上記構成の動作について説明する。対象物1は搬
送手段2によ9矢印3の方向に移動させつつ、レーザ光
源4からのレーザ光5に対し3つの鏡7を用いて回転し
ているポリゴンミラ−6に導き、ポリゴンミラ−6とf
θレンズ9によりレーザ光5を対象物lに垂直に照射す
る。これにより対象物1を二次元的に全面走査すること
が出来る。
The operation of the above configuration will be explained below. The object 1 is moved in the direction of the arrow 3 by the conveying means 2, and guided to the polygon mirror 6 which is rotating using three mirrors 7 against the laser beam 5 from the laser light source 4. 6 and f
The laser beam 5 is irradiated perpendicularly onto the object l using the θ lens 9. This allows the entire surface of the object 1 to be scanned two-dimensionally.

1た、レーザ光5の走査により対象物1からの反射光を
反射ミラー10で反射させ、更にその反射光ヲfθレン
ズ9とポリゴンミラ−6及び集光レンズ12を介して集
光位置検出用の受光素子13上に集光する。受光素子1
3からは集光された位置を示す位置信号14が出力され
、高さ演算処理手段15において位置信号を高さデータ
に変換する演算を行い高さ信号16として出力する。
1. By scanning the laser beam 5, the reflected light from the object 1 is reflected by the reflecting mirror 10, and the reflected light is further passed through the fθ lens 9, the polygon mirror 6, and the condensing lens 12 to detect the condensing position. The light is focused on the light receiving element 13 of. Light receiving element 1
3 outputs a position signal 14 indicating the focused position, and a height calculation processing means 15 performs calculation to convert the position signal into height data and outputs it as a height signal 16.

上述の高さ演算処理手段15の高さ情報を取得する原理
は第6図に示すごとくである。第6図において、1は対
象物、4はレーザ光源、17は集光レンズ、18は受光
素子、l4は位置信号であシ、従来例の光路上に存在す
るポリゴンミラー、鏡、fθレンズ、反射ミラーは図示
を省略し、集光レンズ17と受光素子18は仮想的に配
置してある。この構成において対象物lの高さがA点1
9、B点加とするとき、これらの点をレーザ光で照射し
た拡散反射光21、汐は集光レンズl7を介して受光素
子18上のC点Z3、D点別に結像される。このように
対象物1の高さの変位が受光素子18上に集光位置の変
位として現れ、受光素子18はこの変位を電気信号に変
換して位置信号14を生成する。
The principle of acquiring height information by the above-mentioned height calculation processing means 15 is as shown in FIG. In FIG. 6, 1 is an object, 4 is a laser light source, 17 is a condensing lens, 18 is a light receiving element, 14 is a position signal, polygon mirrors, mirrors, fθ lenses existing on the optical path of the conventional example, The reflection mirror is not shown, and the condenser lens 17 and the light receiving element 18 are arranged virtually. In this configuration, the height of the object l is A point 1
9. When point B is added, the diffusely reflected light 21 and the wave formed by irradiating these points with a laser beam are imaged separately at point C Z3 and point D on the light receiving element 18 via a condensing lens l7. In this way, the height displacement of the object 1 appears on the light receiving element 18 as a displacement of the condensing position, and the light receiving element 18 converts this displacement into an electrical signal to generate the position signal 14.

発明が解決しようとする課題 しかしかかる構成においては、対象物1の表面に凹凸が
あシかつ光沢のある材質の場合は、例えば第6図のB点
加の正反射光るが集光レンズ17の収差等の影響で受光
素子】8上のE点あに結像する場合がある。一般的に光
沢のある材質の場合は拡散反射光より正反射光の方が光
量が強い場合が多く、このため、受光素子18の位置信
号14はE点26を示す信号となう正しい位置信号を得
ることが困難となる。即ち、従来例においては対象物の
表面に凹凸があうかつ光沢のある材質の場合は正反射光
に攪乱され正しい三次元画像を取得することが困難であ
った。本発明の目的は、上記従来例の欠点に鑑み、対象
物の表面に凹凸があシかつ光沢のある材質の場合でも正
しい三次元画像を取得することのできる三次元画像入力
装置を提供するものである。
Problems to be Solved by the Invention However, in such a configuration, if the surface of the object 1 is made of an uneven and glossy material, the specular reflection light added to point B in FIG. Due to the influence of aberrations, etc., the image may be formed at point E on the light receiving element [8]. In general, in the case of glossy materials, the amount of specularly reflected light is often stronger than that of diffusely reflected light, so the position signal 14 of the light receiving element 18 is a correct position signal indicating point E 26. It becomes difficult to obtain. That is, in the conventional example, when the surface of the object is made of a glossy and uneven surface, it is difficult to obtain a correct three-dimensional image because of the disturbance caused by specularly reflected light. SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the conventional example, an object of the present invention is to provide a three-dimensional image input device that can obtain a correct three-dimensional image even when the surface of an object is made of an uneven and glossy material. It is.

課題を解決するための手段 本発明は対象物を移動させる搬送手段と、レーザ光を放
射するレーザ光源と、前記レーザ光の中より特定の直線
偏光の成分のみを透過させる第1の偏光素子と、前記直
線偏光を一次元方向に走査させるポリゴンミラーと、f
θレンズおよび前記ポリゴンミラーを経由した対象物の
反射光より所定の直線偏光の成分のみを透過させる第2
の偏光素子と、前記反射光の直線偏光を集光させる集光
レンズと、その集光位置を位置信号として出力する受光
素子と、前記位置信号より高さデータを演算する高さ演
算処理手段とを設けたものでちる。あるいは上記第1の
偏光素子の代わりに直線偏光を照射するレーザ光源を採
用するものである。
Means for Solving the Problems The present invention provides a transport means for moving an object, a laser light source for emitting laser light, and a first polarizing element for transmitting only a specific linearly polarized component of the laser light. , a polygon mirror that scans the linearly polarized light in a one-dimensional direction, and f
A second lens that transmits only a predetermined linearly polarized light component from the reflected light from the object via the θ lens and the polygon mirror.
a polarizing element, a condensing lens that condenses the linearly polarized light of the reflected light, a light receiving element that outputs the condensed position as a position signal, and a height calculation processing means that calculates height data from the position signal. The one with the . Alternatively, a laser light source that emits linearly polarized light may be used instead of the first polarizing element.

作用 本発明は上記構成によう、正反射光を集光レンズに到達
する1でに除去するべく、レーザ光源と対象物間の光路
上に第lの偏光素子を、1た対象物と集光レンズ間の光
路上に第2の偏光素子を追加する構成とした。
According to the above-mentioned structure, the present invention includes a first polarizing element on the optical path between the laser light source and the object, and a first object and the focusing lens, in order to remove specularly reflected light before it reaches the focusing lens. The configuration is such that a second polarizing element is added on the optical path between the lenses.

実施例 古くよう光学の分野にかいて物体からの反射光は正反射
成分と拡散反射成分か存在することが知られている。さ
らに、物体に直線偏光を照射した場合、正反射成分は直
線偏光であう拡散反射成分は無偏光であることも知られ
ている(1956年応用物理学会論文「偏光による紙の
反射特性の測定I・■」参照)。本発明はこの光学的な
反射特性に着目し、対象物に直線偏光を照射し、その反
射光より照射した直線偏光に直交する直線偏光成分のみ
を透過する偏光素子により反射光中の拡散反射成分のみ
を選択的に取シ出す構或とし、正しい三次元画像の取得
を可能とした。本発明の高さデータ取得原理を第2図を
用いて詳細に説明する。
Embodiment It has long been known in the field of optics that light reflected from an object has a specular reflection component and a diffuse reflection component. Furthermore, it is known that when an object is irradiated with linearly polarized light, the specular reflection component is linearly polarized, while the diffuse reflection component is unpolarized (1956 Japan Society of Applied Physics paper, "Measurement of the Reflection Characteristics of Paper Using Polarized Light I. (See “■”). Focusing on this optical reflection characteristic, the present invention irradiates linearly polarized light onto an object, and uses a polarizing element that transmits only the linearly polarized component orthogonal to the irradiated linearly polarized light from the reflected light. By selectively extracting only the three-dimensional images, it is possible to obtain accurate three-dimensional images. The principle of height data acquisition according to the present invention will be explained in detail using FIG.

第2図において、1は対象物、4はレーザ光源、5はレ
ーザ光、5は本誌面に垂直な直線偏光のレーザ光、8は
本誌面に垂直な直線偏光のみを透過する第1の偏光素子
、11ぱ本誌面に平行な直線偏光のみを透過する第2の
偏光素子、14は位置信号、l7は集光レンズ、18は
受光素子、19は対象物1の1つの高さの点A, 20
は対象物1の1つの高さの点B121はA点の拡散反射
光、セはB点の拡散反射光、おはA点の拡散反射光21
の結像点C,24はB点の拡散反射光麓の結像点D,2
5はB点の正反射光、若はこの光が本紙面に垂直な直線
偏光成分と本誌面に平行な直線偏光或分を含んでいるこ
とを示す記号、あはこの光が本紙面に垂直な直線偏光成
分のみを含んでいることを示す記号、四はこの光が本紙
面に平行な直線偏光成分のみを含んでいることを示す記
号である。
In Figure 2, 1 is an object, 4 is a laser light source, 5 is a laser beam, 5 is a linearly polarized laser beam perpendicular to the main plane, and 8 is a first polarized light that transmits only linearly polarized light perpendicular to the main plane. 11 is a second polarizing element that transmits only linearly polarized light parallel to the plane of the book; 14 is a position signal; 17 is a condenser lens; 18 is a light receiving element; 19 is a point A at one height of the object 1; , 20
Point B121 at one height of object 1 is the diffusely reflected light from point A, SE is the diffusely reflected light from point B, and o is the diffusely reflected light 21 from point A.
The image forming point C,24 is the image forming point D,2 at the foot of the diffusely reflected light of point B.
5 is the specularly reflected light from point B, or a symbol indicating that this light contains a linearly polarized component perpendicular to the page and a linearly polarized component parallel to the page, ah, this light is perpendicular to the page. The symbol 4 indicates that this light contains only a linearly polarized component parallel to the plane of the paper.

かかる構成において、レーザ光源4からのレーザ光5は
第1の偏光素子8によう垂直な直線偏光となり、レーザ
光5を形成し対象物1に照射する。
In this configuration, the laser light 5 from the laser light source 4 becomes linearly polarized light perpendicular to the first polarizing element 8 to form laser light 5 and irradiate the object 1 with it.

対象物1のA点19、B,!20での拡散反射光21及
びηは本紙面に垂直な直線偏光成分と本誌面に平行な直
線偏光成分を含んでいるが、第2の偏光素子1lにより
本紙面に垂直な直線偏光或分は除去され本誌面に平行な
直線偏光成分の拡散反射光として受光素子18上のC点
23、D点24に結像する。B点の正反射光ろは本紙面
に垂直な直線偏光成分のみであるため第2の偏光素子1
1によう除去され受光素子l8には到達しない。同様に
A点の正反射成分(図示せず)も本紙面に垂直な直線偏
光成分のみであるため第2の偏光素子11により除去さ
れ受光素子l8には到達しない。このようにして、受光
素子18上には対象物1の拡散反射光のみの像が結像さ
れ、対象物1の高さの変位が正反射光に攪乱されること
なく受光素子1上の集光位置のより精度の高い変位とし
て現れ、受光素子18はこの変位を電気信号に変換して
より精度の高い位置信号14を取得することが出来る。
Point A of object 1 19, B,! The diffusely reflected light 21 and η at 20 include a linearly polarized component perpendicular to the page surface and a linearly polarized component parallel to the page surface, but the second polarizing element 1l converts the linearly polarized light component perpendicular to the page surface or The removed light is imaged at point C 23 and point D 24 on the light-receiving element 18 as diffusely reflected light of linearly polarized light components parallel to the magazine plane. Since the specularly reflected light beam at point B is only a linearly polarized light component perpendicular to the paper surface, the second polarizing element 1
1 and does not reach the light receiving element 18. Similarly, since the regular reflection component (not shown) at point A is only a linearly polarized component perpendicular to the plane of the paper, it is removed by the second polarizing element 11 and does not reach the light receiving element l8. In this way, an image of only the diffusely reflected light from the object 1 is formed on the light receiving element 18, and the height displacement of the object 1 is focused on the light receiving element 1 without being disturbed by the specularly reflected light. This appears as a more accurate displacement of the light position, and the light receiving element 18 can convert this displacement into an electrical signal to obtain a more accurate position signal 14.

以下、第1図を参照しながら本発明の第1の実施例につ
いて説明する。
A first embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の三次元画像入力装置の第1の実施例を
示すブロック結線図である。第l図において、lは対象
物、2は対象物1を移動させる搬送手段、3は搬送手段
2の移動方向を示す矢印、4はレーザ光源、5はレーザ
光源4からのレーザ光、6はポリゴンミラ− 7はレー
ザ光5をポリゴンミラ−6に送るための鏡、8はレーザ
光5より所定の偏光成分のみを透過する第1の偏光素子
、9はfθレンズ、lOは対象物の反射光を集光する反
射ミラー、1lは反射光より所定の偏光成分のみを透過
する第2の偏光素子、12は集光レンズ、l3は位置検
出用の受光素子、l4は受光素子13からの位置信号、
15は位置信号を高さ信号に変換する高さ演算処理手段
、16は本装置から出力される高さ信号である。
FIG. 1 is a block diagram showing a first embodiment of the three-dimensional image input device of the present invention. In FIG. 1, l is the object, 2 is a conveying means for moving the object 1, 3 is an arrow indicating the moving direction of the conveying means 2, 4 is a laser light source, 5 is a laser beam from the laser light source 4, and 6 is a Polygon mirror 7 is a mirror for sending the laser beam 5 to the polygon mirror 6, 8 is a first polarizing element that transmits only a predetermined polarized component from the laser beam 5, 9 is an fθ lens, and IO is a reflection of an object. 1l is a second polarizing element that transmits only a predetermined polarized light component from the reflected light; 12 is a condensing lens; 13 is a light receiving element for position detection; 14 is the position from the light receiving element 13. signal,
15 is a height calculation processing means for converting a position signal into a height signal, and 16 is a height signal output from this device.

以下、本実施例の動作について説明する。対象物1は搬
送手段2により矢印3方向に移動させつつ、レーザ光源
4からのレーザ光5に対し3つの鏡7を用いて第1の偏
光素子8を透過させ所定の直線偏光のみを回転している
ポリゴンミラ−6に導き、ポリゴンミラ−6とfθレン
ズ9によりレーザ光5の所定の直線偏光を対象物1に垂
直に照射する。これによυ対象物lを直線偏光で二次元
的に全面走査することが出来る。また、レーザ光5の所
定の直線偏光の走査により対象物1からの反射光を反射
ミラー10で反射させ、更にその反射光をfθレンズ9
とポリゴンミラ−6を用いて第2の偏光素子11を透過
させ、第1の直線偏光に直交する直線偏光を取シ出し集
光レンズ12を介して集光位置検出用の受光素子13上
に集光する。受光素子13からは集光された位置を示す
位置信号14が出力され、高さ演算処理手段15におい
て位置信号14を高さデータに変換する演算を行い、高
さデータ16として出力する。以上の動作を、ポリゴン
ミラ−6を所定の速度で回転させ搬送手段2を所定の速
度で移動させつつ繰り返すことで、対象物1の全領域に
対して三次元的な画像を取得することが出来る。
The operation of this embodiment will be explained below. While the object 1 is moved in the direction of the arrow 3 by the conveyance means 2, the laser beam 5 from the laser light source 4 is transmitted through the first polarizing element 8 using three mirrors 7, and only a predetermined linearly polarized beam is rotated. A predetermined linearly polarized light of the laser beam 5 is irradiated perpendicularly onto the object 1 by the polygon mirror 6 and the fθ lens 9. This allows the entire surface of the object l to be scanned two-dimensionally with linearly polarized light. Further, by scanning the predetermined linearly polarized light of the laser beam 5, the reflected light from the object 1 is reflected by the reflecting mirror 10, and the reflected light is further reflected by the fθ lens 9.
The polygon mirror 6 is used to transmit the second polarizing element 11, and the linearly polarized light perpendicular to the first linearly polarized light is taken out and sent through the condensing lens 12 onto the light receiving element 13 for detecting the condensed position. Focus light. The light-receiving element 13 outputs a position signal 14 indicating the focused position, and the height calculation processing means 15 performs calculation to convert the position signal 14 into height data, which is output as height data 16. By repeating the above operations while rotating the polygon mirror 6 at a predetermined speed and moving the conveyance means 2 at a predetermined speed, a three-dimensional image can be obtained for the entire area of the object 1. I can do it.

以上の動作説明の中で、よ】精度の高い高さデータを取
得する原理は第2図を用いて述べたので詳細説明は省略
する。
In the above explanation of the operation, the principle of obtaining highly accurate height data has been described using FIG. 2, so detailed explanation will be omitted.

次に、受光素子13と高さ演算処理手段15の動作につ
いて第3図を用いて詳細に説明する。第3図は受光素子
13と高さ演算処理手段15の詳細プロンク結線図であ
る。第3図において、13は受光素子、14は位置信号
、15は高さ演算処理手段、15aはI−■変換器、1
5bはA/D変換器、15cは位置演算回路、15dは
高さ変換回路、16は出力される高さデータである。以
下その動作を説明する。本実施例における受光素子13
は、受光位置検出素子として受光部表面に抵抗層を設け
、素子の両電極に流れる電流値が受光位置と各電極間と
の距離に反比例する素子を用いた。従って位置信号14
は両電極に流れる電流値になっている。高さ演算処理手
段15では、前段よりの位置信号14をI−V変換器1
5aにおいて電流一電圧変換を行い、更に、A/D変換
器15bにおいてデジタル信号に変換し、量子化された
両電極の電圧値V, 、V,,を得る。次に、位置演算
回路15clC>いて受光位置データPを次式 (但し、Kは任意の定数) に従っ゛C演算し、高さ変換回路15dにおいて第2図
を用いて説明した高さ取得原理に基づき、受光位置デー
タPを高さデータに相当する値に変換し高さデータ16
を得て出力する。
Next, the operations of the light receiving element 13 and the height calculation processing means 15 will be explained in detail using FIG. 3. FIG. 3 is a detailed pronk connection diagram of the light receiving element 13 and the height calculation processing means 15. In FIG. 3, 13 is a light receiving element, 14 is a position signal, 15 is a height calculation processing means, 15a is an I-■ converter, 1
5b is an A/D converter, 15c is a position calculation circuit, 15d is a height conversion circuit, and 16 is output height data. The operation will be explained below. Light receiving element 13 in this embodiment
used an element that provided a resistance layer on the surface of the light-receiving part as a light-receiving position detection element, and the value of the current flowing through both electrodes of the element was inversely proportional to the distance between the light-receiving position and each electrode. Therefore, the position signal 14
is the current value flowing through both electrodes. The height calculation processing means 15 converts the position signal 14 from the previous stage into the I-V converter 1.
5a performs current-to-voltage conversion, and further converts into a digital signal in A/D converter 15b to obtain quantized voltage values V, , V, , of both electrodes. Next, the position calculation circuit 15clC calculates the received light position data P according to the following formula (where K is an arbitrary constant), and the height conversion circuit 15d calculates the height acquisition principle as explained using FIG. Based on this, the light receiving position data P is converted into a value corresponding to height data, and height data 16 is obtained.
Obtain and output.

以上のように本実施例では、対象物1に直線偏光を照射
し反射光より照射した直線偏光に直交する直線偏光のみ
を取シ出し受光素子13に集光させることにより、正反
射光に攪乱される事なくより稽度の高い高さデータを取
得する。なお、本実施例に釦いてはレーザ光のビームス
ポット径を50ミクロンにし1画素印ミクロンの三次元
画像を得てしる。
As described above, in this embodiment, the target object 1 is irradiated with linearly polarized light, and only the linearly polarized light perpendicular to the irradiated linearly polarized light is extracted from the reflected light and focused on the light receiving element 13, thereby disturbing the specularly reflected light. Acquire height data with a higher level of precision without being overly affected. In this embodiment, the beam spot diameter of the laser beam is set to 50 microns to obtain a three-dimensional image of one pixel in microns.

次に、第4図を参照しながら本発明の第2の実施例につ
いて説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

第4図は本発明の三次元画像入力装置の第2の実施例を
示すブロック結線図である。第4図において、1は対象
物、2は対象物1を移動させる搬送手段、3は搬送手段
2の移動方向を示す矢印、40は直線偏光を放射するレ
ーザ光源、5はレーザ光源40からのレーザ光、6はポ
リゴンミラ− 9はfθレンズ、lOは対象物の反射光
を集光する反射ミラー、11ぱ反射光より所定の偏光成
分のみを透過する偏光素子、12は集光レンズ、l3は
位置検出用の受光素子、l4は受光素子からの位置信号
、15は位置信号を高さ信号に変換する高さ演算処理手
段、16は本装置から出力される高さ信号である。
FIG. 4 is a block diagram showing a second embodiment of the three-dimensional image input device of the present invention. In FIG. 4, 1 is an object, 2 is a conveyance means for moving the object 1, 3 is an arrow indicating the moving direction of the conveyance means 2, 40 is a laser light source that emits linearly polarized light, and 5 is a light beam from the laser light source 40. A laser beam, 6 is a polygon mirror, 9 is an fθ lens, 1O is a reflection mirror that collects the reflected light from the object, 11 is a polarizing element that transmits only a predetermined polarized component from the reflected light, 12 is a condensing lens, 13 14 is a light receiving element for position detection, 14 is a position signal from the light receiving element, 15 is a height calculation processing means for converting the position signal into a height signal, and 16 is a height signal output from the apparatus.

本発明の第2の実施例の特徴は予め直線偏光を放射する
レーザ光源40を光源として採用することにより、前述
の第1の実施例よ)第1図の鏡7及び第1の偏光素子8
を取ジ去クた構成になっており、ポリゴンミラ−6に直
線偏光が照射された以後の動作は第1の実施例と同じも
のとなる。なか、鏡による直線偏光の方向の乱れを排除
し、より偏光方向の揃った直線偏光を得るために、本実
施例に釦いては第1の実施例の鏡7を除去した。
The feature of the second embodiment of the present invention is that by employing a laser light source 40 that emits linearly polarized light as a light source, the mirror 7 and the first polarizing element 8 of FIG.
The configuration has been omitted, and the operation after the polygon mirror 6 is irradiated with linearly polarized light is the same as in the first embodiment. In order to eliminate the disturbance in the direction of linearly polarized light caused by the mirror and to obtain linearly polarized light with a more uniform polarization direction, the mirror 7 of the first embodiment was removed in this embodiment.

発明の効果 以上述べたように本発明は、対象物を移動させる搬送手
段と、レーザ光を放射するレーザ光源と、前記ンーザ光
の中よl)特定の直線偏光の成分のみを透過させる第1
の偏光素子と、前記直線偏光を一次元方向に走査させる
ポリゴンミラーと、fθレンズおよび前記ポリゴンミラ
ーを経由した対象物の反射光より所定の直線偏光の成分
のみを透過させる第2の偏光素子と、前記反射光の直線
偏光を集光させる集光レンズと、その集光位置を位置信
号として出力する受光素子と、位置信号よう高さデータ
を演算する高さ演算処理手段とを設けることにより、あ
るいは第1の偏光素子の代わシに直線偏光を照射するレ
ーザ光源を採用することにより、高精度の三次元画像を
取得することができ、従来の三次元計測機に代わる装置
として、また、微細な物体の三次元的な形状を測定する
三次元画像入力装置として有効なものである。
Effects of the Invention As described above, the present invention provides a transport means for moving an object, a laser light source for emitting a laser beam, and a first laser beam that transmits only a specific linearly polarized component of the laser beam.
a polarizing element, a polygon mirror that scans the linearly polarized light in a one-dimensional direction, and a second polarizing element that transmits only a predetermined component of the linearly polarized light from the reflected light from the object that has passed through the fθ lens and the polygon mirror. , by providing a condensing lens that condenses the linearly polarized light of the reflected light, a light receiving element that outputs the condensed position as a position signal, and a height calculation processing means that calculates height data according to the position signal, Alternatively, by adopting a laser light source that irradiates linearly polarized light instead of the first polarizing element, it is possible to obtain a highly accurate three-dimensional image, and it can be used as a device to replace the conventional three-dimensional measuring machine. This device is effective as a three-dimensional image input device for measuring the three-dimensional shape of objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における三次元画像入力
装置のブロック結線図、第2図は本発明の第1及び第2
の実施例に共通する高さデータ取得原理の概念図、第3
図は本発明の第1及び第2の実施例に共通する受光素子
と高さ演算処理手段のブロック結線図、第4図は本発明
の第2の実施例における三次元画像入力装置のブロック
結線図、第5図は従来の三次元画偉人力装置のブロック
結線図、第6図は第5図の構成における高さデータ取得
原理の概念図である。 1・・・対象物、2・・・搬送手段、4・・・レーザ光
源、6・・・ポリゴンミラ− 8・・・第lの偏光素子
、9・・・fθレンズ、lO・・・反射ミラー、11・
・・第2の偏光素子、12・・・集光レンズ、13・・
・受光素子、15・・・高さ演算処理手段。
FIG. 1 is a block diagram of a three-dimensional image input device according to a first embodiment of the present invention, and FIG.
Conceptual diagram of the height data acquisition principle common to the embodiments, Part 3
The figure is a block wiring diagram of the light receiving element and the height calculation processing means common to the first and second embodiments of the present invention, and FIG. 4 is the block wiring diagram of the three-dimensional image input device in the second embodiment of the present invention. 5 is a block diagram of a conventional three-dimensional drawing machine, and FIG. 6 is a conceptual diagram of the principle of acquiring height data in the configuration shown in FIG. DESCRIPTION OF SYMBOLS 1...Target, 2...Transportation means, 4...Laser light source, 6...Polygon mirror 8...l-th polarizing element, 9...fθ lens, lO...reflection Miller, 11.
...Second polarizing element, 12...Condensing lens, 13...
- Light receiving element, 15... height calculation processing means.

Claims (2)

【特許請求の範囲】[Claims] (1)対象物を移動させる搬送手段と、レーザ光を放射
するレーザ光源と、前記レーザ光の中より特定の直線偏
光の成分のみを透過させる第1の偏光素子と、前記直線
偏光を一次元方向に走査させるポリゴンミラーと、f^
θレンズおよび前記ポリゴンミラーを経由した対象物の
反射光より所定の直線偏光の成分のみを透過させる第2
の偏光素子と、前記反射光の直線偏光を集光させる集光
レンズと、その集光位置を位置信号として出力する受光
素子と、前記位置信号より高さデータを演算する高さ演
算処理手段とを具備する三次元画像入力装置。
(1) A transport means for moving an object, a laser light source for emitting a laser beam, a first polarizing element for transmitting only a specific linearly polarized component of the laser beam, and a first polarizing element for transmitting the linearly polarized light in one dimension. A polygon mirror that scans in the direction and f^
A second lens that transmits only a predetermined linearly polarized light component from the reflected light from the object via the θ lens and the polygon mirror.
a polarizing element, a condensing lens that condenses the linearly polarized light of the reflected light, a light receiving element that outputs the condensed position as a position signal, and a height calculation processing means that calculates height data from the position signal. A three-dimensional image input device comprising:
(2)請求項1記載の第1の偏光素子の代わりに直線偏
光を照射するレーザ光源を採用する事を特徴とする請求
項1記載の三次元画像入力装置。
(2) The three-dimensional image input device according to claim 1, characterized in that a laser light source that emits linearly polarized light is used instead of the first polarizing element according to claim 1.
JP15179189A 1989-06-14 1989-06-14 Inputting apparatus for three-dimensional image Pending JPH0317506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15179189A JPH0317506A (en) 1989-06-14 1989-06-14 Inputting apparatus for three-dimensional image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15179189A JPH0317506A (en) 1989-06-14 1989-06-14 Inputting apparatus for three-dimensional image

Publications (1)

Publication Number Publication Date
JPH0317506A true JPH0317506A (en) 1991-01-25

Family

ID=15526373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15179189A Pending JPH0317506A (en) 1989-06-14 1989-06-14 Inputting apparatus for three-dimensional image

Country Status (1)

Country Link
JP (1) JPH0317506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527205B2 (en) * 1999-06-07 2009-05-05 Metrologic Instruments, Inc. Automated package dimensioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527205B2 (en) * 1999-06-07 2009-05-05 Metrologic Instruments, Inc. Automated package dimensioning system

Similar Documents

Publication Publication Date Title
US6525827B2 (en) Method and system for imaging an object with a plurality of optical beams
US6428171B1 (en) Height measuring apparatus
US6731383B2 (en) Confocal 3D inspection system and process
TWI402498B (en) An image forming method and image forming apparatus
JPH0117523B2 (en)
JP2657505B2 (en) Mark position detecting device and mark arrangement method
JPH02114156A (en) Inspection device of mounted substrate
JP2001108417A (en) Optical shape measuring instrument
JP3726028B2 (en) 3D shape measuring device
JPH0317506A (en) Inputting apparatus for three-dimensional image
JP2986025B2 (en) Board inspection method
JP2633718B2 (en) Shape recognition device
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
JP3507262B2 (en) Surface inspection equipment
JP2525261B2 (en) Mounted board visual inspection device
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JP3340879B2 (en) Surface defect detection method and apparatus
JPH0749930B2 (en) Mounted board inspection device
JPS6042606A (en) Optical size measuring device
JP2818597B2 (en) Pattern inspection method
JP2001045242A (en) Image pickup device provided with integrated type position detector
JPH0139041B2 (en)
JPH095045A (en) Photo/detector
JP2006010544A (en) Apparatus and method for inspecting foreign matter
JPH11132940A (en) Apparatus and method for measurement of birefringence