JPS61132597A - Apparatus for producing compound semiconductor single crystal - Google Patents

Apparatus for producing compound semiconductor single crystal

Info

Publication number
JPS61132597A
JPS61132597A JP25113084A JP25113084A JPS61132597A JP S61132597 A JPS61132597 A JP S61132597A JP 25113084 A JP25113084 A JP 25113084A JP 25113084 A JP25113084 A JP 25113084A JP S61132597 A JPS61132597 A JP S61132597A
Authority
JP
Japan
Prior art keywords
single crystal
semiconductor single
raw material
compound semiconductor
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25113084A
Other languages
Japanese (ja)
Inventor
Satao Yashiro
八代 佐多夫
Shoichi Washitsuka
鷲塚 章一
Masayuki Watanabe
正幸 渡辺
Mitsuhiro Nagata
永田 光弘
Yasuyuki Sugiura
杉浦 康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25113084A priority Critical patent/JPS61132597A/en
Publication of JPS61132597A publication Critical patent/JPS61132597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a semiconductor single crystal having high quality and low contamination with carbon and other impurities, in high reproducibility, by using specific multi-walled tube made of AlN as a heat-insulation cylinder of an apparatus for the production of a single crystal by LEC process, and growing a compound semiconductor single crystal with the apparatus. CONSTITUTION:A heat-insulation cylinder 20 is placed in the pressure vessel 11 (e.g. made of stainless steel) of an apparatus for the production of a compound semiconductor single crystal by LEC process. The cylinder 20 is free of carbonaceous materials and is composed of two cylinders 20a and 20b made of sintered AlN and a granular filler 20c made of sintered alN and having a size of 3-10mm. The GaAs raw material 14 and the B2Oj3 encapsulation material 15 are charged in the crucible 12 made of e.g. PBN, the space in the vessel 11 is pressurized with Ar gas, the crucible 12 is heated with the heater 17 to melt the raw material 14 and the encapsulation material 15, the seed crystal 22 is made to contact with the molten raw material 14 via the encapsulation material 15, and is pulled up to effect the growth of the single crystal 23. A semiconductor single crystal 23 having extremely decreased carbon contamination can be produced by this process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、LEC法(液体カプセル引上げ法)を用いて
化合物半導体単結晶を引上げ製造する化合物半導体単結
晶の製造装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a compound semiconductor single crystal manufacturing apparatus for pulling and manufacturing a compound semiconductor single crystal using the LEC method (liquid capsule pulling method).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、融点での分解圧が高い化合物半導体単結晶の製造
方法として、LEC法が注目されている。
In recent years, the LEC method has attracted attention as a method for producing compound semiconductor single crystals that have a high decomposition pressure at the melting point.

このLEC法は、原料融液上に液体カプセル材を形成し
た状態で単結晶の引上げを行う方法であり、第3図に示
す如き単結晶製造装置で実施されている。即ち、加圧容
器11内にルツボ12をルツボ受け13を介して配設し
、ルツボ12に得ようとする結晶の原料及び原料融液の
表面から揮発性成分の分解を抑える目的で用いられる液
体カプセル材(820!l )15を入れる。次いで、
加圧容器11内に不揮発性ガスを入れて原料を加熱溶解
した後、引上げ軸21に取付けた種子結晶22を上記カ
プセル材15を通して原料融液14に浸す。
This LEC method is a method in which a single crystal is pulled with a liquid capsule material formed on a raw material melt, and is carried out in a single crystal manufacturing apparatus as shown in FIG. That is, a crucible 12 is placed in a pressurized container 11 via a crucible receiver 13, and a liquid used for the purpose of suppressing the decomposition of volatile components from the surface of the raw material and raw material melt of the crystal to be obtained is placed in the crucible 12. Add 15 pieces of capsule material (820!L). Then,
After a nonvolatile gas is introduced into the pressurized container 11 and the raw material is heated and melted, the seed crystal 22 attached to the pulling shaft 21 is immersed in the raw material melt 14 through the capsule material 15.

その後、引上げを開始することによって、単結晶23が
得られることになる。
Thereafter, by starting pulling, a single crystal 23 will be obtained.

このような結晶作製の場合、発熱体17の外周部に沿っ
て発熱体17の加熱効率及び断熱効果の確保と、ルツボ
12内の温度分布の適正維持のため保温筒18が多重に
配設される。保温筒18には通常、加圧が容易で安価な
炭素製品が用いられているが、炭素の熱伝導性がよいの
で十分な断熱効果を持たして発熱体の加熱効率を確保す
るためには、保ai筒18を多重構造にする、ざらに多
重構造にした保温筒間に断熱材を配置する等の構造上の
工夫が必要であり、結果として多量の炭素製造物を用い
ることになる。
In the case of such crystal production, multiple heat insulating cylinders 18 are arranged along the outer periphery of the heating element 17 in order to ensure the heating efficiency and heat insulation effect of the heating element 17 and to maintain an appropriate temperature distribution within the crucible 12. Ru. Carbon products, which are easy to pressurize and are inexpensive, are usually used for the heat insulating cylinder 18, but since carbon has good thermal conductivity, it is necessary to have sufficient heat insulation effect and ensure heating efficiency of the heating element. , it is necessary to take structural measures such as making the insulation cylinders 18 have a multilayer structure or placing a heat insulating material between the heat insulation cylinders having a rough multilayer structure, and as a result, a large amount of carbon products is used.

しかしながら、これらの炭素製品は、雰囲気中の微量の
酸素や水蒸気により浸蝕劣化されて使用寿命が著しく短
縮されるばかりか、保温筒からの炭素不gtmが原料の
融液中に混入し、単結晶化を阻害したり、育成結晶に取
り込まれたりする。結晶中に取込まれた炭素は、例えば
電子デバイス用として重要なGaAS単結晶の半絶縁性
化を阻害する等の結晶特性に悪影響を及ぼす。
However, these carbon products are not only eroded and deteriorated by trace amounts of oxygen and water vapor in the atmosphere, resulting in a significantly shortened service life, but also carbon waste from the heat insulating cylinders mixed into the melt of the raw material, causing single crystals to deteriorate. or be incorporated into the growing crystal. Carbon incorporated into the crystal has an adverse effect on crystal properties, such as inhibiting semi-insulating properties of GaAS single crystals, which are important for electronic devices.

このような事情から、炭素不純物の供給源とならず、且
つ熱的にも化学的にも安定な保温筒が要求されており、
しかもそれによって発熱体の加熱効率を単純な構成で確
保できれば工業上の利点は大きい。
Under these circumstances, there is a need for a thermal insulation cylinder that does not become a source of carbon impurities and is thermally and chemically stable.
Furthermore, if the heating efficiency of the heating element can be ensured with a simple configuration, there will be great industrial advantages.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、保温筒からの炭素不純物汚染を招くこ
となく、化合物半導体単結晶を引上げ製造することがで
き、且つ保温筒の長寿命化をはかり得る化合物半導体単
結晶の製造装置を提供することにある。
An object of the present invention is to provide a compound semiconductor single crystal production device that can pull and produce a compound semiconductor single crystal without causing carbon impurity contamination from a heat insulation cylinder, and that can extend the life of the heat insulation cylinder. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、保温筒として、従来の炭素の代りに窒
化アルミニウム質の焼結体を用いること−にある。
The gist of the present invention is to use a sintered body of aluminum nitride instead of conventional carbon as a heat-insulating cylinder.

即ち本発明は、高圧容器内に配設されたルツボ内の原料
融液からLEC法により化合物半導体単結晶を製造する
装置において、前記原料融液を加熱する発熱体の外周部
に配設された保温筒を、上記発熱体を2重以上に囲む窒
化アルミニウム材質の焼結体からなる複数の円筒と、こ
れらの円筒の間隙に充填された窒化アルミニウム材質の
焼結体からなる粒状の充填材とで構成するようにしたも
のである。
That is, the present invention provides an apparatus for producing a compound semiconductor single crystal by the LEC method from a raw material melt in a crucible disposed in a high-pressure container, in which a heating element is provided on the outer periphery of a heating element that heats the raw material melt. The heat insulating cylinder includes a plurality of cylinders made of a sintered body of aluminum nitride that surrounds the heating element twice or more, and a granular filler made of a sintered body of aluminum nitride filled in the gaps between these cylinders. It is made up of:

〔発明の効果〕〔Effect of the invention〕

本発明によれば、保inを構成する円筒及び充填材を窒
化アルミニウム材質の焼結体で形成しているので、次の
■〜■のような効果が得られる。
According to the present invention, since the cylinder and the filler constituting the insulator are formed of a sintered body of aluminum nitride, the following effects (1) to (4) can be obtained.

■ 引上げ炉部材からの炭素の不純物′汚染が減少し、
結晶の品質が向上する。さらに、A42N部材は耐久性
及び保温効果が優れているので、ルツボ内の温度分布の
適正維持がはかられる。この結果、単結晶製造の再現性
が向上した。
■ Carbon impurity contamination from pulling furnace parts is reduced,
Improves crystal quality. Furthermore, since the A42N member has excellent durability and heat retention effect, it is possible to maintain an appropriate temperature distribution within the crucible. As a result, the reproducibility of single crystal production has improved.

■ 従来の炭素製品で構成された保温筒に比べて、その
組立て及び設置が容易となった。従来、保温筒として炭
素の2重円筒間に布状の断熱材を配設したものがあるが
、この場合内筒に断熱材を巻装した後外筒を被せる等の
作業が必要であり、その組立て及び設置が面倒である。
■ It is easier to assemble and install compared to conventional heat insulation tubes made of carbon products. Conventionally, there is a heat insulation cylinder in which a cloth-like insulation material is placed between two carbon cylinders, but in this case, it is necessary to wrap the insulation material around the inner cylinder and then cover it with the outer cylinder. Its assembly and installation are troublesome.

これに対し本発明では、内外筒を設置した後これらの間
隙に充填材を充填するのみでよいので、上記の効果が得
られるのである。
On the other hand, in the present invention, it is only necessary to fill the gap between the inner and outer cylinders with a filler after installing the inner and outer cylinders, so that the above-mentioned effects can be obtained.

■ ■の理由により、炉部の設計が容易になり、このこ
とから炉部を広げることも容易となり、より大口径の結
晶製造ができるようになった。
(2) Due to the reasons mentioned above, the design of the furnace section became easier, which also made it easier to expand the furnace section, making it possible to produce crystals with a larger diameter.

(発明の実施例〕 以下、本発明の詳細を図示の実施例によって説明する。(Example of the invention) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる単結晶製造装置の概
略構成を示す断面図である。図中11はステンレス鋼等
からなる高圧容器であり、この容器11内には例えばP
ANからなる内径100L slI]のルツボ12がル
ツボ受け13を介して配設されている。ルツボ12内に
は原料融液14及び820s等の液体カプセル材15が
収容される。
FIG. 1 is a sectional view showing a schematic configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention. Reference numeral 11 in the figure is a high-pressure container made of stainless steel or the like.
A crucible 12 made of AN and having an inner diameter of 100 L slI is disposed via a crucible holder 13. The crucible 12 houses a raw material melt 14 and a liquid capsule material 15 such as 820s.

そして、ルツボ12は回転軸16により回転されるもの
となっている。
The crucible 12 is rotated by a rotating shaft 16.

一方、ルツボ12の外周部にはルツボ12を囲むように
発熱体17が配置されている。この発熱体17は、ルツ
ボ12内に収容される原料及びカプセル材を加熱溶融し
て、上記原料融液14及び液体カプセル材15を形成す
るものである。そして、発熱体17の外周部には、本発
明に係わる保温筒20が配設されている。なお、図中2
1は結晶引上げ軸、22は種子結晶、23は引上げ単結
晶を示している。
On the other hand, a heating element 17 is arranged on the outer periphery of the crucible 12 so as to surround the crucible 12. This heating element 17 heats and melts the raw material and capsule material contained in the crucible 12 to form the raw material melt 14 and liquid capsule material 15. A heat-retaining tube 20 according to the present invention is disposed on the outer periphery of the heating element 17. In addition, 2 in the figure
1 is a crystal pulling axis, 22 is a seed crystal, and 23 is a pulled single crystal.

保温筒20は、第2図に示す如く径の異なるAgNの焼
結体からなる2つの円筒20a。
As shown in FIG. 2, the heat retaining cylinder 20 includes two cylinders 20a made of AgN sintered bodies with different diameters.

20b及びAflNの焼結体からなる粒状の充填材20
cから構成されている。即ち、2つの円筒20a、 2
Qbが前記発熱体17を囲繞して同軸的に配置され、こ
れらの円筒20a、2Qb間の間隙(例えば10g)に
充填材20Cを充填して構成されている。ここで、充填
材20Gとしては3〜10[al+]のAl2N粒状焼
結体を用いた。
Granular filler 20 made of a sintered body of 20b and AflN
It is composed of c. That is, two cylinders 20a, 2
Qb is arranged coaxially surrounding the heating element 17, and a gap (for example, 10 g) between these cylinders 20a and 2Qb is filled with a filler 20C. Here, as the filler 20G, 3 to 10 [al+] Al2N granular sintered bodies were used.

次に、上記装置を用いた結晶製造方法について説明する
Next, a crystal manufacturing method using the above apparatus will be explained.

まず、ルツボ12内にGaAs原料を800[g] 、
820x h7セル材e180[g]入れ、高圧容器1
1内に配設した。次いで、高圧容器11内をArガス7
[at+i]の加圧状態にして発熱体17によってルツ
ボ12を加熱し、GaAs原料及びカプセル材を溶解さ
せ、原料融液14上に液体カプセル材15が位置するよ
うにした。
First, 800 [g] of GaAs raw material was placed in the crucible 12,
820x h7 cell material e180 [g], high pressure container 1
It was placed within 1. Next, the inside of the high pressure container 11 is filled with Ar gas 7.
The crucible 12 was heated by the heating element 17 in a pressurized state of [at+i], the GaAs raw material and the encapsulant were melted, and the liquid encapsulant 15 was positioned on the raw material melt 14 .

GaAS原料溶解後、種子付は最適条件温度に調整した
のち、前記第1図に示す如く種子結晶22を液体カプセ
ル材15を通しGaAs原料融液14に接触させ、種子
結晶22とGaAS原料融液15とが十分に馴染んだと
ころで引上げ速度9、[a*/hr]、引とげ回転10
[rpl、ルツボ回転15[rom]等の引上げ条件下
で、結晶の作成を行ったところ、ルツボ内温度分布の適
正化が十分にはかられ、安定したGaAs単結晶の製造
が可能であった。
After dissolving the GaAS raw material, the seeding temperature is adjusted to the optimum condition, and then the seed crystal 22 is brought into contact with the GaAs raw material melt 14 through the liquid encapsulant 15 as shown in FIG. 15, when the pulling speed is 9, [a*/hr], and the pulling rotation is 10.
When crystals were produced under pulling conditions such as [rpl and crucible rotation of 15 [rom], the temperature distribution inside the crucible was sufficiently optimized and stable GaAs single crystal production was possible. .

また、上記の方法でGaAs単結晶製造を繰返し行った
ところ、単結晶の高歩留りと共に、結晶への炭素不純物
の混入が減少した。ここで、従来の方法により製造した
場合は1X10”  [CI&’ ]の炭素汚染が認め
られたが、本実施例では1X10”[α°3]と1桁の
低下が見られた。ざらに、発熱体及び炉部材の劣化が減
少し、使用ライフが伸びて著しく改善されていることが
判明した。
Furthermore, when GaAs single crystals were repeatedly produced using the above method, not only did the yield of the single crystals become high, but the amount of carbon impurities mixed into the crystals was reduced. Here, when manufactured by the conventional method, carbon contamination of 1X10"[CI&'] was observed, but in this example, a one-digit decrease of 1X10" [α°3] was observed. In general, it was found that the deterioration of the heating element and furnace members was reduced, and the service life was extended, resulting in a significant improvement.

かくして本実施例によれば、保温筒20をAgNの焼結
体で形成することにより、引上げ製造される単結晶の炭
素汚染を著しく低減することができる。さらに、保温筒
20の浸蝕及び劣化が著しく少なくなり、保温f112
0の長寿命化をはかり得る。また、円1120a、2O
b間の間隙に充填材20Gを充填する構造としているの
で、その組立て及び設置が容易である等の利点もある。
Thus, according to this embodiment, by forming the heat retaining cylinder 20 from a sintered body of AgN, carbon contamination of the single crystal produced by pulling can be significantly reduced. Furthermore, corrosion and deterioration of the heat insulation cylinder 20 are significantly reduced, and the heat insulation cylinder 20 is
0 life can be extended. Also, circles 1120a, 2O
Since the structure is such that the filler 20G is filled in the gap between b, there are also advantages such as ease of assembly and installation.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記保温筒を構成する円筒は2重に限るも
のではなく、3重以上であってもよい。さらに、円筒の
直径、高さ及び円筒間の間隙等の条件は、仕様に応じて
適宜窓めればよい。
Note that the present invention is not limited to the embodiments described above. For example, the number of cylinders constituting the heat retaining cylinder is not limited to two, but may be three or more. Furthermore, conditions such as the diameter and height of the cylinders and the gap between the cylinders may be adjusted as appropriate depending on the specifications.

同様に、充填材の粒径も仕様に応じて適宜変更可能であ
る。また、円筒及び充填材を形成する焼結体は窒化アル
ミニウム単体に限るものではなく、窒化アルミニウムを
主成分とするものであればよい。さらに、GaASに限
るものではなく、他の化合物半導体単結晶の製造に適用
できるのは勿論のことである。その他、本発明の要旨を
逸脱しない範囲で、種々変形して実施することができる
Similarly, the particle size of the filler can also be changed as appropriate depending on specifications. Further, the sintered body forming the cylinder and the filler is not limited to aluminum nitride alone, but may be any body containing aluminum nitride as a main component. Furthermore, it goes without saying that the present invention is not limited to GaAS and can be applied to the production of other compound semiconductor single crystals. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる化合物半導体単結晶
の製造装置の概略構成を示す断面図、第2図は上記装置
に用いた保温筒の構成を一部切欠して示す斜視図、第3
図は従来装置の概略構成を示す断面図である。 11・・・高圧容器、12・・・ルツボ、13・・・ル
ツボ受け、14・・・液体カプセル材、15・・・原料
融液、16・・・回転軸、17・・・発熱体、20・・
・保温筒、20a、20b・・・円筒、20c・・・充
填材、21・・・引上げ軸、22・・・種子結晶、23
・・・引上げ単結晶。 出願人代理人 弁理士 鈴江武彦 第1 図 鍔2図
FIG. 1 is a cross-sectional view showing a schematic configuration of a compound semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a partially cutaway perspective view showing the configuration of a heat-retaining cylinder used in the above-mentioned apparatus. Third
The figure is a sectional view showing a schematic configuration of a conventional device. DESCRIPTION OF SYMBOLS 11... High pressure container, 12... Crucible, 13... Crucible holder, 14... Liquid capsule material, 15... Raw material melt, 16... Rotating shaft, 17... Heating element, 20...
・Heat insulation cylinder, 20a, 20b...Cylinder, 20c...Filler, 21...Pulling shaft, 22...Seed crystal, 23
...pulled single crystal. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Tsuba Figure 2

Claims (1)

【特許請求の範囲】[Claims]  高圧容器内に配設されたルツボ内の原料融液からLE
C法により化合物半導体単結晶を製造する装置において
、前記原料融液を加熱する発熱体の外周部に配設された
保温筒を、上記発熱体を2重以上に囲む窒化アルミニウ
ム材質の焼結体からなる複数の円筒と、これらの円筒の
間隙に充填された窒化アルミニウム材質の焼結体からな
る粒状の充填材とで構成してなることを特徴とする化合
物半導体単結晶の製造装置。
LE from raw material melt in a crucible placed in a high-pressure container
In an apparatus for producing a compound semiconductor single crystal by method C, a sintered body made of aluminum nitride material surrounds the heating element twice or more, and a heat-retaining tube is placed on the outer periphery of the heating element that heats the raw material melt. 1. An apparatus for manufacturing a compound semiconductor single crystal, comprising: a plurality of cylinders; and a granular filler made of a sintered body of aluminum nitride, which is filled in the gaps between the cylinders.
JP25113084A 1984-11-28 1984-11-28 Apparatus for producing compound semiconductor single crystal Pending JPS61132597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25113084A JPS61132597A (en) 1984-11-28 1984-11-28 Apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25113084A JPS61132597A (en) 1984-11-28 1984-11-28 Apparatus for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS61132597A true JPS61132597A (en) 1986-06-20

Family

ID=17218117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25113084A Pending JPS61132597A (en) 1984-11-28 1984-11-28 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS61132597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166792A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Pulling up device for silicon single crystal
JPS63166795A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Pulling up device for silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889896A (en) * 1972-02-18 1973-11-24
JPS54128989A (en) * 1978-03-31 1979-10-05 Toshiba Corp Preparation of oxide single crystal
JPS5850957A (en) * 1981-08-28 1983-03-25 ベンウオルト・コ−ポレ−シヨン Treatment of dog otitis externa by beta- (1-adamantyl)-alpha, alpha-dimethylamine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889896A (en) * 1972-02-18 1973-11-24
JPS54128989A (en) * 1978-03-31 1979-10-05 Toshiba Corp Preparation of oxide single crystal
JPS5850957A (en) * 1981-08-28 1983-03-25 ベンウオルト・コ−ポレ−シヨン Treatment of dog otitis externa by beta- (1-adamantyl)-alpha, alpha-dimethylamine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166792A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Pulling up device for silicon single crystal
JPS63166795A (en) * 1986-12-26 1988-07-09 Toshiba Ceramics Co Ltd Pulling up device for silicon single crystal
JPH0751474B2 (en) * 1986-12-26 1995-06-05 東芝セラミツクス株式会社 Silicon single crystal pulling equipment
JPH0751475B2 (en) * 1986-12-26 1995-06-05 東芝セラミツクス株式会社 Silicon single crystal pulling equipment

Similar Documents

Publication Publication Date Title
CN110983429A (en) Single crystal furnace and monocrystalline silicon preparation method
US4521272A (en) Method for forming and growing a single crystal of a semiconductor compound
EP0068021A1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound.
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
CN114941176B (en) Thermal field design and single crystal growth method for preparing silicon carbide single crystal by solution method
US3249404A (en) Continuous growth of crystalline materials
JP2010030891A (en) Compound semiconductor crystal
JPS61132597A (en) Apparatus for producing compound semiconductor single crystal
CN211036174U (en) Crystal growth device
JP2631591B2 (en) Semiconductor single crystal manufacturing method and manufacturing apparatus
WO2020087719A1 (en) High purity carbon material prepared using residue from silicon carbide crystal growth, preparation method therefor, and use thereof
KR101303130B1 (en) Apparatus of manufacturing GaAs ingot
Dutta et al. Bulk growth of GaSb and Ga 1-x In x Sb
RU69077U1 (en) DEVICE OF HEAT UNIT FOR INSTALLATION OF GROWING MONOCRYSTALS FROM MELT
JPS6027695A (en) Production unit for single crystal of semiconductor of compound
JPH09157083A (en) Use method of graphite heater
JPS6163591A (en) Installation for production of single crystal of compound semiconductor
JPS61281100A (en) Production of silicon single crystal
JPH0234592A (en) Growing method for compound semiconductor single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
JPH06340493A (en) Apparatus for growing single crystal and growing method
CN116555910A (en) Device for continuously growing SiC single crystal
JP2519505Y2 (en) Crystal growth equipment
JPS61132598A (en) Apparatus for producing compound semiconductor single crystal