JPS61132538A - Production of foamed glass particle - Google Patents

Production of foamed glass particle

Info

Publication number
JPS61132538A
JPS61132538A JP25462484A JP25462484A JPS61132538A JP S61132538 A JPS61132538 A JP S61132538A JP 25462484 A JP25462484 A JP 25462484A JP 25462484 A JP25462484 A JP 25462484A JP S61132538 A JPS61132538 A JP S61132538A
Authority
JP
Japan
Prior art keywords
granules
particles
powder
glass
foamed glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25462484A
Other languages
Japanese (ja)
Other versions
JPS6365617B2 (en
Inventor
Shigenari Hayata
早田 重成
Kimimichi Masui
増井 公道
Shinpei Nakayama
中山 新平
Tetsuya Nishi
哲也 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP25462484A priority Critical patent/JPS61132538A/en
Publication of JPS61132538A publication Critical patent/JPS61132538A/en
Publication of JPS6365617B2 publication Critical patent/JPS6365617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating

Abstract

PURPOSE:To obtain foamed glass particles having low bulk density, sufficiently high crush strength and excellent heat-insulation, at a low cost, by forming glass powder and powdery inorganic foaming agent with a binder in the foam of spheres, coating the spheres with an anti-blocking agent, and sintering under rotation. CONSTITUTION:Glass powder and powdery inorganic foaming agent are bonded with a binder in the form of particles, and reformed to spherical particles. The spherical particles are coated with an anti-blocking agent, and then heated in a rotary kiln under rotation to obtain the objective foamed glass particles. The powdery inorganic foaming agent is e.g. CaCO3 powder, Glauber's salt, sodium bicarbonate, etc., and its amount is preferably 0.5-10wt% based on the glass powder. The binder is preferably an aqueous solution of PVA, an aqueous solution of carboxymethylcellulose, etc., having a concentration of 0.5-10wt%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建築その他の分野の断熱材や骨材などに利用
されるガラス発泡粒の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing glass foam particles used as heat insulating materials, aggregates, etc. in construction and other fields.

〔従来技術〕[Prior art]

この種のガラス発泡粒の製造方法の従来例として、特開
昭58−9833号公報に開示された製造方法が知られ
ている。この従来例は、第1ガラス粉末と発泡剤粉末と
を主成分とする第1原料゛粉末を結合剤で固めて第1粒
状体を造粒し、発泡剤を含まず第2ガラス粉末を主成分
とする第2原料粉末を結合剤により前記第1粒状体の表
面に被覆して第2粒状体とし、更にこの第2粒状体の表
面に粉末状の離型剤を被覆して第3粒状体とし、最後に
第3粒状体を加熱してガラス発泡粒とするものであり、
これにより外殻がガラス層からなり内部が多気泡構造を
なすガラス発泡粒が得られる。
As a conventional example of a method for producing this type of foamed glass beads, a method disclosed in Japanese Patent Application Laid-open No. 58-9833 is known. In this conventional example, a first raw material powder mainly composed of a first glass powder and a blowing agent powder is solidified with a binder to form a first granule, and a second glass powder containing no blowing agent is used as the main component. A second raw material powder as a component is coated on the surface of the first granule with a binder to form a second granule, and a powdered mold release agent is further coated on the surface of the second granule to form a third granule. and finally heat the third granular body to form glass foam granules,
As a result, glass foam particles having an outer shell made of a glass layer and an interior having a multicellular structure are obtained.

ところが上記従来例の場合、造粒工程においてパン型造
粒機を用いるものであり、このように粉末をパン型容器
の転勤により成長させながら粒を形成する方式では、8
〜9mesh(約2wmφ)の粒を得るのに長時間を要
する。またパン型内で生成される粒径の粒度分布は粉末
〜3+5 meshより大きい(8〜9 meshを目
標とする場合)広範囲の分布となり、所望の粒度を得よ
うとすれば、その収率は低くなり、その上さらに篩い分
けの工程が必要となる。また原料粒状体の表面は結合剤
による粘性を呈しているため、造粒工程における粒の成
長過程で粒同士の合着を生起しブロッキングの発生が生
じる。このように上記の方法では、造粒工程に長時間を
要しかつ均一な製品を多量に効率良く生産できないとい
う実情から、工業的・経済的に大きな問題点がある。
However, in the case of the above-mentioned conventional example, a pan-type granulator is used in the granulation process, and in this method, the powder is grown into grains by transferring the bread-type container.
It takes a long time to obtain grains of ~9 mesh (approximately 2 wmφ). In addition, the particle size distribution of the particles produced in the bread mold has a wide range from powder to 3+5 mesh (when aiming at 8 to 9 mesh), and if you try to obtain the desired particle size, the yield will be Moreover, a further sieving process is required. In addition, since the surface of the raw material granules exhibits viscosity due to the binder, coalescence of particles occurs during the growth process of the particles in the granulation process, resulting in blocking. As described above, the above method has serious industrial and economical problems because the granulation process requires a long time and it is not possible to efficiently produce large quantities of uniform products.

上記従来例とは別に、特開昭53−142424号公報
に開示されているように、ガラス粒子と発泡剤からなる
混合物をヌードル状に造粒し、これを加熱して細胞状ガ
ラスピーズとし、更に冷却するという工程において、発
泡剤の性質・使用量、加熱温度、加熱時間を選択して、
嵩密度が低く、吸水性の小さい多気泡構造の発泡ガラス
粒を製造する方法も知られている。
Apart from the above-mentioned conventional example, as disclosed in Japanese Patent Application Laid-Open No. 53-142424, a mixture of glass particles and a blowing agent is granulated into noodle shapes, which are heated to form cellular glass beads. In the further cooling process, select the properties and amount of blowing agent, heating temperature, and heating time.
A method for producing foamed glass particles having a multicellular structure with low bulk density and low water absorption is also known.

しかしながら、この従来例の場合、発泡性の良好な均−
粒が得られない。また原料粒体がヌードル状で終えてい
るため粒体内の結合力にハラツ;1−が生じ、これを焼
結しても粒内に発泡ムラが発生する。また水を結合剤と
しているため結合力が弱く、原料粒体のヌードル状が更
に細かく割れ易くなり、微粉の発生原因となる。その上
、ヌードル状原料粒体を焼結発泡して均一な発泡品、低
い嵩密度で、吸水性の少ない多気泡構造粒を得ようとす
れば、焼結工程において従来例のような複雑な条件管理
を必要とする。更に、ヌードル造粒工程においてブロッ
ク防止剤を塗布する等の対策が行われていないため、焼
結工程において粒が発泡した段階で粒同士が合着したり
、ロータリーキルンで焼結した場合には、キルン壁に粒
が付着してしまうといった問題点を有する。従って上記
の方法では、不良品が多量に生成され、かつ生産効率も
極めて悪く、均一な形状の低嵩密度のガラス発泡粒体を
得ることは、極めて困難であると云わざるを得ない。
However, in the case of this conventional example, the
I can't get any grains. Furthermore, since the raw material granules are noodle-shaped, the bonding force within the granules is uneven, and even if these are sintered, uneven foaming occurs within the granules. Furthermore, since water is used as a binder, the binding force is weak, and the noodle-like shape of the raw material granules is more likely to break into smaller pieces, resulting in the generation of fine powder. Furthermore, if we try to sinter and foam noodle-shaped raw material particles to obtain a uniformly foamed product, a low bulk density, and a multicellular structured particle with low water absorption, the sintering process must be complicated as in the conventional example. Requires condition management. Furthermore, because measures such as applying an anti-blocking agent are not taken in the noodle granulation process, particles may coalesce together at the stage of foaming in the sintering process, or when sintered in a rotary kiln. There is a problem that particles adhere to the kiln wall. Therefore, in the above method, a large number of defective products are produced, the production efficiency is extremely low, and it is extremely difficult to obtain glass foam particles having a uniform shape and a low bulk density.

〔発明の目的〕[Purpose of the invention]

本発明は、従来例における以上の問題点を考慮してなさ
れたものであって、嵩密度が低く圧潰耐強度も十分な断
熱性に優れたガラス発泡粒を、生産効率良く安価に製造
することのできるガラス発泡粒の製造方法の提供を目的
とするものである。
The present invention has been made in consideration of the above-mentioned problems in the conventional examples, and it is an object of the present invention to produce foamed glass granules with low bulk density, sufficient crush resistance, and excellent heat insulation properties at low cost and with high production efficiency. The object of the present invention is to provide a method for producing foamed glass beads that can be used to produce foamed glass beads.

〔発明の1成〕 本発明のガラス発泡粒の製造方法は、ガラス粉末と無機
粉末発泡剤を粘着剤で固めて粒体を成形する造粒工程と
、前記成形粒体を球状粒体に整粒する整粒工程と、前記
球状粒体にブロック防止剤をコーティングするコーティ
ング工程と、コーティング済み球状粒体をロータリーキ
ルンで回転焼結してガラス発泡粒を得る加熱工程とを含
むことを特徴とするものである。
[First aspect of the invention] The method for producing foamed glass granules of the present invention includes a granulation step in which glass powder and an inorganic powder foaming agent are solidified with an adhesive to form granules, and the shaped granules are arranged into spherical granules. It is characterized by comprising a sizing step of granulating, a coating step of coating the spherical granules with an anti-blocking agent, and a heating step of rotary sintering the coated spherical granules in a rotary kiln to obtain foamed glass granules. It is something.

〔実施例〕〔Example〕

本発明のガラス発泡粒の製造方法の一実施例を、その工
程順序に従って以下に説明する。
An embodiment of the method for producing foamed glass beads of the present invention will be described below in accordance with its process order.

(1) 原料のガラス粉末に無機粉末発泡剤を配合し、
これに粘着剤として水溶性増粘剤の一種であるPVA 
(ポリビニルアルコール)5%水溶液(23wt%)を
添加し、混合機により混練する。
(1) Add an inorganic powder blowing agent to the raw glass powder,
PVA, a type of water-soluble thickener, is used as an adhesive.
(Polyvinyl alcohol) 5% aqueous solution (23 wt%) is added and kneaded using a mixer.

上記ガラス粉末として、Sing (72,5wt%)
 、NazO(14,4wt%) 、CaO(10,2
wt%)、Ah03(2,0wt%) 、BaO(0,
6wt%) 、Kz O(0,2wt%) 、FezO
z(0,1wt%)の組成からなる廃ガラスビンを10
0meshパス(好ましくは200meshパス)に粉
砕し゛たものを使用する。ガラス粉末が細かいほど、後
述する発泡性が良くなり、また均一な発泡が行なわれる
As the glass powder, Sing (72.5wt%)
, NazO (14,4 wt%), CaO (10,2
wt%), Ah03 (2,0wt%), BaO (0,
6wt%), KzO (0,2wt%), FezO
10 waste glass bottles with a composition of z (0.1 wt%)
Use a material that has been pulverized to 0 mesh pass (preferably 200 mesh pass). The finer the glass powder is, the better the foaming properties described below will be, and the more uniform the foaming will be.

又、上記発泡剤として、ガラス粉末より細かく(好まし
くは300meshパス)、シかも500〜900℃で
分解ガスを出すもの、例えばC’aCO。
Further, as the above-mentioned foaming agent, one that is finer than glass powder (preferably 300 mesh pass) and emits decomposed gas at 500 to 900°C, such as C'aCO.

粉末(2,0wt%)を使用する。Powder (2,0 wt%) is used.

(2) 上記手順により得られた混練物を造粒機に供給
し、直径が約2鶴φ、長さが約5鶴の粒体に成形する。
(2) The kneaded material obtained by the above procedure is fed to a granulator and formed into granules with a diameter of about 2 φ and a length of about 5 ts.

上記造粒機としては、穴径2mφの押出穴が分散形成さ
れたスクリーンに成形原料を載せ、その上から押圧手段
により圧力を加えて、上記押出穴から原料を押し出し細
粒状に成形するように構成した押出成形型の造粒機を使
用する。この造粒機の上記スクリーンの穴径は、得よう
とする成形粒体の直径に応じて、0.5〜5flφの如
く任意に選定することが出゛来、この穴径に応じて上記
押圧手段による圧力は、3〜100kg/c1iの範囲
に設定するのが望ましい。
The above-mentioned granulator is configured such that the forming raw material is placed on a screen in which extrusion holes with a hole diameter of 2 mφ are dispersed, and pressure is applied from above by a pressing means to extrude the raw material from the extrusion holes and form it into fine particles. A configured extrusion mold granulator is used. The hole diameter of the screen of this granulator can be arbitrarily selected, such as 0.5 to 5 flφ, depending on the diameter of the molded granules to be obtained, and the pressure It is desirable to set the pressure by means in the range of 3 to 100 kg/c1i.

(3) 以上の造粒工程により得られた成形粒体を球形
整粒機に供給し、回転速度40 Or、p、m。
(3) The molded granules obtained by the above granulation process were fed to a spherical granulator, and the rotation speed was 40 Or, p, m.

で1分間整粒処理する。Sort the particles for 1 minute.

上記球形整粒機として、ここではプレート径が230 
asφのマルメライザー(商品名・不二パウダル株式会
社製)を使用している。この球形整粒機は、固定された
円筒容器の底部に、凹凸面(凹凸サイズが0.5〜5m
)を有する回転プレートを設けた構成であって、上記円
筒容器内に収容された成形粒体は、回転プレートが回転
駆動するのに伴ない、円筒容器の外筒壁とプレートとの
間で渦流運動を繰り返し、このときの衝撃により成形粒
体は、その角部を剪断され或いは押圧されて全体的にほ
ぼ球形に変形する。又、上記作用中に生じる剪断粉は、
成形粒体に含まれる粘着剤のために成形粒体に合着され
るので、原料粉末が未使用のまま残ることはない。なお
上記回転プレートの回転速度及び駆動時間の最適値は、
整粒に供される成形粒体のサイズによって異なるが、お
よそ200〜1000 r、p、m、および30秒〜3
分の範囲内とするのが好ましい。
As the above-mentioned spherical granulating machine, here the plate diameter is 230 mm.
Asφ Marmerizer (trade name, manufactured by Fuji Paudal Co., Ltd.) is used. This spherical granulator has an uneven surface (the uneven size is 0.5 to 5 m) on the bottom of a fixed cylindrical container.
), in which the molded granules housed in the cylindrical container are rotated, and as the rotary plate is driven to rotate, a vortex flow is generated between the outer wall of the cylindrical container and the plate. The motion is repeated, and the resulting impact shears or presses the corners of the molded granules, deforming them into a substantially spherical shape as a whole. In addition, the shear powder generated during the above action is
Since the adhesive contained in the molded granules is used to bind the raw material powder to the molded granules, no raw material powder remains unused. The optimum values for the rotation speed and driving time of the above rotating plate are as follows:
Although it varies depending on the size of the shaped granules to be subjected to sizing, approximately 200 to 1000 r, p, m, and 30 seconds to 3
It is preferable to set it within the range of minutes.

この整粒工程により、成形粒体はほぼ均一な粒径の球状
粒体に整粒される。その粒度分布を表1に示している。
Through this sizing step, the shaped granules are sized into spherical granules with a substantially uniform particle size. The particle size distribution is shown in Table 1.

この表から、球状粒体が所定の狭い粒子サイズ範囲内に
集中して分布していることが確認される。
This table confirms that the spherical particles are concentrated and distributed within a predetermined narrow particle size range.

表1 (4) 上記整粒工程の終了間際に、球形整粒機内にブ
ロック防止剤を添加して、得られる球状粒体の表面にブ
ロック防止剤をコーティングする。
Table 1 (4) Just before the end of the sizing process, an antiblocking agent is added into the spherical sizing machine to coat the surface of the resulting spherical granules with the antiblocking agent.

上記ブロック防止剤としては、フライアフシェ、タルク
、クレー、その他の無機微粉末でl000℃以上の融点
を持つものを、数量にして1〜19w1%(好ましくは
4wt%)用いる。
As the above-mentioned block inhibitor, flyafshe, talc, clay, or other inorganic fine powder having a melting point of 1000°C or higher is used in an amount of 1 to 19w1% (preferably 4wt%).

(5) 上記整粒工程及びコーティング工程を経て得ら
れたコーティング済み球状粒体を、100℃XIO時間
の条件下で乾燥した後、炉温750℃のロータリーキル
ンに連続供給して7分間滞留させる。この加熱工程によ
り、供給された球状粒体はロータリーキルン内を転りな
がら発泡焼結(球状粒体に含まれる発泡剤が分解ガスを
発生する)し、発泡が均一で嵩密度の低いガラス発泡粒
が得られる。又、この発泡焼結時に、予めブロック防止
剤のコーティングが施されている各球状粒体は、互いに
合着してダンゴ状になることはない。またロータリーキ
ルン壁にこの粒体が付着するようなこともない。
(5) After drying the coated spherical particles obtained through the above-mentioned sizing step and coating step under the conditions of 100° C. Through this heating process, the supplied spherical particles are foamed and sintered while rolling in the rotary kiln (the blowing agent contained in the spherical particles generates decomposed gas), resulting in uniform foaming and low bulk density glass foam particles. is obtained. Furthermore, during this foaming and sintering, the spherical particles, which have been coated with an anti-blocking agent in advance, do not coalesce into a lump-like shape. Furthermore, there is no possibility that the particles will adhere to the rotary kiln wall.

発泡焼結に先立ち行われる上記乾燥処理は、使用された
粘着剤に含まれる水分を、焼結前に予め飛ばすために行
なうものであって、焼結時間の短縮をはかると共に、含
有水分に起因する焼結時の爆裂を防止するのに有効であ
る。なお、乾燥条件は、100〜400℃、5分以上で
あれば良い。
The above-mentioned drying process, which is performed prior to foam sintering, is performed to remove moisture contained in the adhesive used before sintering, and is intended to shorten the sintering time and remove moisture contained in the adhesive. This is effective in preventing explosions during sintering. Note that the drying conditions may be 100 to 400°C for 5 minutes or more.

上記加熱工程に用いられるロータリーキルンは、内径1
06箪φ、長さ2m、傾斜角0.5度、回転速度24r
、p、m、としたものである。球状粒体の炉内での滞留
時間が長すぎると、最終的に得られる製品が収縮してし
まうので、上記滞留時間は3〜20分の範囲内とするの
が望ましい。またロータリーキルンの炉内温度は700
〜900℃が望ましい。
The rotary kiln used for the above heating process has an inner diameter of 1
06 cabinet φ, length 2m, inclination angle 0.5 degrees, rotation speed 24r
, p, m. If the residence time of the spherical particles in the furnace is too long, the final product will shrink, so it is desirable that the residence time be within the range of 3 to 20 minutes. Also, the temperature inside the rotary kiln is 700.
~900°C is desirable.

このようにして得られたガラス発泡粒の諸特性は以下の
通りである。
The various properties of the glass foam particles thus obtained are as follows.

嵩密度:ρ−0,18g/cd  (粒径6寵φ)圧潰
耐強度:3.5kg 吸水性:10wt%(J I 5−A−951iの測定
基準で) 上記ガラス発泡粒の粒子サイズは、工程中の諸条件を変
えることによって0.5〜15mφの範囲に亘って製造
可能であり、この場合の製品の諸特性は 嵩密度:ρ=0.1〜0.6g/cal圧潰耐強度:0
.5kg以上 吸水性:20wt%以下 となる。
Bulk density: ρ-0.18 g/cd (particle size 6 mm) crushing strength: 3.5 kg Water absorption: 10 wt% (according to the measurement standard of J I 5-A-951i) The particle size of the above glass foam particles is By changing the various conditions during the process, it is possible to manufacture products with diameters ranging from 0.5 to 15 mφ, and the characteristics of the product in this case are bulk density: ρ = 0.1 to 0.6 g/cal, crushing strength, :0
.. Water absorption of 5 kg or more: 20 wt% or less.

なお製品の嵩密度、換言すると発泡性は、前記発泡焼結
時の加熱時間(球状粒体の炉内滞留時間)の如何によっ
ても異なる。図中に実線で示すグラフは、前記実施例に
おいて加熱時間のみを順次変え、各加熱時間とその場合
の製品の嵩密度との関係を示したものである。
Note that the bulk density of the product, in other words, the foamability varies depending on the heating time (residence time of the spherical particles in the furnace) during the foaming sintering. The graph shown by the solid line in the figure shows the relationship between each heating time and the bulk density of the product in each case where only the heating time was successively changed in the above example.

前記実施例では、原料のガラス粉末に配合する無機粉末
発泡剤として、CaCO3粉末(2、Qwt%)を使用
したが、その他の炭酸塩、カーボン粉末のように加熱さ
れて炭酸ガスを発生するもの、芒硝、重炭酸ナトリウム
、重炭酸カルシウムなど高温(500〜900℃)で分
解ガスの発生が多いものも適用し得ることは勿論である
。又、その発泡剤の添加量は、ガラス粉末に対し0.5
〜lQwt%とするのが好適であり、その添加量がこれ
より少ない場合は発泡性が悪く嵩密度の高い製品となり
、逆に添加量が多すぎると発生した気泡が発泡剤自信の
ために破壊されてしまって均一セルが形成されないとい
う不都合が生じる。
In the above example, CaCO3 powder (2, Qwt%) was used as an inorganic powder blowing agent blended with the raw material glass powder, but other carbonates and carbon powders that generate carbon dioxide gas when heated are also used. It goes without saying that materials that generate a large amount of decomposition gas at high temperatures (500 to 900° C.), such as glauber's salt, sodium bicarbonate, and calcium bicarbonate, can also be used. Also, the amount of the foaming agent added is 0.5 to the glass powder.
~lQwt% is suitable; if the amount added is less than this, the product will have poor foaming properties and a high bulk density; on the other hand, if the amount added is too large, the bubbles generated will be destroyed by the foaming agent itself. This causes the inconvenience that uniform cells cannot be formed.

又、上記発泡剤の配合されたガラス粉末を固める粘着剤
として上記実施例ではPVA水溶液を使用しているが、
−伜のほか水溶性増粘剤の一種であるカルボキシメチル
セルローズ、デンプン等の水溶性高分子材料の水溶液が
好適である。これら増粘剤の水溶液は、水に対し添加量
を0.5〜LOwt%(2〜5wt%が最適)としたも
のが、上記粘着剤として好適である。又、発泡剤の配合
されたガラス粉末に対する上記粘着剤の添加量は、15
〜35wt%(22〜25wt%が最適)とするのが好
適であり、添加量が少なすぎると整粒工程において成形
粒体が破壊され易く多量の粉末を生じることになり、逆
に添加量が多すぎると成形粒体が互いに合着して大きな
ダンゴ状になり易くなる。
In addition, in the above example, a PVA aqueous solution is used as an adhesive for solidifying the glass powder containing the blowing agent, but
- In addition to the above, an aqueous solution of a water-soluble polymeric material such as carboxymethyl cellulose, which is a type of water-soluble thickener, or starch is suitable. An aqueous solution of these thickeners in an amount of 0.5 to LOwt% (optimally 2 to 5 wt%) relative to water is suitable as the adhesive. The amount of the adhesive added to the glass powder mixed with the blowing agent was 15
It is preferable to set the amount to ~35 wt% (optimally 22 to 25 wt%); if the amount added is too small, the molded granules will be easily destroyed in the sizing process, resulting in a large amount of powder; If the amount is too large, the molded particles tend to adhere to each other and form large lumps.

なお、加熱発泡時において球状粒体同士が合着するのを
防止するために、前記整粒工程の終了間際に添加するブ
ロック防止剤として、通常はタルク等の無機粉末が用い
られる。しかしながらタルク等を使用した場合、最終製
品であるガラス発泡粒に粉付きが生じるという問題を有
するばかりか、ロータリーキルンによる加熱発泡処理の
際、上記タルク等のブロック防止剤がロータリーキルン
内で粉落ちして粒体の回転を妨げ、均一加熱されず製品
の均一発泡が損なわれることになる。
In order to prevent spherical particles from coalescing during heating and foaming, an inorganic powder such as talc is usually used as an anti-blocking agent added just before the end of the sizing step. However, when talc or the like is used, not only does the final product, the foamed glass granules, have the problem of powder adhesion, but also the anti-blocking agent such as talc falls off in the rotary kiln during the heat foaming process. This prevents the rotation of the granules and prevents uniform heating, which impairs the uniform foaming of the product.

そこで、このような問題を解決するために、融点の高い
E、B−150等の硬質ガラス粉末(表゛2にそれぞれ
の組成を示す)をブロック防止剤として採用するのが好
適である。即ちこれら硬質ガラスは、原料粒体(発泡剤
の配合されたガラス粉末を粘着剤で固めて整粒したもの
)の発泡温度領域(750℃前後)で溶融はするものの
、原料粒体同士が合着するほどの粘度には至らず、これ
によりブロッキング防止の効果を上げ、併せて製品への
粉付きも回避することが出来る。
Therefore, in order to solve this problem, it is preferable to use hard glass powders such as E and B-150, which have high melting points (their compositions are shown in Table 2), as an anti-blocking agent. In other words, although these hard glasses melt in the foaming temperature range (around 750°C) of the raw material granules (glass powder mixed with a blowing agent, solidified with an adhesive and sized), the raw material granules do not coalesce together. The viscosity does not reach such a level that it sticks to the product, which improves the blocking prevention effect and also prevents the product from getting powdered.

表2 先述の実施例において、ブロック防止剤として上記硬質
ガラスE、 B−150、タルクを5wt%用いた各場
合、及びブロック防止剤を全く添加しない場合に得られ
る各製品の緒特性を表3に示す。
Table 2 Table 3 shows the properties of the products obtained in the above-mentioned examples when 5 wt% of the hard glasses E, B-150 and talc were used as block inhibitors, and when no block inhibitor was added at all. Shown below.

(以下余白) 表3 以上の結果から明らかなように、ブロック防止剤として
タルクを用いた場合、粉落ち量が1.5wt%であるの
に対し、硬質ガラスE、B−150粉末をブロック防止
剤として用いた場合、ブロック防止剤に起因する粉落ち
を完全に防止することが出来る。又、ブロッキング量も
、タルクをブロック防止剤とした場合と同程度であり、
ブロック防止剤を添加しない場合に比べて格段に改善さ
れる。
(Margins below) Table 3 As is clear from the above results, when talc is used as an anti-blocking agent, the amount of falling powder is 1.5 wt%, while hard glass E and B-150 powders are prevented from being blocked. When used as an agent, it can completely prevent powder shedding caused by anti-blocking agents. In addition, the amount of blocking is about the same as when talc is used as an anti-blocking agent.
This is much improved compared to the case where no block inhibitor is added.

〔発明の効果〕〔Effect of the invention〕

本発明のガラス発泡粒の製造方法は以上の構成からなる
ので、発泡性が良く (即ち嵩密度が低い)圧潰耐強度
も十分で断熱性に優れたガラス発泡粒を、狭い粒度分布
で所望の粒子サイズに揃えて集中的に生産効率良く製造
することが出来る。
Since the method for producing foamed glass beads of the present invention has the above-mentioned structure, foamed glass beads with good foamability (that is, low bulk density), sufficient crushing strength, and excellent heat insulation properties can be produced with a narrow particle size distribution as desired. It can be produced intensively and with high production efficiency by adjusting the particle size.

なお本発明の製造方法の効果を確かめる参考データとし
て、以下に先述の実施例と同一原料を用いて、異なる方
法により製造した場合の比較例を示す。
As reference data for confirming the effect of the production method of the present invention, a comparative example will be shown below in which the same raw materials as in the above-mentioned example were used but the product was produced by a different method.

〔比較例〕[Comparative example]

前記実施例と同じ廃ガラスビン粉末に、同じく発泡剤と
して約400meshのCa C03(2,0wt%)
を配合し、これに粘着剤としてPVA5%水溶液(23
wt%)を添加して混練した。得られた混練物を、実施
例の場合と同じ造粒機に供給して造粒した。このときの
粒度分布は、先の表1に併記するように、所定粒度範囲
に集中しない広い分布となり、粉末に近い小粒径のもの
が非常に多いことがわかる。このようにして得た成形粒
体を球状に整粒しないで、以下は先の実施例と同じ乾燥
・発泡焼結処理を施しガラス発泡粒を得た。
Approximately 400 mesh of Ca C03 (2.0 wt%) was added to the same waste glass bottle powder as in the above example as a blowing agent.
and a 5% aqueous solution of PVA (23
wt%) was added and kneaded. The obtained kneaded product was fed to the same granulator as in the example and granulated. As shown in Table 1 above, the particle size distribution at this time is a wide distribution that does not concentrate in a predetermined particle size range, and it can be seen that there are many particles with a small particle size close to that of a powder. The molded granules thus obtained were not sized into spherical shapes, but were subjected to the same drying and foaming sintering treatment as in the previous example to obtain foamed glass granules.

このガラス発泡粒には合着粒が多数付着しており、嵩密
度も高い(0,22g/cc)ものであった。
A large number of coalescent particles were attached to the foamed glass particles, and the bulk density was also high (0.22 g/cc).

整粒処理をしない上記場合において、発泡焼結時の加熱
時間とこれに対応する各製品の嵩密度との関係を、第1
図に破線のグラフで示している。
In the above case where sizing treatment is not performed, the relationship between the heating time during foam sintering and the corresponding bulk density of each product is determined as follows:
This is shown by the dashed line graph in the figure.

先述の実施例と以上の比較例の結果を対比すれば、原料
粒体を球状に整粒することによって、同じ発泡剤量、発
泡条件でも発泡性が良くなり(嵩密度が小さくなる)、
製品の粒度分布も狭(なって所望粒子サイズの製品を生
産効率良く製造し得ることをi認出来る。又、原料粒体
が球状に製粒されていることから、ロータリーキルンに
よる発泡焼結処理において、原料粒体が円滑に回転し、
発泡が均一になり合着も回避される。
Comparing the results of the above-mentioned examples and the above-mentioned comparative examples, by sizing the raw material granules into spherical shapes, the foaming properties are improved (the bulk density is reduced) even with the same amount of foaming agent and foaming conditions.
The particle size distribution of the product is also narrow (we can confirm that it is possible to manufacture products with the desired particle size with high production efficiency. Also, since the raw material particles are granulated into spherical shapes, it is possible to produce products with a narrow particle size distribution). , raw material granules rotate smoothly,
Foaming becomes uniform and coalescence is avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の一実施例で得られるガラス発泡粒と、他
の方法により得られるガラス発泡粒とを比較して、製品
嵩密度と発泡焼結時の加熱時間との関係を示すグラフで
ある。
The figure is a graph showing the relationship between product bulk density and heating time during foam sintering, comparing foamed glass grains obtained by one example of the present invention with foamed glass grains obtained by other methods. be.

Claims (1)

【特許請求の範囲】 1、ガラス粉末と無機粉末発泡剤を粘着剤で固めて粒体
を成形する造粒工程と、前記成形粒体を球状粒体に整粒
する整粒工程と、前記球状粒体にブロック防止剤をコー
ティングするコーティング工程と、コーティング済み球
状粒体をロータリーキルンで回転焼結してガラス発泡粒
を得る加熱工程とを含むことを特徴とするガラス発泡粒
の製造方法。 2、前記コーティング工程は、前記整粒工程の終了間際
に行なうものである特許請求の範囲第1項記載のガラス
発泡粒の製造方法。 3、前記造粒工程は、押出し成形により造粒するもので
ある特許請求の範囲第1項又は第2項記載のガラス発泡
粒の製造方法。 4、前記粘着剤は水溶性増粘剤からなる特許請求の範囲
第1項から第3項までのいずれかの項に記載のガラス発
泡粒の製造方法。
[Claims] 1. A granulation step of solidifying glass powder and an inorganic powder foaming agent with an adhesive to form granules; a sizing step of sizing the molded granules into spherical granules; A method for producing foamed glass granules, comprising a coating step of coating the granules with an anti-blocking agent, and a heating step of rotating and sintering the coated spherical granules in a rotary kiln to obtain foamed glass granules. 2. The method for producing foamed glass granules according to claim 1, wherein the coating step is carried out just before the end of the sizing step. 3. The method for producing foamed glass granules according to claim 1 or 2, wherein the granulation step is granulation by extrusion molding. 4. The method for manufacturing glass foam beads according to any one of claims 1 to 3, wherein the adhesive comprises a water-soluble thickener.
JP25462484A 1984-11-30 1984-11-30 Production of foamed glass particle Granted JPS61132538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25462484A JPS61132538A (en) 1984-11-30 1984-11-30 Production of foamed glass particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25462484A JPS61132538A (en) 1984-11-30 1984-11-30 Production of foamed glass particle

Publications (2)

Publication Number Publication Date
JPS61132538A true JPS61132538A (en) 1986-06-20
JPS6365617B2 JPS6365617B2 (en) 1988-12-16

Family

ID=17267611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25462484A Granted JPS61132538A (en) 1984-11-30 1984-11-30 Production of foamed glass particle

Country Status (1)

Country Link
JP (1) JPS61132538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708517A1 (en) * 2012-09-13 2014-03-19 Binder + Co Aktiengesellschaft Method for the preparation of foamed glass and particles for carrying out such a method
CN105392753A (en) * 2013-04-24 2016-03-09 知识产权古里亚有限责任公司 Expanded lightweight aggregate made from glass or pumice
CN112279498A (en) * 2020-10-28 2021-01-29 陕西科技大学 Foam glass prepared by utilizing fly ash and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708517A1 (en) * 2012-09-13 2014-03-19 Binder + Co Aktiengesellschaft Method for the preparation of foamed glass and particles for carrying out such a method
CN105392753A (en) * 2013-04-24 2016-03-09 知识产权古里亚有限责任公司 Expanded lightweight aggregate made from glass or pumice
CN112279498A (en) * 2020-10-28 2021-01-29 陕西科技大学 Foam glass prepared by utilizing fly ash and preparation method and application thereof

Also Published As

Publication number Publication date
JPS6365617B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
CA2300776C (en) Rotational molding
US3887614A (en) Detergent composed of hollow spherical pellets, and process for manufacturing the same
JPH03273037A (en) Producing method for dry small spherical body and its droduct
US3931036A (en) Compacted alkali metal silicate
US5246654A (en) Intermediate composition and process for manufacturing intermediates for lightweight inorganic particles
JP2008531454A (en) Method for producing foam glass granules
JPS61132538A (en) Production of foamed glass particle
JPH06322166A (en) Polyurethane form with low thermal conductivity and its preparation
US5501826A (en) Process for manufacturing lightweight inorganic particles
JPS61236621A (en) Production of foamed fine glass grain
JPH0764666B2 (en) Slow-release fertilizer and method for producing the same
JPS589833A (en) Preparation of foamed glass bead
JP2021006622A (en) Foam molding and method for producing the same
JPH0930821A (en) Glass foam granule, its production, and light-weight filler and light-weight plastic utilizing the same
JPH04338107A (en) Production of spherical activated carbon
CN100421897C (en) Method for producing hydrophilic resin granular solids
JP3448077B2 (en) Method for producing insoluble sulfur granules
JPS61251530A (en) Production of glass coated shell granule
JP2994406B2 (en) Method for producing hollow particles
JPH0292842A (en) Production of granulated substance for inorganic glass form
JPH1112056A (en) Production of foaming ceramic material, foaming ceramic material and production of formed ceramic material
WO1995007809A1 (en) Composition and process for manufacturing lightweight inorganic particles, and resultant particulates
WO1994015763A1 (en) Intermediate composition and process for manufacturing intermediates for lightweight inorganic particles
JP2001113541A (en) Resin material for rotary molding and rotary molding method
JPH0787892B2 (en) Granulation method for powder for ceramic balloon