JPS6365617B2 - - Google Patents

Info

Publication number
JPS6365617B2
JPS6365617B2 JP25462484A JP25462484A JPS6365617B2 JP S6365617 B2 JPS6365617 B2 JP S6365617B2 JP 25462484 A JP25462484 A JP 25462484A JP 25462484 A JP25462484 A JP 25462484A JP S6365617 B2 JPS6365617 B2 JP S6365617B2
Authority
JP
Japan
Prior art keywords
granules
glass
powder
sizing
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25462484A
Other languages
Japanese (ja)
Other versions
JPS61132538A (en
Inventor
Shigenari Hayata
Kimimichi Masui
Shinpei Nakayama
Tetsuya Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP25462484A priority Critical patent/JPS61132538A/en
Publication of JPS61132538A publication Critical patent/JPS61132538A/en
Publication of JPS6365617B2 publication Critical patent/JPS6365617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、建築その他の分野の断熱材や骨材な
どに利用されるガラス発泡粒の製造方法に関する
ものである。 〔従来技術〕 この種のガラス発泡粒の製造方法の従来例とし
て、特開昭58−9833号公報に開示された製造方法
が知られている。この従来例は、第1ガラス粉末
と発泡剤粉末とを主成分とする第1原料粉末を結
合剤で固めて第1粒状体を造粒し、発泡剤を含ま
ず第2ガラス粉末を主成分とする第2原料粉末を
結合剤により前記第1粒状体の表面に被覆して第
2粒状体とし、更にこの第2粒状体の表面に粉末
状の離型剤を被覆して第3粒状体とし、最後に第
3粒状体を加熱してガラス発泡粒とするものであ
り、これにより外穀がガラス層からなり内部が多
気泡構造をなすガラス発泡粒が得られる。 ところが上記従来例の場合、造粒工程において
パン型造粒機を用いるものであり、このように粉
末をパン型容器の転動により成長させながら粒を
形成する方式では、8〜9mesh(約2mmφ)の粒
を得るのに長時間を要する。またパン型内で生成
される粒径の粒度分布は粉末〜3.5meshより大き
い(8〜9meshを目標とする場合)広範囲の分布
となり、所望の粒度を得ようとすれば、その収率
は低くなり、その上さらに篩い分けの工程が必要
となる。また原料粒状体の表面は結合剤による粘
性を呈しているため、造粒工程における粒の成長
過程で粒同士の合着を生起しブロツキングの発生
が生じる。このように上記の方法では、造粒工程
に長時間を要しかつ均一な製品を多量に効率良く
生産できないという実情から、工業的・経済的に
大きな問題点がある。 上記従来例とは別に、特開昭53−142424号公報
に開示されているように、ガラス粒子と発泡剤か
らなる混合物をヌードル状に造粒し、これを加熱
して細胞状ガラスビーズとし、更に冷却するとい
う工程において、発泡剤の性質・使用量、加熱温
度、加熱時間を選択して、嵩密度が低く、吸水性
の小さい多気泡構造の発泡ガラス粒を製造する方
法も知られている。 しかしながら、この従来例の場合、発泡性の良
好な均一粒が得られない。また原料粒体がヌード
ル状で終えているため粒体内の結合力にバラツキ
が生じ、これを焼結しても粒内に発泡ムラが発生
する。また水を結合剤としているため結合力が弱
く、原料粒体のヌードル状が更に細かく割れ易く
なり、微粉の発生原因となる。その上、ヌードル
状原料粒体を焼結発泡して均一な発泡品、低い崇
密度で、吸水性の少ない多気泡構造粒を得ようと
すれば、焼結工程において従来例のような複雑な
条件管理を必要とする。更に、ヌードル造粒工程
においてブロツク防止剤を塗布する等の対策が行
われていないため、焼結工程において粒が発泡し
た段階で粒同士が合着したり、ロータリーキルン
で焼結した場合には、キルン壁に粒が付着してし
まうといつた問題点を有する。従つて上記の方法
では、不良品が多量に生成され、かつ生産効率も
極めて悪く、均一な形状の低嵩密度のガラス発泡
粒を得ることは、極めて困難であると云わざるを
得ない。 〔発明の目的〕 本発明は、従来例における以上の問題点を考慮
してなされたものであつて、嵩密度が低く圧潰耐
強度も十分な断熱性に優れたガラス発泡粒を、生
産効率良く安価に製造することのできるガラス発
泡粒の製造方法の提供を目的とするものである。 〔発明の構成〕 本発明のガラス発泡粒の製造方法は、ガラス粉
末と無機粉末発泡剤を粘着剤で固めて粒体を成形
する造粒工程と、前記成形粒体を球状粒体に整粒
する整粒工程と、前記球状粒体にブロツク防止剤
をコーテイングするコーテイング工程と、コーテ
イング済み球状粒体をロータリーキルンで回転焼
結してガラス発泡粒を得る加熱工程とを含むこと
を特徴とするものである。 〔実施例〕 本発明のガラス発泡粒の製造方法の一実施例
を、その工程順序に従つて以下に説明する。 (1) 原料のガラス粉末に無機粉末発泡剤を配合
し、これに粘着剤として水溶性増粘剤の一種で
あるPVA(ポリビニルアルコール)5%水溶液
(23wt%)を添加し、混合機により混練する。 上記ガラス粉末として、SiO2(72.5wt%)、
Na2O(14.4wt%)、CaO(10.2wt%)、Al2O3
(2.0wt%)、BaO(0.6wt%)、K2O(0.2wt%)、
Fe2O3(0.1wt%)の組成からなる廃ガラスビン
を100meshパス(好ましくは200meshパス)に
粉砕したものを使用する。ガラス粉末が細かい
ほど、後述する発泡性が良くなり、また均一な
発泡が行なわれる。 又、上記発泡剤として、ガラス粉末より細か
く(好ましくは300meshパス)、しかも500〜
900℃で分解ガスを出すもの、例えばCaCO3
末(2.0wt%)を使用する。 (2) 上記手順により得られた混練物を造粒機に供
給し、直径が約2mmφ、長さが約5mmの粒体に
成形する。 上記造粒機としては、穴径2mmφの押出穴が
分散形成されたスクリーンに成形原料を載せ、
その上から押圧手段により圧力を加えて、上記
押出穴から原料を押し出し細粒状に成形するよ
うに構成した押出成形型の造粒機を使用する。
この造粒機の上記スクリーンの穴径は、得よう
とする成形粒体の直径に応じて、0.5〜5mmφ
の如く任意に選定することが出来、この穴径に
応じて上記押圧手段による圧力は、3〜100
Kg/cm2の範囲に設定するのが望ましい。 (3) 以上の造粒工程により得られた成形粒体を球
形整粒機に供給し、回転速度400r.p.m.で1分
間整粒処理する。 上記球形整粒機として、ここではプレート径
が230mmφのマルメライザー(商品名・不二パ
ウダル株式会社製)を使用している。この球形
整粒機は、固定された円筒容器の底に、凹凸面
(凹凸サイズが0.5〜5mm)を有する回転プレー
トを設けた構成であつて、上記円筒容器内に収
容された成形粒体は、回転プレートが回転駆動
するのに伴ない、円筒容器の外筒壁とプレート
との間で渦流運動を繰り返し、このときの衝撃
により成形粒体は、その角部を剪断され或いは
押圧されて全体的にほぼ球形に変形する。又、
上記作用中に生じる剪断粉は、成形粒体に含ま
れる粘着剤のために成形粒体に合着されるの
で、原料粉末が未使用のまま残ることはない、
なお上記回転プレートの回転速度及び駆動時間
の最適値は、整粒に供される成形粒体のサイズ
によつて異なるが、およそ200〜1000r.p.m.お
よび30秒〜3分の範囲内とするのが好ましい。 この整粒工程により、成形粒体はほぼ均一な
粒径の球状粒体に整料される。その粒度分布を
表1に示している。この表から、球状粒体が所
定の狭い粒子サイズ範囲内に集中して分布して
いることが確認される。
[Industrial Field of Application] The present invention relates to a method for producing foamed glass particles used as heat insulating materials, aggregates, etc. in construction and other fields. [Prior Art] As a conventional example of a method for manufacturing this type of glass foam beads, a manufacturing method disclosed in Japanese Patent Application Laid-Open No. 58-9833 is known. In this conventional example, a first raw material powder whose main components are a first glass powder and a blowing agent powder is hardened with a binder to form a first granule, and a second glass powder which does not contain a blowing agent is the main component. A second raw material powder is coated on the surface of the first granules with a binder to form a second granule, and a powdered release agent is further coated on the surface of the second granule to form a third granule. Finally, the third granules are heated to form glass foamed granules, thereby obtaining glass foamed granules in which the outer grain is made of a glass layer and the inside has a multicellular structure. However, in the case of the above-mentioned conventional example, a pan-shaped granulator is used in the granulation process, and in this method, the powder is grown by rolling in a pan-shaped container to form grains. ) takes a long time to obtain grains. In addition, the particle size distribution of the particles produced in the bread mold is larger than powder ~ 3.5 mesh (when aiming for 8 to 9 mesh), and the yield is low if you try to obtain the desired particle size. Moreover, an additional sieving step is required. Furthermore, since the surface of the raw material granules exhibits viscosity due to the binder, coalescence of grains occurs during the grain growth process in the granulation process, resulting in blocking. As described above, the above-mentioned method has serious industrial and economical problems because the granulation process requires a long time and it is not possible to efficiently produce large quantities of uniform products. Apart from the above conventional example, as disclosed in Japanese Patent Application Laid-open No. 142424/1983, a mixture of glass particles and a blowing agent is granulated into noodle shapes, which are heated to form cellular glass beads. In the step of further cooling, it is also known to select the properties and amount of blowing agent used, heating temperature, and heating time to produce foamed glass particles with a multicellular structure that has low bulk density and low water absorption. . However, in the case of this conventional example, uniform particles with good foamability cannot be obtained. Furthermore, since the raw material granules are noodle-shaped, the bonding force within the granules varies, and even if these are sintered, uneven foaming occurs within the granules. Furthermore, since water is used as a binder, the binding force is weak, and the noodle-like shape of the raw material granules is more likely to break into smaller pieces, resulting in the generation of fine powder. Furthermore, if you try to sinter and foam noodle-shaped raw material particles to obtain a uniformly foamed product, a low density, and a multicellular structured particle with low water absorption, the sintering process must be complicated as in the conventional example. Requires condition management. Furthermore, because measures such as applying an anti-blocking agent are not taken in the noodle granulation process, particles may coalesce together at the stage of foaming in the sintering process, or when sintered in a rotary kiln. There is a problem in that particles adhere to the kiln wall. Therefore, in the above method, a large number of defective products are produced, the production efficiency is extremely low, and it is extremely difficult to obtain foamed glass beads having a uniform shape and a low bulk density. [Object of the Invention] The present invention has been made in consideration of the above-mentioned problems in the conventional examples, and it is possible to efficiently produce glass foam particles having low bulk density, sufficient crushing strength, and excellent heat insulation properties. The object of the present invention is to provide a method for manufacturing glass foam beads that can be manufactured at low cost. [Structure of the Invention] The method for producing foamed glass granules of the present invention includes a granulation step in which glass powder and an inorganic powder foaming agent are solidified with an adhesive to form granules, and the shaped granules are sized into spherical granules. A coating step of coating the spherical particles with an anti-blocking agent, and a heating step of rotating and sintering the coated spherical particles in a rotary kiln to obtain foamed glass particles. It is. [Example] An example of the method for producing expanded glass beads of the present invention will be described below in accordance with the process order. (1) Mix an inorganic powder blowing agent with the raw glass powder, add a 5% aqueous solution (23wt%) of PVA (polyvinyl alcohol), a type of water-soluble thickener, as an adhesive, and knead with a mixer. do. As the above glass powder, SiO 2 (72.5wt%),
Na2O (14.4wt%), CaO ( 10.2wt %), Al2O3
(2.0wt%), BaO (0.6wt%), K2O (0.2wt%),
A waste glass bottle having a composition of Fe 2 O 3 (0.1 wt%) is used which has been crushed into a 100 mesh pass (preferably a 200 mesh pass). The finer the glass powder is, the better the foaming properties described below will be, and the more uniform the foaming will be. In addition, as the above-mentioned foaming agent, it is finer than glass powder (preferably 300mesh pass) and moreover
Use something that releases decomposition gas at 900°C, such as CaCO 3 powder (2.0wt%). (2) The kneaded material obtained by the above procedure is fed to a granulator and formed into granules with a diameter of about 2 mmφ and a length of about 5 mm. In the above granulator, the forming raw material is placed on a screen in which extrusion holes with a hole diameter of 2 mmφ are dispersed.
An extrusion type granulator is used which is configured to apply pressure from above using a pressing means to extrude the raw material from the extrusion hole and mold it into fine particles.
The hole diameter of the screen of this granulator is 0.5 to 5 mmφ depending on the diameter of the molded granules to be obtained.
Depending on the diameter of the hole, the pressure applied by the pressing means can range from 3 to 100.
It is desirable to set it within the range of Kg/ cm2 . (3) The molded granules obtained through the above granulation process are fed to a spherical sizing machine and sized for 1 minute at a rotational speed of 400 rpm. As the above-mentioned spherical granulator, a Marumerizer (trade name, manufactured by Fuji Paudal Co., Ltd.) with a plate diameter of 230 mm is used here. This spherical granulator has a configuration in which a rotating plate having an uneven surface (the uneven size is 0.5 to 5 mm) is provided on the bottom of a fixed cylindrical container, and the shaped granules housed in the cylindrical container are As the rotary plate rotates, a vortex motion is repeated between the outer wall of the cylindrical container and the plate, and the impact at this time causes the corners of the molded granules to be sheared or pressed, and the entire molded granule is sheared or pressed. deforms into an almost spherical shape. or,
The sheared powder generated during the above action is coalesced into the molded granules due to the adhesive contained in the molded granules, so no raw material powder remains unused.
The optimum values for the rotational speed and driving time of the above-mentioned rotating plate vary depending on the size of the molded granules to be subjected to grading, but should be within the range of approximately 200 to 1000 rpm and 30 seconds to 3 minutes. is preferred. Through this sizing step, the shaped granules are sized into spherical granules with a substantially uniform particle size. The particle size distribution is shown in Table 1. This table confirms that the spherical particles are concentrated and distributed within a predetermined narrow particle size range.

【表】 (4) 上記整粒工程の終了間際に、球形整粒機内に
ブロツク防止剤を添加して、得られる球状粒体
の表面にブロツク防止剤をコーテイングする。 上記ブロツク防止剤としては、フライアツシ
ユ、タルク、クレー、その他の無機微粉末で
100℃以上の融点を持つものを、数量にして1
〜10wt%(好ましくは4wt%)用いる。 (5) 上記整粒工程及びコーテイング工程を経て得
られたコーテイング済み球状粒体を、100℃×
10時間の条件下で乾燥した後、炉温750℃のロ
ータリーキルンに連続供給して7分間滞留させ
る。この加熱工程により、供給された球状粒体
はロータリーキルン内を転りながら発泡焼結
(球状粒体に含まれる発泡剤が分解ガスを発生
する)し、発泡が均一で嵩密度の低いガラス発
泡粒が得られる。又、この発泡焼結時に、予め
ブロツク防止剤のコーテイングが施されている
各球状粒体は、互いに合着してダンゴ状になる
ことはない。またロータリーキルン壁にこの粒
体が付着するようなこともない。 発泡焼結に先立ち行われる上記乾燥処理は、使
用された粘着剤に含まれる水分を、焼結前に予め
飛ばすために行なうものであつて、焼結時間の短
縮をはかると共に、含有水分に起因する焼結時の
爆裂を防止するのに有効である。なお、乾燥条件
は、100〜400℃、5分以上であれば良い。 上記加熱工程に用いられるロータリーキルン
は、内径106mmφ、長さ2m、傾斜角0.5度、回転
速度24r.p.m.としたものである。球状粒体の炉内
での滞留時間が長すぎると、最終的に得られる製
品が収縮してしまうので、上記滞留時間は3〜20
分の範囲内とするのが望ましい。またロータリー
キルンの炉内温度は700〜900℃が望ましい。 このようにして得られたガラス発泡粒の諸特性
は以下の通りである。 嵩密度:ρ=0.18g/cm3(粒径6mmφ) 圧潰耐強度:3.5Kg 吸水性:10wt%(JIS−A−9511の測定基準で) 上記ガラス発泡粒の粒子サイズは、工程中の諸
条件を変えることによつて0.5〜15mmφの範囲に
亘つて製造可能であり、この場合の製品の諸特性
は 嵩密度:ρ=0.1〜0.6g/cm3 圧潰耐強度:0.5Kg以上 吸水性:20wt%以下 となる。 なお製品の嵩密度、換言すると発泡性は、前記
発泡焼結時の加熱時間(球状粒体の炉内滞留時
間)の如何によつても異なる。図中に実線で示す
グラフは、前記実施例において加熱時間のみを順
次変え、各加熱時間とその場合の製品の嵩密度と
の関係を示したものである。 前記実施例では、原料のガラス粉末に配合する
無機粉末発泡剤として、CaCO3粉末(2.0wt%)
を使用したが、その他の炭酸塩、カーボン粉末の
ように加熱されて炭酸ガスを発生するもの、芒
硝、重炭酸ナトリウム、重炭酸カルシウムなど高
温(500〜900℃)で分解ガスの発生が多いものも
適用し得ることは勿論である。又、その発泡剤の
添加量は、ガラス粉末に対し0.5〜10wt%とする
のが好適であり、その添加量がこれより少ない場
合は発泡性が悪く嵩密度の高い製品となり、逆に
添加量が多すぎると発生した気泡が発泡剤自信の
ために破壊されてしまつて均一セルが形成されな
いという不都合が生じる。 又、上記発泡剤の配合されたガラス粉末を固め
る粘着剤として上記実施例ではPVA水溶液を使
用しているが、このほか水溶性増粘剤の一種であ
るカルボキシメチルセルローズ、デンプン等の水
溶性高分子材料の水溶液が好適である。これら増
粘剤の水溶液は、水に対し添加量を0.5〜10wt%
(2〜5wt%が最適)としたものが、上記粘着剤
として好適である。又、発泡剤の配合されたガラ
ス粉末に対する上記粘着剤の添加量は、15〜
35wt%(22〜25wt%が最適)とするのが好適で
あり、添加量が少なすぎると整粒工程において成
形粒体が破壊され易く多量の粉末を生じることに
なり、逆に添加量が多すぎると成形粒体が互いに
合着して大きなダンゴ状になり易くなる。 なお、加熱発泡時において球状粒体同士が合着
するのを防止するために、前記整粒工程の終了間
際に添加するブロツク防止剤として、通常はタル
ク等の無機粉末が用いられる。しかしながらタル
ク等を使用した場合、最終製品であるガラス発泡
粒に粉付きが生じるという問題を有するばかり
か、ロータリーキルンによる加熱発泡処理の際、
上記タルク等のブロツク防止剤がロータリーキル
ン内で粉落ちして粒体の回転を妨げ、均一加熱さ
れず製品の均一発泡が損なわれることになる。 そこで、このような問題を解決するために、融
点の高いE、B−150等の硬質ガラス粉末(表2
にそれぞれの組成を示す)をブロツク防止剤とし
て採用するのが好適である。即ちこれら硬質ガラ
スは、原料粒体(発泡剤の配合されたガラス粉末
を粘着剤で固めて整粒したもの)の発泡温度領域
(750℃前後)で溶融はするものの、原料粒体同士
が合着するほどの粘度には至らず、これによりブ
ロツク防止の効果を上げ、併せて製品への粉付き
も回避することが出来る。
[Table] (4) Just before the end of the above sizing process, an antiblocking agent is added into the spherical sizing machine, and the surface of the resulting spherical granules is coated with the antiblocking agent. The above anti-blocking agents include fly ash, talc, clay, and other inorganic fine powders.
Quantity of substances with a melting point of 100℃ or higher: 1
~10wt% (preferably 4wt%) is used. (5) The coated spherical particles obtained through the above sizing process and coating process were heated at 100°C
After drying for 10 hours, it is continuously fed to a rotary kiln at a furnace temperature of 750°C and kept there for 7 minutes. Through this heating process, the supplied spherical particles are foamed and sintered while rolling in the rotary kiln (the blowing agent contained in the spherical particles generates decomposed gas), resulting in uniform foaming and low bulk density glass foam particles. is obtained. Furthermore, during this foaming and sintering, the spherical particles, which have been coated with an anti-blocking agent in advance, do not coalesce into a lump-like shape. Furthermore, there is no possibility that the particles will adhere to the rotary kiln wall. The above-mentioned drying process, which is carried out prior to foam sintering, is carried out in order to remove moisture contained in the used adhesive before sintering. This is effective in preventing explosions during sintering. Note that the drying conditions may be 100 to 400°C for 5 minutes or more. The rotary kiln used in the above heating step had an inner diameter of 106 mmφ, a length of 2 m, an inclination angle of 0.5 degrees, and a rotation speed of 24 rpm. If the residence time of the spherical particles in the furnace is too long, the final product will shrink.
It is preferable to set it within the range of 1 minute. Further, the temperature inside the rotary kiln is preferably 700 to 900°C. The various properties of the glass foam particles thus obtained are as follows. Bulk density: ρ = 0.18g/cm 3 (particle size 6mmφ) Crushing strength: 3.5Kg Water absorption: 10wt% (according to JIS-A-9511 measurement standards) The particle size of the above glass foam particles is determined by various factors during the process. By changing the conditions, it is possible to manufacture products with diameters ranging from 0.5 to 15 mmφ, and the characteristics of the product in this case are: Bulk density: ρ = 0.1 to 0.6 g/cm 3 Crush resistance: 0.5 kg or more Water absorption: It will be less than 20wt%. Note that the bulk density of the product, in other words, the foamability varies depending on the heating time (residence time of the spherical particles in the furnace) during the foaming sintering. The graph shown by the solid line in the figure shows the relationship between each heating time and the bulk density of the product in each case where only the heating time was successively changed in the above example. In the above example, CaCO 3 powder (2.0wt%) was used as an inorganic powder blowing agent to be added to the raw material glass powder.
However, other carbonates, those that generate carbon dioxide gas when heated such as carbon powder, and those that generate a lot of decomposition gas at high temperatures (500 to 900℃) such as mirabilite, sodium bicarbonate, and calcium bicarbonate. Of course, it can also be applied. In addition, it is preferable that the amount of the foaming agent added is 0.5 to 10wt% based on the glass powder.If the amount added is less than this, the product will have poor foaming properties and a high bulk density. If the amount is too large, the bubbles generated will be destroyed by the foaming agent itself, resulting in the inconvenience that uniform cells will not be formed. In addition, in the above example, a PVA aqueous solution is used as an adhesive to harden the glass powder containing the blowing agent, but in addition, highly water-soluble thickeners such as carboxymethyl cellulose and starch, which are a type of water-soluble thickener, are used. Aqueous solutions of molecular materials are preferred. Aqueous solutions of these thickeners should be added in an amount of 0.5 to 10 wt% relative to water.
(optimally 2 to 5 wt%) is suitable as the above-mentioned pressure-sensitive adhesive. In addition, the amount of the above-mentioned adhesive added to the glass powder mixed with the foaming agent is 15 to 15%.
It is preferable to add 35 wt% (optimally 22 to 25 wt%); if the amount added is too small, the compacted granules will be easily destroyed in the sizing process, resulting in a large amount of powder; If it is too much, the molded granules tend to adhere to each other and form large lumps. Incidentally, in order to prevent the spherical particles from coalescing during heating and foaming, an inorganic powder such as talc is usually used as an anti-blocking agent added just before the end of the sizing step. However, when talc or the like is used, not only does the final product, the foamed glass particles, have the problem of dusting, but also during the heating and foaming process using a rotary kiln.
The anti-blocking agent such as talc falls off in the rotary kiln and prevents the rotation of the granules, which prevents uniform heating and impairs uniform foaming of the product. Therefore, in order to solve this problem, hard glass powders such as E and B-150 with high melting points (Table 2
The respective compositions are shown below) are preferably employed as antiblocking agents. In other words, although these hard glasses melt in the foaming temperature range (around 750°C) of the raw material granules (glass powder mixed with a blowing agent, hardened with an adhesive and sized), the raw material granules do not coalesce. The viscosity does not reach such a level that it sticks to the product, which improves the effect of preventing blocking and also prevents powder from sticking to the product.

【表】 先述の実施例において、ブロツク防止剤として
上記硬質ガラスE、B−150、タルクを5wt%用
いた各場合、及びブロツク防止剤を全く添加しな
い場合に得られる各製品の諸特性を表3に示す。
[Table] In the above-mentioned examples, the characteristics of each product obtained when 5 wt% of the above hard glasses E, B-150 and talc were used as anti-blocking agents, and when no anti-blocking agents were added are shown. Shown in 3.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明のガラス発泡粒の製造方法は以上の構成
からなるので、発泡性が良く(即ち嵩密度が低
い)圧潰耐強度も十分で断熱性に優れたガラス発
泡粒を、狭い粒度分布で所望の粒子サイズに揃え
て集中的に生産効率良く製造することが出来る。 なお本発明の製造方法の効果を確かめる参考デ
ータとして、以下に先述の実施例と同一原料を用
いて、異なる方法により製造した場合の比較例を
示す。 〔比較例〕 前記実施例と同じ廃ガラスビン粉末に、同じく
発泡剤として約400meshのCaCO3(2.0wt%)を配
合し、これに粘着剤としてPVA5%水溶液
(23wt%)を添加して混練した。得られた混練物
を、実施例の場合と同じ造粒機に供給して造粒し
た。このときの粒度分布は、先の表1に併記する
ように、所定粒度範囲に集中しない広い分布とな
り、粉末に近い小粒径のものが非常に多いことが
わかる。このようにして得た成形粒体を球状に整
粒しないで、以下は先の実施例と同じ乾燥・発泡
焼結処理を施しガラス発泡粒を得た。このガラス
発泡粒には合着粒が多数付着しており、崇密度も
高い(0.22g/c.c.)ものであつた。整粒処理をし
ない上記場合において、発泡焼結時の加熱時間と
これに対応する各製品の嵩密度との関係を、第1
図に破線のグラフで示している。 先述の実施例と以上の比較例の結果を対比すれ
ば、原料粒体を球状に整粒することによつて、同
じ発泡剤量、発泡条件でも発泡性が良くなり(嵩
密度が小さくなる)、製品の粒度分布も狭くなつ
て所望粒子サイズの製品を生産効率良く製造し得
ることを確認出来る。又、原料粒体が球状に製粒
されていることから、ロータリーキルンによる発
泡焼結処理において、原料粒体が円滑に回転し、
発泡が均一になり合着も回避される。
Since the method for producing foamed glass beads of the present invention has the above-mentioned structure, foamed glass beads with good foamability (that is, low bulk density), sufficient crushing strength, and excellent heat insulation properties can be produced with a narrow particle size distribution. It can be produced intensively and with high production efficiency by adjusting the particle size. As reference data for confirming the effect of the production method of the present invention, a comparative example will be shown below in which the same raw materials as in the above-mentioned example were used but the product was produced by a different method. [Comparative Example] Approximately 400 mesh of CaCO 3 (2.0wt%) was added as a foaming agent to the same waste glass bottle powder as in the previous example, and a 5% aqueous solution of PVA (23wt%) was added as an adhesive and kneaded. . The obtained kneaded product was fed to the same granulator as in the example and granulated. As shown in Table 1 above, the particle size distribution at this time is a wide distribution that does not concentrate in a predetermined particle size range, and it can be seen that there are many particles with a small particle size close to that of a powder. The molded granules thus obtained were not sized into spherical shapes, but were subjected to the same drying and foaming sintering treatment as in the previous example to obtain foamed glass granules. A large number of coalescent particles were attached to the foamed glass particles, and the density was high (0.22 g/cc). In the above case where sizing treatment is not performed, the relationship between the heating time during foam sintering and the corresponding bulk density of each product is determined as follows:
This is shown by the dashed line graph in the figure. Comparing the results of the above-mentioned examples and the above-mentioned comparative examples, by sizing the raw material granules into spherical shapes, the foaming properties are improved (the bulk density is reduced) even with the same amount of foaming agent and foaming conditions. It can be confirmed that the particle size distribution of the product is also narrowed and that products with desired particle sizes can be manufactured with high production efficiency. In addition, since the raw material granules are granulated into spherical shapes, the raw material granules rotate smoothly during the foaming sintering process using a rotary kiln.
Foaming becomes uniform and coalescence is avoided.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例で得られるガラス発泡
粒と、他の方法により得られるガラス発泡粒とを
比較して、製品嵩密度と発泡焼結時の加熱時間と
の関係を示すグラフである。
The figure is a graph showing the relationship between product bulk density and heating time during foam sintering, comparing foamed glass grains obtained by one example of the present invention with foamed glass grains obtained by other methods. be.

Claims (1)

【特許請求の範囲】 1 ガラス粉末と無機粉末発泡剤を粘着剤で固め
て粒体を成形する造粒工程と、前記成形粒体を球
状粒体に整粒する整粒工程と、前記球状粒体にブ
ロツク防止剤をコーテイングするコーテイング工
程と、コーテイング済み球状粒体をロータリーキ
ルンで回転焼結してガラス発泡粒を得る加熱工程
とを含むことを特徴とするガラス発泡粒の製造方
法。 2 前記コーテイング工程は、前記整粒工程の終
了間際に行なうものである特許請求の範囲第1項
記載のガラス発泡粒の製造方法。 3 前記造粒工程は、押出し成形により造粒する
ものである特許請求の範囲第1項又は第2項記載
のガラス発泡粒の製造方法。 4 前記粘着剤は水溶性増粘剤からなる特許請求
の範囲第1項から第3項までのいずれかの項に記
載のガラス発泡粒の製造方法。
[Scope of Claims] 1. A granulation step of solidifying glass powder and an inorganic powder foaming agent with an adhesive to form granules, a sizing step of sizing the molded granules into spherical granules, and a granulation step of sizing the spherical granules. 1. A method for producing foamed glass granules, comprising a coating step of coating the body with an antiblocking agent, and a heating step of rotary sintering the coated spherical granules in a rotary kiln to obtain foamed glass granules. 2. The method for producing foamed glass granules according to claim 1, wherein the coating step is carried out just before the end of the sizing step. 3. The method for producing foamed glass granules according to claim 1 or 2, wherein the granulation step is granulation by extrusion molding. 4. The method for manufacturing glass foam beads according to any one of claims 1 to 3, wherein the adhesive comprises a water-soluble thickener.
JP25462484A 1984-11-30 1984-11-30 Production of foamed glass particle Granted JPS61132538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25462484A JPS61132538A (en) 1984-11-30 1984-11-30 Production of foamed glass particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25462484A JPS61132538A (en) 1984-11-30 1984-11-30 Production of foamed glass particle

Publications (2)

Publication Number Publication Date
JPS61132538A JPS61132538A (en) 1986-06-20
JPS6365617B2 true JPS6365617B2 (en) 1988-12-16

Family

ID=17267611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25462484A Granted JPS61132538A (en) 1984-11-30 1984-11-30 Production of foamed glass particle

Country Status (1)

Country Link
JP (1) JPS61132538A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708517B1 (en) * 2012-09-13 2017-06-28 Binder + Co Aktiengesellschaft Method for the preparation of foamed glass
US9475732B2 (en) * 2013-04-24 2016-10-25 The Intellectual Gorilla Gmbh Expanded lightweight aggregate made from glass or pumice
CN112279498A (en) * 2020-10-28 2021-01-29 陕西科技大学 Foam glass prepared by utilizing fly ash and preparation method and application thereof

Also Published As

Publication number Publication date
JPS61132538A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
EP1602425B1 (en) Granulated powder for continuous casting of metals and his manufacturing method
US3931036A (en) Compacted alkali metal silicate
EP3210942A1 (en) Method for producing glass raw material granulated body, method for producing molten glass, and method for producing glass article
JPH0510400B2 (en)
JPS6365617B2 (en)
US5501826A (en) Process for manufacturing lightweight inorganic particles
JPS61236621A (en) Production of foamed fine glass grain
JPH0764666B2 (en) Slow-release fertilizer and method for producing the same
JPH0930821A (en) Glass foam granule, its production, and light-weight filler and light-weight plastic utilizing the same
JPS589833A (en) Preparation of foamed glass bead
JPS61251530A (en) Production of glass coated shell granule
JPH04338107A (en) Production of spherical activated carbon
JP2994406B2 (en) Method for producing hollow particles
JP4187806B2 (en) Method for producing granular thermosetting resin molding material
JPH07330463A (en) Production of starting material used for expanded ceramic material
JPH0292842A (en) Production of granulated substance for inorganic glass form
JPS60176931A (en) Foamed glass grain and production thereof
JPH1112056A (en) Production of foaming ceramic material, foaming ceramic material and production of formed ceramic material
JPH0787892B2 (en) Granulation method for powder for ceramic balloon
JPS6365618B2 (en)
JPS61236643A (en) Glass shell covered particle and manufacture
JPH05253459A (en) Production of hallow granule
CN111850338A (en) Pore-forming agent particles, preform, foam metal and preparation method thereof
JPH08253377A (en) Highly strong inorganic foamed granule and its production
JP2000143869A (en) Preparation of foamed material using plastic-laminated paper waste